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These notes are an overview of what was covered in each lecture of the course. They will be
updated as I go, and are definitely not free of typos and mistakes. If you find any, please let me
know about it and I’ll fix them as soon as possible.
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Lecture 1 - 06/01

1 Divisibility

Divisibility is easy in the real numbers or the rational numbers. Things are a little more interesting
when we deal with the integers Z.

Definition. Let a, b ∈ Z. We say a divides b, and write a | b, if there exists an integer k so that
ak = b.

If a | b, we can also say a is a factor of b or b is a multiple of a.

Example.

� 3 | 6 since 3 · 2 = 6 (and 2 is an integer!).

� 3 | −3 since 3 · (−1) = −3.

� 27 | 0 since 27 · 0 = 0.

� 1 | a for all a ∈ Z since 1 · a = a.

Let’s prove something about divisibility.

Theorem 1. If d | a and a ̸= 0, then |d| ≤ |a|.

Proof. Since d | a, dk = a for some k ∈ Z. Therefore |a| = |dk| = |d| |k|. Since a ̸= 0, k ̸= 0
so |k| ≥ 1. Multiplying both sides of this inequality by the positive number |d| gives |d| |k| ≥ |d|.
Therefore |a| ≥ |d|, completing the proof. ■

Notice that the theorem is false if a = 0 (for example if k = 3 and a = 0), so we really do need
the assumption a ̸= 0. Here are some facts about divisibility that we will use, but will be left as
an exercise.

Exercise. Prove the following statements.

� If c | a and c | b, then c | av + bu for all u, v ∈ Z.

� If a | b and b | c, then a | c.

� If a | b, then a2 | b2.

Theorem 2. Let a, b ∈ Z. We have a | b and b | a if and only if a = ±b.

Lecture 2 - 08/01

Proof. If a = ±b, then we have a(±1) = b and b(±1) = a, so a | b and b | a. Conversely, suppose
ak = b and bl = a for some k, l ∈ Z. Then akl = a. If a = 0, then b = ak = 0, so a = ±b. Therefore
we may assume a ̸= 0, so kl = 1. Then k = l = ±1 so a = ±b. ■

We could have also proved this theorem by dealing with the case a = b = 0 first, and then using
Theorem 1 to get |a| ≤ |b| and |b| ≤ |a|. We could then conclude |a| = |b| so a = ±b.
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Exercise. Prove or disprove: If a | b and c | d, then a+ c | b+ d.

Now, we know not every integer divides every other integer (for example 4 ∤ 5). However, we
can still say something in this case. Let’s draw out the number line and emphasise all the multiples
of 4.

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

Notice that although there are a bunch of numbers which aren’t multiples of 4, then all either land
on a multiple of 4, or either 1, 2, or 3, places to the right of a multiple of 4 (how far to the right is
what we would call the remainder when divided by 4). So for example, 4 ∤ 5 but we do have that
5 is one more than a multiple of 4. In fact, looking at this line, we can see every integer a can be
written as a = q · 4 + r where q is some integer and 0 ≤ r < 4. Let’s prove this is always the case!

Theorem 3 (The Division Algorithm). If a, b ∈ Z with b > 0, then there is a unique pair of integers
q, r such that a = qb+ r and 0 ≤ r < b.

If a = qb + r as per the division algorithm, we call the integer r the remainder of a when
divided by b.

Before we embark on the proof, we have to first talk about the well-ordering principle. In this
course, the natural numbers are

N = {0, 1, 2, . . .}.

The well-ordering principle: Every non-empty subset of N has a least element.

This is an axiom of the natural numbers (that is, something that is handed to us as a defining
feature of N, not something we can prove). Not every set has this property! For example, Z
doesn’t have a least element (and Z is a non-empty subset of, well, Z), so Z does not satisfy the
well-ordering principle.

Exercise. Show that Q does not satisfy the well-ordering principle. Hint: Consider the set {x ∈
Q | x > 0}.

Now let’s prove the Division Algorithm, and we will rely on the well-ordering principle to do
so.

Proof. Let’s first show such a q and r exist. Let S = {a−nb | n ∈ Z}. If n = − |a| then a+ |a| b ≥ 0
so S ∩ N is a non-empty subset of N. Let r be the least element of S ∩ N, so r = a − qb ≥ 0 for
some q ∈ Z. Rearranging gives a = qb+ r with r ≥ 0. We want to show r < b. Towards that goal,
suppose r ≥ b. Then r − b ≥ 0 so a − (q + 1)b = r − b ≥ 0, which contradicts r being the least
element in S ∩ N. Therefore 0 ≤ r < b.

For uniqueness, suppose a = qb + r = qb′ + r′ with 0 ≤ r, r′ < b. Then r − r′ = (q′ − q)b.
Since 0 ≤ r, r′ < b, we have |r − r′| < |b|. Therefore |r − r′| = |q − q′| |b| implies |q − q′| < 1. Since
q, q′ ∈ Z we must have q = q′ and thus r = r′. ■

The proof was hard, but the theorem can actually do quite a bit of heavy lifting for us!

Example. Suppose 3 ∤ a. Then the remainder of a2 when divided by 3 is 1. Let’s investigate this
claim. If 3 ∤ a, then a = 3q + r where r = 1 or 2 and q ∈ Z. If r = 1, then

a2 = (3q + 1)2 = 9q2 + 6q + 1 = 3(3q2 + 2q) + 1.
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if r = 2 then
a2 = (3q + 2)2 = 9q2 + 12q + 4 = 3(3q2 + 4q + 1) + 1.

In both cases, the remainder is 1, which justifies the initial claim!

Exercise.

� What are all the remainders of squares of odd numbers when divided by 8?

� Prove that an odd number times an odd number is always odd.

Lecture 3 - 10/01

1.1 The Greatest Common Divisor

An extremely useful concept to pay attention to turns out to be the greatest common divisor of two
integers. Intuitively, this is how much the two numbers share. You already have experience dealing
with this concept when you simplify fractions. For example, you usually wouldn’t write 10

4 , but
instead you would write 5

2 . In the former case, 2 divides both 10 and 4, and it’s the biggest thing
that divides both, so you divide the numerator and denominator by 2 to obtain 5

2 . Even better, 5
and 2 don’t share any divisors (other than ±1), so you cannot simplify this fraction any further.

Definition. Let a, b ∈ Z. A common divisor of a and b is an integer c so that c | a and c | b.

Definition. Let a, b ∈ Z with a ̸= 0 or b ̸= 0. Define the greatest common divisor of a and b,
denoted gcd(a, b), to be the integer d such that

� d is a common divisor of a and b, and

� if c is a common divisor of a and b, then c ≤ d.

We omit the case a = b = 0, and leave gcd(0, 0) to be undefined. After all, every integer divides
0, so there is no candidate for the greatest common divisor!

Example.

� gcd(2, 4) = 2.

� gcd(5, 9) = 1.

� gcd(−5, 9) = 1.

� gcd(0, a) = |a| for all a ∈ Z \ {0}.

� gcd(a, b) = gcd(−a, b) = gcd(a,−b) = gcd(−a,−b) for all a, b ∈ Z with a ̸= 0 or b ̸= 0.

Notice that if c | a and c | b, then −c | a and −c | b. Therefore we know gcd(a, b) ≥ 0. In the
definition of the greatest common divisor we called it “the” greatest common divisor instead of “a”
greatest common divisor, suggesting it is unique. Indeed it is!

Theorem 4. When defined, the greatest common divisor of two integers is unique.

Proof. Let a, b ∈ Z, a ̸= 0 or b ̸= 0. Suppose d and d′ satisfied the properties in the definition of
the greatest common divisor of a and b. In particular, both d and d′ are common divisors of a and
b. Since d is a greatest common divisor of a and b, d′ ≤ d. Similarly since d′ is a greatest common
divisor, d ≤ d′. Alas, d = d′. ■
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Exercise.

1. Compute gcd(a, b) for the following pairs of integers.

(a) a = −1, b = 27.

(b) a = 8, b = 13.

(c) a = 13, b = 21.

(d) a = 21, b = 34.

(e) a = 3427, b = 20184.

2. Suppose gcd(a, b) = d. What is gcd(a2, b2)?

In Question 1 of the previous exercise, for all but the last pair of integers, it’s easy enough
to simply write out the divisors of both integers and look for the biggest one. However, this
quickly becomes tedious. Thankfully we have the Euclidean Algorithm at our disposal. Let’s
remind ourselves how it works with an example, and then we’ll prove that it does indeed work as
advertised.

Example. Let’s apply the Euclidean Algorithm to compute gcd(203, 77). We repeatedly apply the
division algorithm as follows:

203 = 2 · 77 + 49

77 = 1 · 49 + 28

49 = 1 · 28 + 21

28 = 1 · 21 + 7

21 = 3 · 7 + 0.

The last non-zero remainder gives us that gcd(203, 77) = 7.

Let’s write down this algorithm in general.

The Euclidean Algorithm:
Let a and b be positive integers with a > b (if a = b then gcd(a, b) = a, so we don’t need to

worry about this case).
Set r0 = a, r1 = b, and define rn for n ≥ 2 as follows. Suppose rn−2 and rn−1 are positive

integers with rn−2 > rn−1. By the division algorithm, there exists integers qn−1 and rn, with
0 ≤ rn < rn−1 so that rn−2 = qn−1rn−1 + rn. We now have b > r2 > r3 · · · ≥ 0, so the sequence
r2, r3, . . . must become zero (after at most b steps). Let rm be the last non-zero element in the
sequence. The algorithm looks like this:

a = q1b+ r2

b = q2r2 + r3

r2 = q3r3 + r4
...

rm−2 = qm−1rm−1 + rm

rm−1 = qmrm + 0.

Then gcd(a, b) = rm.
To prove this works, we first have an important lemma.
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Lemma 5. If a, q, b, r ∈ Z, a ̸= 0 or b ̸= 0, are such that a = qb+ r, then gcd(a, b) = gcd(b, r).

Proof. If we show that the set of common divisors of a and b is equal to the set of divisors of b and
r, then we can conclude they must have the same greatest common divisor. To this end, suppose
c | a and c | b. Then c | a − qb = r, so c is a common divisor of b and r. Conversely, if c | b and
c | r, then c | qb+ r = a, so c is a common divisor of a and b. Alas, c is a common divisor of a and
b if and only if c is a common divisor of b and r, completing the proof. ■

Applying Lemma 5 to the Euclidean Algorithm we get

gcd(a, b) = gcd(b, r2) = gcd(r2, r3) = gcd(r3, r4) = · · · = gcd(rm−1, rm) = gcd(rm, 0) = rm

which proves that the Euclidean algorithm works!

Exercise. Find the greatest common divisor of the year you were born and the year one of your
parents was born.

Lecture 4 - 13/01

1.2 Linear Diophantine equations and Bezout

There will be several serious exploitations of the Euclidean algorithm, here’s the first, and it allows
us to prove seemingly difficult things about greatest common divisors rather easily. In fact, it will
have far reaching consequences throughout the rest of the course.

Bezout’s identity is a way to express gcd(a, b) in terms of a and b. For example, gcd(3, 5) = 1
and we have 3 · 2 − 5 · 1 = 1. Although this is just one example, this kind of thing happens in
general. Even better, the Euclidean algorithm tells us how to write the greatest common divisor of
a and b as ax+ by for some integers x and y!

Theorem 6 (Bezout’s identity). Let a, b ∈ Z with a ̸= 0 or b ̸= 0. Then there exist integers x and
y such that gcd(a, b) = ax+ by.

Before proving this wonderful fact, let’s run through an example with it.

Example (Dilcue). Recall we computed gcd(203, 77) = 7 via the Euclidean algorithm as follows:

203 = 2 · 77 + 49

77 = 1 · 49 + 28

49 = 1 · 28 + 21

28 = 1 · 21 + 7

21 = 3 · 7 + 0.

Now we run Dilcue, with is just the above algorithm backwards, starting with the second last line
and substituting our way up the series of equations.

7 = 28− 1 · 21
= 28− 1(49− 28)

= 2 · 28− 1 · 49
= 2 · (77− 49)− 1 · 49
= 2 · 77− 3 · 49
= 2 · 77− 3(203− 2 · 77)
= 8 · 77− 3 · 203.

9



Therefore we have 7 = 77(8)− 203(3).

Euclid followed by Dilcue gives us a way to find integers x and y so that gcd(a, b) = ax + by.
Let’s turn this example into a proof of Bezout’s identity.

Proof of Bezout’s identity. Suppose a > b > 0 (we will deal with all other cases at the end).
Perform the Euclidean algorithm, and rearranging the second-last equation gives

gcd(a, b) = rm = rm−2 − qm−1rm−1

so rm is an integer combination of rm−1 and rm−2.

Claim. If gcd(a, b) is written as an integer combination of rk−2 and rk−1 for some k ≤ m, then
gcd(a, b) can be written as an integer combination of rk−2 and rk−3.

Proof of claim. Suppose gcd(a, b) = urk−1 + vrk−2 for some integers u and v. Then the (k − 2)nd
line of the Euclidean algorithm can be rearranged to give

rk−1 = rk−3 − qk−2rk−2.

Substituting gives

gcd(a, b) = u(rk−3 − qk−2rk−2) + vrk−2 = urk−3 + (v − uqk−2)rk−2

completing the proof of the claim. ■

Now, applying the claim repeatedly gives us that gcd(a, b) can be written as an integer combi-
nation of r0 = a and r1 = b, that is, gcd(a, b) = ax+ by for some integers x, y.

Now, if a or b is negative, we can simply replace a and b by |a| and |b|, find a solution to
gcd(a, b) = |a|x+ |b| y, and simply change the sign of x or y to get a solution to gcd(a, b) = ax+by.
If a < b, we can switch the roles of x and y.

If |a| = |b|, then the equation we wish to solve takes the form |a| = a(x ± y) (since a = ±b).
This equation can be solved with x = 1 and y = 0 if a is positive, and x = −1 and y = 0 if a is
negative. ■

An important thing about the proof of Bezout’s identity is that although an explicit formula for
how to come up with a solution to the equation gcd(a, b) = ax+ by is not provided, it does give us
a recipe for coming up with the solution. And that recipe is exactly to do the Euclidean Algorithm
forwards, and then backwards. Such a proof is called a constructive proof in mathematics.

Bezout’s identity turns out to be super useful! From the definition of the greatest common
divisor of a and b, we know that any other divisor c is such that c ≤ gcd(a, b). We can now prove
something even stronger.

Proposition 7. Let a, b ∈ Z, a ̸= 0 or b ̸= 0. We have c | a and c | b if and only if c | gcd(a, b).

Proof. Suppose c | gcd(a, b). Notice that gcd(a, b) | a, so since c | gcd(a, b) and since divisibility is
transitive, c | a. Similarly c | b.

Conversely, suppose c | a and c | b. Then by Bezout’s identity, there are integers x, y ∈ Z so
that ax+ by = gcd(a, b). We have c | ax+ by, so c | gcd(a, b). ■
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Bezout’s identity gives us a solution to a very specific equation. Such equations are called linear
Diophantine equations. A Linear Diophantine equation is an equation of the form

d = ax+ by

where a, b, d ∈ Z.
As an astute reader, you may have recognised d = ax+ by as the equation of a line (in fact the

line has slope −a
b if b ̸= 0, and is vertical if b = 0). So if we allow x and y to be real numbers,

there is always a solution to any linear Diophantine equation (just choose x and y so that (x, y) is
a point on the line). However, over the integers, things aren’t as simple!

Example. The linear Diophantine equation 4x + 10y = 3 does not have a solution over Z since
the left hand side is even and the right hand side is odd.

Geometrically, asking for an integer solution to ax + by = d is asking for a point (x, y) on the
line with integer coordinates! A point (x, y) ∈ R2 where both x and y are integers is called a lattice
point.

Thanks to Bezout, we are now in a position to work out exactly when a linear Diophantine
equation has an integer solution, or equivalently, when a line of the form ax + by = d passes
through a lattice point in R2.

Theorem 8. Let a, b ∈ Z, a ̸= 0 or b ̸= 0. There exist integers x, y ∈ Z such that ax + by = d if
and only if gcd(a, b) | d.

Proof. Suppose there are integers x, y so that ax + by = d. Since gcd(a, b) | a and gcd(a, b) | b,
then gcd(a, b) | ax+ by so gcd(a, b) | d. Conversely, suppose k gcd(a, b) = d for some k ∈ Z. Then
by Bezout’s identity, there exist x, y ∈ Z so that gcd(a, b) = ax + by. Then d = k gcd(a, b) =
a(kx) + b(ky), completing the proof. ■

Exercise.

1. Solve the linear Diophantine equation 203x+ 77y = 49 over Z.

2. Find infinitely many integer solutions to the Linear diophantine equation 4x + 10y = 16.
Have you found them all?

Lecture 5 - 15/01

1.3 Coprimeness

The case when gcd(a, b) = 1 is special, and worth investigating some more. After all, when you
write a fraction a

b in lowest terms, this exactly means gcd(a, b) = 1.

Definition. We say integers a and b are coprime or relatively prime if gcd(a, b) = 1.

Exercise. True or False: If a and b are coprime and b and c are coprime, then a and c are coprime.

When attempting to solve a linear Diophantine equation ax+ by = d, having that gcd(a, b) = 1
is a dream! Since 1 | a for all a ∈ Z, Theorem 8 gives us that ax + by = d always has a solution,
regardless of what d is! Let’s see what else we can squeeze out of coprimeness.

Theorem 9. Two integers a and b are coprime if and only if there exist x, y ∈ Z such that
ax+ by = 1.

11



Proof. This is an exercise. ■

As with any if and only if statement in mathematics, we now have that an equivalent definition
of a and b being coprimes is that there is an integer solution to ax+ by = 1. For example, we know
201− 25(8) = 1, so we immediately have gcd(201, 25) = 1.

Here are some useful facts about coprime integers.

Proposition 10. Let a and b be coprime integers.

1. If a | c and b | c, then ab | c.

2. If a | bc then a | c.

Proof. 1. We know there exist x, y ∈ Z so that ax+ by = 1. Since ak = bl = c for some k, l ∈ Z
we have

c = cax+ cby = ablx+ abky = ab(lx+ ky)

so ab | c.

2. As in part 1, there exist x, y ∈ Z so that cax + cby = c. Since a | a and a | bc we have
a | cax+ cby so a | c.

■

Exercise. Find integers a, b, c (a ̸= 0 or b ̸= 0) so that:

1. a | c and b | c but ab ∤ c.

2. a | bc but a ∤ c.

2 Prime numbers

Prime numbers are the building blocks of the integers. They are fundamental, and mysterious. As
you will see, we understand some things about them (like that there are infinitely many primes),
but there are some basic questions to which we do not know the answer (such as whether or not
there are infinitely many pairs of primes of the form p and p+ 2).

Definition. An integer p > 1 is prime if its only positive divisors are 1 and p. An integer is
composite otherwise.

Appendix A has a list of the first 1000 primes. Please let me know if you find any patterns.
Let’s begin our investigation into primes.

Observe that 4 | 60 and 60 = 6 · 10. However, 4 ∤ 6 and 4 ∤ 10. This may seem suprising, but
what’s going on here is that since 2 | 6 and 2 | 10 when we combine them we get 2 · 2 | 6 · 10, so we
have 4 | 10. So, the fact that you can have 4 | ab but 4 ∤ a and 4 ∤ b is a consequence of the fact
that 4 is composite. So, maybe, we shouldn’t expect this kind of thing to happen with primes, and
indeed it doesn’t!

Here is an important observation: If p is prime, its only positive divisors are 1 and p. Therefore
gcd(p, a) is either 1 or p. So, if p ∤ a, then gcd(p, a) = 1.

Proposition 11. Let p be a prime. If p | ab, then p | a or p | b.

Proof. If p | a then we’re done, so suppose p ∤ a. Since p is not a factor of a, we must have that p
and a are coprime. Therefore p | b by Proposition 10. ■

12



Exercise.

� Prove that if p | a1 · · · at for some a1, . . . , at ∈ Z, then p | ai for some i.

� Prove that if p is prime and p | ak for some integer k ≥ 0, then pk | ak.

Lecture 6 - 17/01

2.1 The Fundamental Theorem of Arithmetic

We are now ready to prove a very fundamental theorem about numbers, called, well, the Funda-
mental Theorem of Arithmetic. It really shows why we consider prime numbers to be the building
blocks of the integers.

Theorem 12 (Fundamental Theorem of Arithmetic). Each integer n > 1 has a prime-power
factorisation

n = pe11 · · · pekk
where p1, . . . , pk are distinct primes and e1, . . . , ek are positive integers. Furthermore, other than
permuting the factors, this factorisation is unique.

For example, 100 = 52 ·22, which we could also write as 100 = 22 ·52 or 100 = 2 ·52 ·2. However,
whichever way we write 20 as a product of primes, it must contain two 2s and two 5s.

Let’s prove the fundamental theorem of arithmetic!

Proof. For existence we will proceed by induction on n. The base case n = 2 is easy, since n = 21.
Now suppose n > 2 and every integer k such that 2 ≤ k ≤ n− 1 has a prime factorisation. If n is
prime, then n = n1 and we’re done. If n is composite, then n = ab for some integers 2 ≤ a, b ≤ n−1.
Therefore a and b have prime factorisations, so n = ab has a prime factorisation (by multiplying
together the prime factorisations of a and b).

For uniqueness, we will again induct on n. The base case n = 2 is an exercise for the reader,
to show that the only prime factorisation of 2 is indeed 21. Now, suppose every integer k such
that 2 ≤ k ≤ n − 1 has a unique prime factorisation (up to permuting the factors). Suppose

n = pe11 · · · pess = qf11 · · · qftt where the pi are distinct primes, the qi are distinct primes and the ei
and fi are positive integers. Since p1 | qf11 · · · qftt , we have p1 | qj for some j. By permuting the qi,

we have p1 | q1 and since q1 is prime we have p1 = q1. Then
n
p1

= pe1−1
1 pe22 · · · pess = qf1−1

1 qf22 · · · qftt .
However, 2 ≤ n

p1
≤ n− 1 so these two factorisations of n

p1
are the same after permuting the factors.

Therefore the original two factorisations of n are the same after the permuting the factors. ■

Great! The fundamental theorem of arithmetic turns out to be outrageously useful for studying
divisibility of integers (among other things). Let’s take a look at an example.

Example. Let’s look at the prime factorisations of all the positive divisors of 23 ·32 ·5 = 360. They
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are

1 = 20 · 30 · 50

2 = 21 · 30 · 50

4 = 22 · 30 · 50

8 = 23 · 30 · 50

3 = 20 · 31 · 50

6 = 21 · 31 · 50

12 = 22 · 31 · 50

24 = 23 · 31 · 50

9 = 20 · 32 · 50

18 = 21 · 32 · 50

36 = 22 · 32 · 50

72 = 23 · 32 · 50

5 = 20 · 30 · 51

10 = 21 · 30 · 51

20 = 22 · 30 · 51

40 = 23 · 30 · 51

15 = 20 · 31 · 51

30 = 21 · 31 · 51

60 = 22 · 31 · 51

120 = 23 · 31 · 51

45 = 20 · 32 · 51

90 = 21 · 32 · 51

180 = 22 · 32 · 51

360 = 23 · 32 · 51

You may notice something about all the prime factorisations - the exponents of the primes are
bounded above by the exponents of the primes in the original factorisation. To state the next
proposition slickly, we are going to allow exponents of zero on the prime factorisations. This is just
so we can take any two numbers and write them as a product of powers of the same set of primes.
For example, 6 = 21 · 31 · 50 and 15 = 20 · 31 · 51.

Proposition 13. Let n = pe11 · · · pekk and m = pf11 · · · pfkk , where the pi are distinct primes and
ei, fi ≥ 0 for all i. Then m | n if and only if fi ≤ ei for all i.

Proof. This is an exercise. ■

In fact, we can write down formulas for a whole bunch of things in terms of the prime factori-
sations.

Proposition 14. Let a = pe11 · · · pekk and b = pf11 · · · pfkk , where the pi are distinct primes and

14



ei, fi ≥ 0 for all i. Then

ab = pe1+f1
1 · · · pek+fk

k

a/b = pe1−f1
1 · · · pek−fk

k

gcd(a, b) = p
min{e1,f1}
1 · · · pmin{ek,fk}

k .

Proof. The proof of this proposition is also an exercise. ■

Example. Suppose p,q, and r are distinct primes. Then gcd(pq2, qr2) = q.

The formula gcd(a, b) = p
min{e1,f1}
1 · · · pmin{ek,fk}

k certainly seems like an easy way to compute
the greatest common divisor of two integers, and it is! Provided you already have the prime
factorisations of the integers in which you are interested. An attractive feature of the Euclidean
algorithm is that you don’t need the prime factorisations of a and b to compute gcd(a, b). An in
general, it’s rather difficult to compute the prime factorisation of an integer.

Let’s push the fundamental theorem of arithmetic a little further.

Lecture 7 - 20/01

Proposition 15. Let a = pe11 · · · pekk where the pi are distinct primes and ei is a positive integer
for all i. Then a is a perfect square if and only if ei is even for all i.

Proof. Suppose a = b2 and the prime factorisation of b is given by b = pf11 · · · pfkk . Then a = b2 =

p2f11 · · · p2fkk . Since the prime factorisation of a is unique up to changing the order of the primes,
the exponent of each prime is even. Conversely, suppose the exponent on each prime in the prime
factorisation of a is even. Then a = p2f11 · · · p2fkk = (pf11 · · · pfkk )2, completing the proof. ■

Let’s keep going, this time to construct infinitely many irrational numbers.

Proposition 16. If a positive integer m is not a perfect square, then
√
m is irrational.

Proof. Suppose
√
m = a

b is rational, so a and b are integers. We may choose the positive square root
and therefore assume a and b are positive integers. Consider the prime factorisations a = pe11 · · · pekk
and b = pf11 · · · pfkk where the pi are distinct primes and the ei and fi are non-negative integers

for all i. Then m = a2

b2
is an integer so b2 | a2. Therefore 2fi ≤ 2ei for all i and we have

m = p
2(ei−fi)
1 · · · p2(ek−fk)

k . Since each exponent in the prime factorisation of m is even, m is a
perfect square. ■

So, for example,
√
24 is irrational!

Exercise. Let a and n be positive integers. When is a
1
n rational?

Finally, we finish with one of my favourite proofs of all time. A proof of the infinitude of primes.

Theorem 17. There are infinitely many primes.

Proof. Suppose towards a contradiction that there are finitely many primes p1, . . . , pk. Consider
the integer m = p1 · · · pk + 1. Then for every i, since pi > 1, by the division algorithm, m has
remainder 1 when divided by pi. Thus pi ∤ m for all i. However, m has some prime factor q by the
Fundamental Theorem of Arithmetic, contradicting our assumption that p1, . . . , pk is a complete
list of primes. ■

Neat!
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3 Continued fractions

Let’s do something completely different, the Euclidean algorithm. Here is the Euclidean algorithm
on the pair of integers 203, 77.

203 = 2 · 77 + 49

77 = 1 · 49 + 28

49 = 1 · 28 + 21

28 = 1 · 21 + 7

21 = 3 · 7 + 0.

But, I want to write this slightly differently:

203

77
= 2 +

49

77
77

49
= 1 +

28

49
49

28
= 1 +

21

28
28

21
= 1 +

7

21
21

7
= 3 +

0

7
.

In fact, we can write this whole process in a curious looking form called a continued fraction as
follows.

The first equation can be rewritten as

203

77
= 2 +

1(
77
49

)
at which point the second equation comes in to the picture and gives

203

77
= 2 +

1

1 + 28
49

= 2 +
1

1 + 1

( 49
28)

.

Of course, now the third equation comes in, yielding

203

77
= 2 +

1

1 + 1
1+ 21

28

.

Continuing in this fashion through the entire Euclidean algorithm gives us the continued fraction
expansion of 203

77
203

77
= 2 +

1

1 + 1
1+ 1

1+1
3

.
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This is great, but who cares? I mean, it’s fun to write down nested fractions like this and all.
But at some point, I’m going to be too lazy to write down continued fractions all the way to their
completion. Let’s see what number comes out if I just decide to stop after some point.

Let’s first note that 203
77 ≈ 2.63636363.... Here is what comes out of our truncated continued

fractions.

2 = 2

2 +
1

1
= 3

2 +
1

1 + 1
1

=
5

2
= 2.5

2 +
1

1 + 1
1+ 1

1

=
8

3
= 2.666...

2 +
1

1 + 1
1+ 1

1+1
3

= 2.636363636363...

Lecture 8 - 22/01
Cool! Each successive term appears to be a better and better approximation to our original

fraction. Let’s try something else, and let’s run the Euclidean algorithm on π (stay with me here).
Here are the first few steps of what actually goes on forever (becuse π is irrational).

π = 3 + r1
1

r1
= 7 + r2

1

r2
= 15 + r3

1

r3
= 1 + r4

1

r4
= 292 + r5

1

r5
= 1 + r6.

And in fact, the integer parts that appear have been well studied, and here are the first few

3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2.

So, let’s play the game we did above, truncating our continued fraction and seeing what comes out.

17



Here are the first few.

3 = 3

3 +
1

7
=

22

7
= 3.142857142857...

3 +
1

7 + 1
15

=
333

106
= 3.141509433...

3 +
1

7 + 1
15+ 1

1

=
355

113
= 3.1415929203...

3 +
1

7 + 1
15+ 1

1+ 1
292

=
103993

33102
= 3.14159265301...

These are all very good approximations of π, and in some sense, they are the best possible
approximations for fractions with denominators as large as they are.

Before we continue, we will need some notation. To save us writing out the continued fraction
in full each time, we have the following short-hand. For integers a0, . . . , an denote the continued
fraction by

a0 +
1

a1 +
1

a2+
1

a3+
1

...+ 1
an

= [a0, a1, a2, . . . , an].

So, we have

203

77
=

29

11
= [2, 1, 1, 1, 3]

π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, ...]

and note that since π is irrational, the continued fraction continues (although not in any percievable
pattern).

Exercise. Prove that the continued fraction expansion of a real number x is finite if and only if
x ∈ Q.

Exercise. Compute the continued expansion expansion of e.

Let’s compute the continued fraction expansion of
√
3. This time, instead of using a computer

to figure out the integer part, we will keep all our computations in exact form, and see how far we
can get.

We know
√
3 is between 1 and 2. So the first line in our computation will be

√
3 = 1+(

√
3−1).

Then we flip the fraction part, and repeat. By rationalising the denominator we have 1√
3−1

=
√
3+1
2 .

Since
√
3 + 1 is between 2 and 3, we know

√
3+1
2 = 1 +

√
3−1
2 . Again, flipping the fractional part

and rationalising the denominator gives 2√
3−1

=
√
3 + 1, which we know is between 2 and 3. This

gives
√
3 + 1 = 2 + (

√
3 − 1). Hang on, I swear we’ve been here before! We know what happens

18



when we get to a fractional part of
√
3− 1. Taking this rambling paragraph and organising it gives

√
3 = 1 + (

√
3− 1)

1√
3− 1

= 1 +

√
3− 1

2

2√
3− 1

= 2 + (
√
3− 1)

1√
3− 1

= 1 +

√
3− 1

2

2√
3− 1

= 2 + (
√
3− 1)

1√
3− 1

= 1 +

√
3− 1

2

2√
3− 1

= 2 + (
√
3− 1)

...

Therefore the continued fraction expansion of
√
3 is

√
3 = [1, 1, 2, 1, 2, 1, 2, 1, 2, . . .] = [1, 1, 2].

Exercise. Compute the continued fraction expansion of
√
n for n = 5, 6, 7, 8, 10.

Exercise. Find an irrational number x with continued fraction expansion [1, 1, 1, 1, 1, ...].

Lecture 9 - 24/01

3.1 Convergents and approximating irrationals

As we saw in the introduction to this chapter, the truncated continued fractions for π appear to
approximate π very well, and the longer we make our truncated continued fraction, the better the
approximation. These truncated continued fractions are called convergents.

Definition. Let x be an irrational number and x = [a0, a1, . . .] its continued fraction expansion.
The nth convergent of x is the rational number

pn
qn

= [a0, a1, . . . , an].

So, the 0th, 1st, 2nd, 3rd, and 4th convergents of π, which we computed above, are 3, 22
7 ,

333
106 ,

355
113 , and

103993
33102 respectively. Let’s compute the first 4 convergents of

√
3. We have

p0
q0

= 1

p1
q1

= 1 +
1

1
= 2

p2
q2

= 1 +
1

1 + 1
2

=
5

3

p3
q3

= 1 +
1

1 + 1
2+ 1

1

=
7

4
.
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The decimal expansion for
√
3, up to 10 decimal places, is

√
3 = 1.7320508075...

That’s pretty close to the 3rd convergent, which is 7
4 = 1.75. This is pretty unimpressive though,

since I could have come up with this approximation without the Euclidean algorithm! But, let’s
look at the 7th convergent:

p7
q7

=
97

56
= 1.732142857...

which is equal to
√
3 when both are rounded to 4 decimal places! This is pretty impressive, because

if you asked me to approximate
√
3 to 4 decimal places with a rational number I would have chosen

17321
10000 . My approximation is pretty good, but the denominator has 5 digits. The denominator of
the 7th convergent only has 2 digits! In a very precise sense, the convergents give rise to the best
approximations of

√
3.

Definition. Let x be a real number. The rational number p
q (written with gcd(p, q) = 1) is a best

rational approximation to x if∣∣∣∣x− p

q

∣∣∣∣ = min

{∣∣∣∣x− p′

q′

∣∣∣∣ : q′ ≤ q

}
.

Here is the main theorem about how much convergents, well, converge.

Theorem 18. For any real number x, the convergents of x are best approximations of x.

We won’t prove this in these notes, but it is a good thing to think about.
So, for example, if you wanted a better rational approximation of

√
3 than 97

56 , you would need
a fraction with denominator at least 57.

Exercise. Let ϕ = 1+
√
5

2 . Find the best rational approximation p
q of ϕ such that q ≤ 377.

Exercise. Let cn be the nth convergent of an irrational number x. Prove that {cn} is a Cauchy
sequence, and so the limit limn→∞ cn exists. What is the limit?

So we know convergents give best approximations. What about the other way around? Ordi-
narily when I ask a question like this, it’s because the answer is yes. This time, the answer is no.
Mathematics is often beautiful and the theorems are often neat, but just because a statement is
beautiful and neat, doesn’t mean it’s true.

Let’s look at the first few convergents of π again.

p0
q0

= 3 = 3

p1
q1

=
22

7
= 3.142857142857...

p2
q2

=
333

106
= 3.141509433...

p3
q3

=
355

113
= 3.1415929203...

p4
q4

=
103993

33102
= 3.14159265301...
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The third convergent is accurate to 6 decimal places. The denominator in the fourth convergent
has 5 digits. It seems unreasonable to think that there are no best approximations with denominator
between 113 and 33102. Indeed this is unreasonable and there are lots of best approximations not
in the list of convergents. In fact, here are the first few best approximations (listed in order of
increasing denominator)

3

1
,
13

4
,
16

5
,
19

6
,
22

7
.

Only the first and last of these are convergents of π.
This raises the question, if we have a best rational approximation of a number x, can we tell

whether or not it’s a convergent? Here are a couple of theorems which we won’t prove, that partially
answer this question.

Theorem 19 (Dirichlet’s Approximation Theorem). Let x be a real number, and p
q a convergent

of x. Then
∣∣∣x− p

q

∣∣∣ < 1
q2
.

So, if you have a convergent with a 20-digit denominator, then it will be accurate to about 40
digits.

Theorem 20 (Legendre’s Theorem). If
∣∣∣x− p

q

∣∣∣ < 1
2q2

, then p
q is a convergent of x.

Exercise. Show that the converses of Dirichlet’s and Legendre’s Theorems are false.

3.2 Pell’s equation

One of the motivations for studying the Euclidean algorithm and number theory in general is that
it is generally more difficult to solve an equation with integers, than it is with real numbers. We
have seen this explicitly when solving linear Diophantine equations.

Let’s see another curious example of trying to solve something over the integers. By now we are
all familiar with square numbers: 1, 4, 9, 16, 25, ... These are called square numbers because, well,
they tell us something about the number of things (say coins) you can put in a square.

The nth square number is of course given by n2. There is the lesser known, but just as pleasant to
be around, cousin of the square number, the triangular number. These are the number of things
you can arrange into a triangle with base n.
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So the first few triangular numbers are 1, 3, 6, 10, 15 and in fact the nth triangular number is the
sum of the first n integers. Thus the nth triangular number is n(n+1)

2 .
Now, here’s a fun question. Can you find a number of dots that can be arranged into both a

square, and a triangle? Well, let’s list out the first few square numbers and triangular numbers
and see if we can find anything.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

n2 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225
n(n+1)

2 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120

The blue numbers appear in both lists. The only ones, at least in the first 15 square and
triangular numbers, are 1 and 36. Are there others?

Investigating this question further, we want to find integers m and n so that m2 = n(n+1)
2 .

Rearranging a little gives (2n+ 1)2 = 8m2 + 1. If we let x = 2n+ 1 and y = 2m this gives

x2 − 2y2 = 1.

So if we’re interested in square triangular numbers (I mean, who isn’t?), we’re interested in integer
solutions to the equation x2 − 2y2 = 1. Since we are looking at x2 and y2, we may as well restrict
our attention to x, y ≥ 0 since we can generate other solutions by just flipping the signs of x and y.

Staring at this equation gives a couple of solutions right off the bat: (x, y) = (1, 0) and (x, y) =
(3, 2). The first corresponds to the square-triangular number 0 (which I guess technically works),
and the second to the number 1. But this can’t be all the solutions, there must be one hiding in the
weeds corresponding to the square-triangular number 36. The square number 36 gives m = 6 and
the triangular number 36 gives n = 8. So, it should be the case that (x, y) = (2n+1, 2m) = (17, 12)
is another solution. A quick check: 172 − 2(122) = 289− 2(288) = 1. Phew!

So, let’s focus on solving the equation x2 − 2y2 = 1, and those like it, and we’ll return to the
square triangular numbers later.

Lecture 10 - 27/01

Definition. Let D > 0 be an integer that is not a perfect square. Pell’s equation is the equation
x2 −Dy2 = 1.

Let’s suppose we did have some solutions to Pell’s equation x2 −Dy2 = 1. The left hand side
is curious, and vaguely familiar. If D = −1 (which we have explicitly disallowed, but let’s continue
down the forbidden path anyway), the equation becomes x2+y2 = 1, the equation of the unit circle.
More importantly, it’s the equation satisfied by the complex number z = x + yi, if |z| = 1. We
know in C, that |z| |w| = |zw|. Therefore, turning solutions to x2 + y2 = 1 into complex numbers,
and multiplying them in C, will yield more solutions! Maybe, if we’re lucky, the same kind of thing
happens with solutions to x2 −Dy2 = 1, and solutions correspond to some kinds of numbers with
some kind of norm being 1. Let’s try this with our couple of solutions to x2 − 2y2 = 1.

We know (x1, y1) = (3, 2) and (x2, y2) = (17, 12) are solutions. Let’s pretend these are coordi-
nates of numbers that are kind of like the complex numbers, except with D playing the role of −1.
Then the corresponding numbers would be 3 + 2

√
2 and 17 + 12

√
2. Let’s multiply these together

and see what happens.

(3 + 2
√
2)(17 + 12

√
2) = 51 + (34 + 36)

√
2 + 48 = 99 + 70

√
2.

Now the moment of truth, does (x3, y3) = (99, 70) give us a solution to the Pell equation? We have

992 − 2(702) = 9801− 2(4900) = 1.
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Amazing! This gives another square triangular number, which is 1225.

Lemma 21. Suppose (x1, y1) and (x2, y2) are solutions to Pell’s equation x2 −Dy2 = 1. Then if
x3 + y3

√
D = (x1 + y1

√
D)(x2 + y2

√
D), then (x3, y3) is a solution.

Proof. We have

(x1 + y1
√
D)(x2 + y2

√
D) = (x1x2 +Dy1y2) + (x1y2 + x2y1)

√
D

so let x3 = x1x2 +Dy1y2 and y3 = x1y2 + x2y1. Then

x23 −Dy23 = (x1x2 +Dy1y2)
2 −D(x1y2 + x2y1)

2

= x21x
2
2 + 2Dx1x2y1y2 +D2y21y

2
2 −Dx21y

2
2 − 2Dx1x2y1y2 −Dx22y

2
1

= (x21 −Dy21)(x
2
2 −Dy22)

= 1

completing the proof. ■

Cool, so if we have a solution to Pell’s equation, we can potentially find a bunch more! Let’s
do this with our solutions that we already have to x2 − 2y2 = 1. We know (3, 2) is a solution, so
let’s just take powers of 3 + 2

√
2 and see what happens. Here is the result arranged in a helpful

table (along with the corresponding square-triangular number).

k (3 + 2
√
2)k solution (x, y) square-triangular number

1 3 + 2
√
2 (3, 2) 1

2 17 + 12
√
2 (17, 12) 36

3 99 + 70
√
2 (99, 70) 1225

4 577 + 408
√
2 (577, 408) 41616

5 3363 + 2378
√
2 (3363, 2378) 1413721

We can find infinitely many solutions this way, and thus infinitely many square-triangular numbers!

Exercise. Suppose (x1, y1) is a solution to Pell’s equation x2 −Dy2 = 1, with x1, y1 > 0. Suppose
k, l > 0. Prove that if (x1 + y1

√
D)k = (x1 + y1

√
D)l then k = l. Conclude that if there is one

integer solution (x1, y1) with x1, y1 > 0 to the equation x2 − Dy2 = 1, then there are infinitely
many.

So you have infinitely many of something, the natural question is: Do you have all of them?

Theorem 22. Let D > 2 be an integer that is not a perfect square. Then there exists positive
integers x0, y0 solving Pell’s equation x2 −Dy2 = 1.

Furthermore, let (x1, y1) be the positive solution with the smallest x value (called the funda-
mental solution). Then any other positive solution is of the form (xk, yk) where xk + yk

√
D =

(x1 + y1
√
D)k for some positive integer k.

So, in the case D = 2 that we have been playing around with, you can check that there are no
solutions with x = 1 or x = 2, so (3, 2) is the fundamental solution. Therefore all other solutions
are of the form (xk, yk) where xk + yk

√
2 = (3 + 2

√
2)k.

Exercise. Prove that there are no integer solutions to x2 − 2y2 = 1 with x = 1 or x = 2.

We are lead, finally, to the last question we shall ask in this course. How do we find the
fundamental solution to Pell’s equation?
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Lemma 23. Suppose (a, b) is a solution to Pell’s equation x2 −Dy2 = 1. Then a
b is a convergent

of
√
D.

Proof. We have a2 −Db2 = 1. Implying (a− b
√
D)(a+ b

√
D) = 1 and thus

a− b
√
D =

1

a+ b
√
D
> 0.

Therefore a > b
√
D. Now let’s see how good an estimate a

b is to
√
D. We have∣∣∣√D − a

b

∣∣∣ = a− b
√
D

b
=

1

b(a+ b
√
D)

<
1

b(2b
√
D)

<
1

2b2
.

Therefore by Legendre’s theorem, a
b is a convergent of

√
D. ■

Finally, somewhere to look to find solutions. If we look back at our solutions when D = 1 we
see each of the solutions do indeed give convergents of

√
2. In fact the 5 solutions listed in the table

above are the 1st, 3rd, 5th, 7th, and 9th convergents respectively. That is,

p1
q1

=
3

2
,

p3
q3

=
17

12
,

p5
q5

=
99

70
,

p7
q7

=
577

408
, and

p9
q9

=
3363

2378
.

Intriguing.
If Theorem 22 is correct (which it is), we just have to run through the convergents of

√
D until

we find a solution! The first one we find will have the smallest x-value (which is an interesting
thing to think about) and therefore it will be our fundamental solution!

Lecture 11 - 29/01

Example. Let’s find all the solutions to Pell’s equation x2 − 7y2 = 1. To find the fundamental
solution, we first compute the continued fraction expansion of

√
7. It turns out to be [2, 1, 1, 1, 4].

Let’s compute the first few convergents, and see what they give when plugging them into Pell’s
equation.

Convergent p
q p2 − 7q2

2

1
−3

3

1
2

5

2
−3

8

3
1

We can stop here since we have found our fundamental solution (x, y) = (8, 3). Then all solutions
are of the form (xk, yk) where xk + yk

√
7 = (8 + 3

√
7)k for k > 1.

Sometimes, the fundamental solution can be quite large and hard to come by. Notably, the
fundamental solution to x2 − 61y2 = 1 is (x, y) = (1766319049, 226153980)!

There is a beautiful geometric story to be told regarding the set of all solutions to Pell’s equation,
but that is a story for another time. To get a hint at the story, do the following exercise.
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Exercise. Let C be the curve in R2 defined by x2 − 2y2 = 1. We know (1, 0) and (3, 2) lie on C.

1. Let T be the tangent line to C at (3, 2), and let L be a line parallel to T passing through
(1, 0). The line L intersects C at another point (a, b). Find (a, b).

2. Let S be the line joining (3, 2) to (a, b) (where (a, b) is your solution to the previous question),
and let L be a line parallel to S passing through (1, 0). The line L intersects C at another
point (c, d). Find (c, d).

3. What do you notice about the points (a, b) and (c, d). Any conjectures?

4 Modular Arithmetic

Modular arithmetic, sometimes called clock arithmetic, is a way of doing mathematics while focusing
only on remainders. For example, suppose you knew today was Wednesday (which it happens to
be as I write this!). What day will it be 22 days from now? The answer is Thursday. A quick way
to see this is to note that we only care about what the remainder of 22 is when divided by 7. After
21 days (which is a multiple of 7), it will be Wednesday again, so in 22 days it will be Thursday.

Similarly, we cn do arithmetic on a clock with 12 numbers (just like a regular clock). We will
call this clock Z12. It looks like this:

0

3

2
111

10

9

8
7 6 5

4

In Z12 we can do addition and multiplication as usual, except we identify some numbers (like 13
is the same as 1, and 12 is the same as 0). For example, 2 + 3 = 5 and 7 + 8 = 3 and 4 · 5 = 8. We
will formalise all of this soon, so take these equations with a grain of salt (the statement 7 + 8 = 3
taken out of context could get me fired!).

Let’s do some more examples, this time in Z7:

0
1

2

34

5

6

Here 2 + 1 = 3, −2 = 5, and 3 · 4 = 12 = 5. What’s really going on here is that we are associating
all numbers that have a remainder of 3 when divided by 7, say, with the number 3 on the clock.
Curiously, no harm seems to come to us if we do our arithmetic with different numbers that have
the same remainder. For example, 5 + 4 = 9 = 2, but we know 5 = −2 and 4 = −3. So we could
instead have done (−2) + (−3) = −5 = 2. Either way, we get the same answer!

Let’s do one more example, which is maybe a little more familiar to us, that of Z2. Z2 as a clock
only has two things, 0 and 1. We can think of the 0 as all the numbers which have a remainder of
0 when divided by 2 (ie all the even numbers) and 1 as all the numbers that have a remainder of
1 when divided by 2 (ie all the odd numbers). Since there are only two things in Z2, it’s not too
onerous to draw out the addition and multiplication tables. Let’s put them alongside tables which
summarise what happens when you add and multiply odd and even numbers.
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+ 0 1

0

1

0

1

1

0

× 0 1

0

1

0

0

0

1

+ even odd

even

odd

even

odd

odd

odd

× even odd

even

odd

even

even

even

odd

Notice anything? The thing I’m trying to hint at is that the remainder of a and b when divided
by 2 is all that matters when figuring out the remainder of a+ b and ab when divided by 2. Even
better, in the previous sentence, I could have replaced 2 with n and it would still be true. The next
section will be all about formalising and proving these ideas.

4.1 Congruences

The first step to formalising is to treat all integers which give the same remainder when divided by
n as equal.

Definition. Let n be a positive integer and let a and b be any integers. We say a is congruent
to b modulo n (or simply mod n), and write a ≡ b (mod n), if n | a−b. If it is clear from context
what n is, we may simply write a ≡ b.

You will find many different ways of denoting that a is congruent to b mod n in textbooks and
online. Here are some: a ≡n b, a ≡ b mod n, or a ≡ b mod (n). Sometimes, instead of saying a is
congruent to b mod n, it is said that a is a residue of b mod n.

“But wait,” I hear you object, “you lead us to believe remainders were important, not this
strange n-divides-the-difference business!”

Well, I’m glad you brought that up.

Proposition 24. Let n be a positive integer and a, b ∈ Z. Then a ≡ b (mod n) if and only if a
and b have the same remainder when divided by n.

Proof. Suppose a ≡ b (mod n) and write b = qn+ r as per the division algorithm (so 0 ≤ r < n).
Since n | a− b we have a = kn+ b for some k ∈ Z. Therefore

a = kn+ b = kn+ qn+ r = (k + q)n+ r

so a has a remainder of r when divided by n, which is the same remainder as b.
Conversely, suppose a = qn + r and b = tn + r for some integers q, t and 0 ≤ r < n. Then

a− b = (q − t)n so a ≡ b (mod n). ■

As always, whenever we see an if and only if statement, we can now treat either side of the
statement as the definition. The next proposition is not terribly difficult to prove, but it is vitally
important. It tells us that the relation “congruent mod n” is an equivalence relation. See Appendix
B for a crash course on equivalence relations.

Proposition 25. Let n be a positive integer. Then for all a, b, c ∈ Z we have

� a ≡ a (mod n),

� If a ≡ b (mod n), then b ≡ a (mod n), and

� If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).
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Proof. The proof is left as an exercse. ■

Lecture 12 - 31/01 (Quiz)
Lecture 13 - 03/02

As explained in Appendix B, the equivalence classes partition the integers into sets. The
equivalence classes here are called congruence classes mod n.

Definition. Let n be a positive integer. For a ∈ Z, define the congruence class of a mod n as
the set

[a] = {b ∈ Z | a ≡ b (mod n)}.

Unwrapping the definitions we have [a] = [b] if and only if a ≡ b (mod n).

Example. When n = 4 we have exactly 4 congruence classes. They are

[0] = {. . . ,−8,−4, 0, 4, 8, . . .}
[1] = {. . . ,−7,−3, 1, 5, 9, . . .}
[2] = {. . . ,−6,−2, 2, 6, 10, . . .}
[3] = {. . . ,−5,−1, 3, 7, 11, . . .}.

It turns out that [4] = [0], [5] = [1] and so on (you should check these claims for your self!).
Visualising the congruence classes on the number line we have

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

The s give the set [0], the s are [1], the s are [2] and the s are [3]. Notice that every integer
belongs to exactly one congruence class, which is exactly what it means for the congruence classes
to partition Z.

4.2 The integers mod n

At the beginning of this section we played around with a clock with 7 things on it, and we called
it Z7. We are now ready to formalise those ideas. It turns out that the set of congruence classes
mod 7 are what should go on the clock with 7 things.

Definition. Let n be a positive integer. The set of all congruence classes mod n is called the
integers mod n and is denoted Zn.

So, for example, Z3 = {[0], [1], [2]}. We want to do arithmetic on ZZn, in particular, we wish
to add and multiply. Addition and multiplication on Z are operations that eat two elements of Z
and spit out another element of Z. Similarly, we want addition and multiplication on Zn to eat two
elements of Zn (which are subsets of Z) and spit out an element of Zn (which is a subset of Z).

Definition. Let n be a positive integer and define addition and multiplication on Zn by

[a] + [b] = [a+ b] and [a][b] = [ab].
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So, for example, in Z7 we have [3] + [5] = [8] but remember, [8] = [1]. So we could have just
written [3] + [5] = [1] which is what we want to do on the clock! Similarly, [3][5] = [15] = [1].

There is something a little dodgy going on with the definition of addition and multiplication,
which is that the definition appears to depend on what we call each equivalence class. Let’s take
Z7 again as an example. We have [3] + [5] = [8], but what if we decided to write [−4] or [10]
instead of [3]? Well, let’s check: We have [−4] + [5] = [1] and since [1] = [8], all is well in the
world and the result of the sum didn’t depend on us writing [3] as [3] and not as [−4]. Similarly
[10] + [5] = [15] = [8]. Phew! It would appear that no harm comes to us if we decide to call [3] by
any other of its infinitely many names. While a few examples are good, this should be checked!

Proposition 26. Let n be a positive integer. If [a] = [a′] and [b] = [b′], then [a] + [b] = [a′] + [b′]
and [a][b] = [a′][b′].

Proof. If [a] = [a′] and [b] = [b′] then n | a − a′ and n | b − b′. Then n | (a − a′) + (b − b′) so
n | (a+ b)− (a′+ b′). Alas, [a+ b] = [a′+ b′]. For multiplication we have a = a′+kn and b = b′+ tn
for some k, t ∈ Z. Then ab = (a′ + kn)(b′ + tn) = a′b′ + n(kb′ + ta′ + nkt) so [ab] = [a′b′]. ■

Fantastic! No harm will come to us if in Z9 we decide to write [2] as [−7] or [8] as [−1].
Although no harm will come to you if you change the name of congruence classes when doing

multiplication or addition (and since subtraction is just adding negatives, no harm comes while
subtracting either), harm will come to you if you mess around with powers! For example, in Z3

[2]4 = [2][2][2][2] = [16] = [1] but [2]1 = [2]. Powers are just an instruction for how many times you
should multiply something by itself, which is not something that can be changed!

Exercise. Prove or disprove: Let n be a positive integer. Assume a ≡ a′ (mod n) and b ≡ b′

(mod n), and suppose b, b′ > 0. Then ab ≡ a′b
′
(mod n).

Now that we’ve checked the details to make sure addition and multiplication are well-defined
in Zn, let’s bask in our newfound glory.

Example. Let’s compute the remainder of (32)(33) when divided by 37. In Z37 we have [(32)(33)] =
[32][33] = [−5][−4] = [20]. Therefore (32)(33) ≡ 20 (mod 37) so the remainder is 20.

Example. Let’s compute [3]8 in Z13. We have

[3]2 = [9]

⇒[3]3 = [3]2[3] = [9][3] = [27] = [1]

⇒[3]6 = ([3]3)2 = [1]

⇒[3]8 = [3]6[3]2 = [1][9] = [9].

So, in particular, we know that 38 leaves a remainder of 9 when divided by 13.

Lecture 14 - 05/02

Example. Let’s prove that for all a ∈ Z, a(a + 1)(a + 2) is divisible by 6. This is equivalent to
showing [a(a + 1)(a + 2)] = [a]([a] + [1])([a] + [2]) = [0] in Z6. So, we just have to check all the
possible values of [a] in Z6. Let’s do it!

If [a] = [0] we have [0]([0] + [1])([0] + [2]) = [0].
If [a] = [1] we have [1]([1] + [1])([1] + [2]) = [1][2][3] = [6] = [0].
If [a] = [2] we have [2]([2] + [1])([2] + [2]) = [2][3][4] = [0][4] = [0].
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If [a] = [3] we have [3]([3] + [1])([3] + [2]) = [3][4][5] = [0].
If [a] = [4] we have [4]([4] + [1])([4] + [2]) = [4][5][0] = [0].
Finally, if [a] = [5] = [−1] we have [−1]([−1] + [1])([−1] + [2]) = [−1][0][1] = [0].
Since [a]([a] + [1])([a] + [2]) = [0] for all [a] ∈ Z6, a(a+ 1)(a+ 2) ≡ 0 (mod 6) for all a ∈ Z.

The fantastic thing about the previous example is that it turns checking infinitely many things
(namely every integer, which is not possible) into a problem which needs you to check finitely many
things! Although sometimes the finite number is large, given enough time and money you can
always just do it.

Example. Let’s show there is no integer solution to the equation x2 = 2736483623, that is we
want to show 2736483623 is not a perfect square.

We will approach this problem in Z4 (it will become clear as we progres as to why we chose 4).
If there is an x ∈ Z so that x2 = 2736483623, then it is true that [x]2 = [2736483623] in Z4 (in fact
it’s true in Zn for any n). Let’s take a look at the possible values of [x]2.

If [x] = [0] then [x]2 = [0]. If [x] = [±1], then [x]2 = [1]. If [x] = [2] then [x]2] = [0]. Therefore
in Z4, [x]

2 is either [0] or [1].
However, [2736483623] = [23] + [100][27364836] = [23] = [3] and [3] is not one of the possible

values of Z4 obtained by a perfect square. Therefore 2736483623 is not a perfect square.

It is not always clear which Zn to investigate. Which one to go for is part of the fun, and you
get better at it with experience. Often however, it’s just trial and error!. You may often choose an
n that’s not helpful.

In the previous example, if we had looked at Z11 we would have [2736483623] = [5] but [4]2 = [5].
This tells us there is an [x] ∈ Z11 so that [x]2 = [2736483623], but we cannot conclude anything
about whether or not there is an x ∈ Z so that x2 = 2736483623.

The previous example was a special case of showing that a polynomial does not have any integer
roots. Since polynomials are just made up of addition and multiplication, they are perfect equations
to probe using modular arithmetic.

Proposition 27. Let f(x) = anx
n+ · · ·+a1x+a0 be a polynomial with integer coefficients, and let

n be a positive integer. If [b] = [c] in Zn, then [an][b]
n+· · ·+[a1][b]+[a0] = [an][c]

n+· · ·+[a1][c]+[a0]
in Zn.

Proof. This is an exercise. ■

Exercise. Show that the polynomial x5 − x2 + x− 3 has no integer roots.

Exercise. Is it true that if a polynomial with integer coefficients f(x) has a root in Zn for all
primes n, then f(x) has a root in Z?

Sometimes when solving an equation in Zn, it’s helpful to split it up into a few different equa-
tions.

Lemma 28. Let m and n be positive coprime integers. Then a ≡ b mod mn if and only if a ≡ b
(mod n) and a ≡ b (mod m).

Proof. Suppose a ≡ b (mod mn). Then mn | a − b and since m | mn and n | mn, m | a − b and
n | a − b. Conversely, suppose a ≡ b (mod m) and a ≡ b (mod n), so mk = a − b and nt = a − b
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for some k, t ∈ Z. Since gcd(n,m) = 1, there exist u, v ∈ Z so that mu+ nv = 1. Multiplying both
sides by a− b gives

(a− b)mu+ (a− b)nv = a− b

=⇒ (nt)mu+ (mk)nv = a− b

=⇒ nm(tu+ kv) = a− b

Thereore a ≡ b (mod mn), completing the proof. ■

Exercise. Let n = pe11 · · · pekk where the pi are distinct primes and ei > 0 for all i. Prove that a ≡ b
(mod n) if and only if a ≡ b (mod pei) for all i.

Of course, as is often the case with results that involve coprime integers and their product,
there is a generalisation to all pairs of integers, but you have to replace their product with their
least common multiple.

Exercise. Prove that for all positive integers m,n, a ≡ b (mod lcm(m,n)) if and only if a ≡ b
(mod m) and a ≡ b (mod n).

Let’s use this to our advantage.

Exercise. Show that for all a ∈ Z, 2 | a(a + 1)(a + 2) and 3 | a(a + 1)(a + 2). Conclude that for
all a ∈ Z, 6 | a(a+ 1)(a+ 2).

5 Inverses and Euler’s Totient Function

In the previous section we built up the required machinery to treat Zn as an object, like the integers,
which comes with its own addition and multiplication. In mathematics, such an object is called
a ring. We won’t give the formal definition here, but a ring is a set endowed with addition and
multiplication satisfying certain desirable properties.

A couple of the important properties are the existence of additive and multiplicative identities,
which we usually call 0 and 1. The additive identity 0 has the property that 0 + a = a for all a in
the ring. The multiplicative identity 1 has the property that 1a = a for all a in the ring.

Exercise. Let n be a positive integer.

� Which element of Zn plays the role of 0 (the additive identity)?

� Which element of Zn is −[a]? In a ring, −x is the element with the property that (−x)+x = 0.

� Which element of Zn plays the role of 1 (the multiplicative identity)?

� When element of Zn is [a]−1? In a ring x−1 is the element with the property that x−1x = 1.

Lecture 15 - 10/02
Let’s investigate the last part of this exercise, finding inverses in Zn.
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5.1 Units in Zn

Consider Z7. What is the inverse of [2]? Now, it’s not even clear that one exists. After all, in Z we
know 0 doesn’t have an inverse (in fact the only elements with inverses are ±1). However, if [2]−1

does exist, it has the property [2][2]−1 = [1]. A quick check through the elements of Z7 gives us
[2]−1 = [4] since [2][4] = [1]. Let’s write down all the inverses in Z7.

x [0] [1] [2] [3] [4] [5] [6]

x−1 ∗ [1] [4] [5] [2] [3] [6]

So, just like the rational numbers Q, every non-zero element has an inverse! Let’s do another one,
Z12.

x [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

x−1 ∗ [1] ∗ ∗ ∗ [5] ∗ [7] ∗ ∗ ∗ [11]

Curious! Only some of the elements in Z12 have inverses. From these two examples you may be
able to take a guess as to which elements in Zn have inverses.

Definition. An element x ∈ Zn is a unit if it has a multiplicative inverse. The set of all units in
Zn is called the group of units mod n and is denoted Z∗

n.

So, for example, Z∗
12 = {[1], [5], [7], [11]}.

Theorem 29. Let n be a positive number. An element [a] ∈ Zn is a unit if and only if gcd(a, n) = 1.

Proof. If gcd(a, n) = 1 there exist x, y ∈ Z so that ax + ny = 1, so ax ≡ 1 (mod n). Therefore
there exists x ∈ Z so that [a][x] = [1] in Zn and [a] ∈ Z∗

n. Conversely, suppose [a][x] = [1] in Zn

for some x ∈ Z. Then ax = 1 + ny for some y ∈ Z, which rearranges to ax − ny = 1 Therefore
gcd(a, n) = 1, completing the proof. ■

From this theorem we get the next quick consequence.

Corollary 30. Let p be a prime. Then [x] ∈ Z∗
p if and only if [x] ̸= [0].

Proof. A fun, for some definition of fun, exercise. ■

This corollary tell us that Zp acts a lot like Q or R in that every non-zero element is invertible.
These are examples of fields.

Definition. We say Zn is a field if every non-zero element is a unit.

Exercise. Prove that if Zn is a field, then n is prime.

“This is all well and good,” I hear you start, “but who cares?” Well, let me tell you! The
existence of inverses allows us to do division (because division is just multplication by an inverse).
In the real numbers R we were always taught “you can divide by anything except for 0. Dividing
by 0 is bad!” The reason we were taught this is that every element of R has an inverse except for
zero. This means we can divide by a ̸= 0 by simply multiplying by a−1.

Example. Suppose we want to solve the congruence 3x ≡ 4 (mod 7). This is the same as solving
[3][x] = [4] in Z7. We can simply divide both sides by [3], which really means multiplying both
sides by [3]−1 = [5]. This gives [5][3][x] = [5][4] implying [x] = [20] = [6]. So the solution to the
original congruence is x ≡ 6 (mod 7).
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5.2 Euler’s Theorem and a not-big theorem of Fermat

We saw in Section 4.2 that modular arithmetic can help us deal with powers. More specifically, we
easily computed that [3]8 = [9] in Z13.

Let’s explore a little more. Suppose we needed to find [3]100 in Z13. Let’s write out some powers
of [3] in Z13.

n xn

1 [3]
2 [9]
3 [1]
4 [3]
5 [9]
6 [1]
7 [3]
8 [9]
9 [1]

Let’s stop for a moment and stare at this table. It’s repeating! Since a [1] appears, we should
absolutely expect this to happen. After all if [3]k = [1], then [3]k+1 = [3]k[3] = [3], taking us back
to the start. In this case, we have that if 3 | k, then [3]k = [1]. Therefore

[3]100 = [3]99[3] = [1][3] = [3]

in Z13. Let’s see if this kind of repeating patterns happens more generally.
Here are power tables for the elements of Z5, Z7 and Z9. To make things easier to read, I will

simply write [a] as a.

Z5 0 1 2 3 4

x1 0 1 2 3 4
x2 0 1 4 4 1
x3 0 1 3 2 4
x4 0 1 1 1 1
x5 0 1 2 3 4
x6 0 1 4 4 1

Z7 0 1 2 3 4 5 6

x1 0 1 2 3 4 5 6
x2 0 1 4 2 2 4 1
x3 0 1 1 6 1 6 6
x4 0 1 2 4 4 2 1
x5 0 1 4 5 2 3 6
x6 0 1 1 1 1 1 1
x7 0 1 2 3 4 5 6
x8 0 1 4 2 2 4 1

Z9 0 1 2 3 4 5 6 7 8

x1 0 1 2 3 4 5 6 7 8
x2 0 1 4 0 7 7 0 4 1
x3 0 1 8 0 1 8 0 1 8
x4 0 1 7 0 4 4 0 7 1
x5 0 1 5 0 7 2 0 4 8
x6 0 1 1 0 1 1 0 1 1
x7 0 1 2 0 4 5 0 7 8
x8 0 1 4 0 7 7 0 4 1

There is a myriad of things to discover among these tables, and we will return to them at various
points in the course. In fact they’re so important I insist you do the following exercise.

Exercise (Super important!!). Create power tables for Z3, Z4, Z6, Z8, Z12, Z13 and Z17. Stare
at them all and look for patterns. Write down anything you notice and try to prove any conjectures
you may have. Keep these tables safe and accessible for the rest of the course.

Lecture 16 - 02/10
Let’s pay attention to the 4th powers in the first power table above, and the 6th powers in the

other two. All those rows only consist of 0s and 1s. Even better, the 1s correspond exactly to the
units. Let’s rewrite these tables, but this time only for the units. Also, we know that once any
column gets to a 1, it just repeats, so we’ll stop if we see a row of 1s.
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Z∗
5 1 2 3 4

x1 1 2 3 4
x2 1 4 4 1
x3 1 3 2 4
x4 1 1 1 1

Z∗
7 1 2 3 4 5 6

x1 1 2 3 4 5 6
x2 1 4 2 2 4 1
x3 1 1 6 1 6 6
x4 1 2 4 4 2 1
x5 1 4 5 2 3 6
x6 1 1 1 1 1 1

Z∗
9 1 2 4 5 7 8

x1 1 2 4 5 7 8
x2 1 4 7 7 4 1
x3 1 8 1 8 1 8
x4 1 7 4 4 7 1
x5 1 5 7 2 4 8
x6 1 1 1 1 1 1

So, it would appear that if we only look at the units in Zn, some power of all of the units is 1.
Even better, it appears that the special power is equal to the number of units! It would be a cruel
cruel joke if this were just a coincidence.

Before we write down this conjecture and try to prove it, we need to introduce the totient
function.

Definition. Define Euler’s totient function (or Euler’s phi function) to be the function
defined by φ(n) = |Z∗

n| for any positive integer n.

Theorem 31 (Euler’s Theorem). Let n be a positive integer, and let [a] ∈ Z∗
n. Then [a]φ(n) = [1]

in Zn.

Before we embark on the proof, we will need an interesting fact about the group of units. To
demonstrate this fact, let’s look at the multiplication table for Z∗

5 (again, let’s abuse notation and
write [a] as a):

× 1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

There are two things worth noticing here. First, every entry in the table is again in Z∗
n.

Exercise. Prove that if [a], [b] ∈ Z∗
n, then [a][b] ∈ Z∗

n.

The second thing is that every row and every column contains all the elements of Z∗
5 exactly

once! Or, more formally:

Lemma 32. Let [a] ∈ Z∗
n. Then the function ψ : Z∗

n → Z∗
n given by ψ([b]) = [a][b] is a bijection.

Proof. Note that since the product of two units is a unit, ψ is well-defined (that is ψ([b]) ∈ Z∗
n for

every [b] ∈ Z∗
n).

For injectivity, suppose ψ([b]) = ψ([c]), so [a][b] = [a][c]. Then since [a] is a unit, multiplying
both sides by [a]−1 gives [b] = [c] and ψ is injective. For surjectivity, let [c] ∈ Z∗

n. Since [a]−1

and [c] are units, so is [a]−1[c]. Then ψ([a]−1[c]) = [a][a]−1[c] = [c], so ψ is surjective, and thus a
bijection. ■

We are now ready to prove Euler’s theorem.

Proof of Euler’s Theorem. Let Z∗
n = {[u1], . . . , [uφ(n)]}. By Lemma 32, for all [a] ∈ Z∗

n we have
Z∗
n = {[a][u1], . . . , [a][uφ(n)]}.
Consider the product [u1][u2] · · · [uφ(n)]. Let [a] ∈ Z∗

n. We have

[u1][u2] · · · [uφ(n)] = ([a][u1])([a][u2]) · · · ([a][uφ(n)]) = [a]φ(n)[u1][u2] · · · [uφ(n)].
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Since each [ui] is a unit, so is the product [u1][u2] · · · [uφ(n)]. So we can cancel the product from

the equation above to get [a]φ(n) = [1]. ■

When n is a prime we recover Fermat’s Little Theorem.

Corollary 33 (Fermat’s Little Theorem). Let p be a prime and suppose a ∈ Z with p ∤ a. Then
ap−1 ≡ 1 (mod p).

Example. We have Z∗
15 = {[1], [2], [4], [7], [8], [11], [13], [14]} so φ(15) = 8. Therefore 15 | 78088 − 1.

I’m sure it was keeping you up at night, but now you know that 78088 − 1 is indeed a multiple of
15.

Exercise. Let p and q be distinct primes, and let a ∈ Z be such that p ∤ a and q ∤ a.

1. Prove that ap
2−p ≡ 1 (mod p2).

2. Prove that a(p−1)(q−1) ≡ 1 (mod pq).

5.3 Euler’s Totient Function

As we saw in the previous section, being able to compute the totient function φ(n) is useful! Let’s
investigate this function some more, and we will see that it shares lots of properties with lots of
important functions in number theory (called multiplicative functions).

Let’s begin with a small example.

Example. Let’s work out φ(49). So we’re looking for all integers n coprime to 49 such that
0 ≤ n < 49. The prime factorisation of 49 is 72, so gcd(n, 49) = 1 iff 7 ∤ n. There are exactly 7
multiples of 7 from 0 to 48, so φ(49) = 49− 7 = 41.

Lecture 17 - 12/02
This kind of argument works well in general for powers of primes.

Proposition 34. Let p be a prime and e a positive integer. Then φ(pe) = pe − pe−1.

Proof. The number of integers in {0, . . . , pe − 1} coprime to pe is exactly the number of integers
in {0, . . . , pe − 1} not divisible by p. There are pe−1 multiples of p in {0, . . . , pe − 1} so φ(pe) =
pe − pe−1. ■

In general, if we have a function defined on the positive integers and we know how it behaves
for prime powers, and for products of coprime integers, then by looking at prime factorisations, we
know how the function behaves for all positive integers. With that in mind, let’s shift our focus to
computing φ(mn) where gcd(m,n) = 1.

Let’s look at the case m = 9 and n = 5. We want to count the number of integers in {0, . . . , 44}
that are coprime to 45. Let’s arrange these integers in an array as follows.

0 1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26
27 28 29 30 31 32 33 34 35
36 37 38 39 40 41 42 43 44
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The boldface blue entries represent the integers coprime to 45.
There are three things to notice in this array.

� Each column corresponds to a congruence class in Z9.

� In each column, every congruence class of Z5 appears exactly once. For example, in the column
corresponding to [1] in Z9, we have 1, 10, 19, 28, 37. Intriguingly, Z5 = {[1], [10], [19], [28], [37]}.

� The boldface blue integers are precisely those that are coprime to both 5 and 9.

With these observations, let’s figure out an expression for φ(45) in terms of φ(9) and φ(5). Since the
columns correspond to elements of Z9, our desired integers must appear in columns corresponding
to elements of Z∗

9 (since these are precisely the integers coprime to 9). There are φ(9) = 6 such
columns. In each of these columns, since every element of Z5 is represented precisely once, there
are exactly φ(5) = 4 integers which are coprime to 5. So there are φ(9) columns with φ(5) integers
coprime to both 9 and 5 (and thus 45) in each column, giving φ(45) = φ(9)φ(5) = 24.

Let’s prove that this kind of argument works in general.

Lemma 35. Let a,m, n ∈ Z. We have gcd(a,m) = 1 and gcd(a, n) = 1 if and only if gcd(a,mn) =
1.

Proof. Suppose gcd(a,mn) = 1, so there exist u, v ∈ Z such that au + mnv = 1. Then a(u) +
m(nv) = 1 and a(u) + n(mv) = 1 so gcd(a,m) = gcd(a, n) = 1. Conversely, suppose gcd(a,m) =
gcd(a, n) = 1. Therefore there are w, x, y, z ∈ Z so that aw+mx = 1 and ay+nz = 1. Multiplying
these equations gives

(aw +mx)(ay + nz) = 1

=⇒ a(awy + wnz +mxy) +mn(xz) = 1

and we can conclude gcd(a,mn) = 1. ■

Good! This lemma tells us that to count the integers coprime to mn, we need to count the
integers that are coprime to m and n.

Now, suppose we have an m×n array as above with gcd(m,n) = 1. We need that every column
contains every element of Zn. The next lemma will be prove useful for this.

Lemma 36. Let m and n be coprime positive integers. Let c ∈ Z. Then the function f : Zn → Zn

given by f([a]) = [a][m] + [c] is a bijection.

Proof. Since gcd(m,n) = 1, [m]−1 exists. We will show that the function g : Zn → Zn given by
g([a]) = [m]−1([a]− [c]) satisfies gf([a]) = fg([a]) = [a] for all [a] ∈ Zn. We have

gf([a]) = g([a][m] + [c]) = [m]−1(([a][m] + [c])− [c]) = [a] + [m]−1[c]− [m]−1[c] = [a]

and
fg([a]) = f([m]−1([a]− [c])) = [m]([m]−1([a]− [c])) + [c] = [a]− [c] + [c] = [a].

Therefore f is a bijection. ■

Now let’s prove that φ(mn) = φ(m)φ(n) if gcd(m,n) = 1.

Proposition 37. Let m and n be positive coprime integers. Then φ(mn) = φ(m)φ(n).
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Proof. We want to count the number of integers in {0, 1, . . . ,mn− 1} that are coprime to both m
and n. We will write this set as

{j +mi : 0 ≤ j ≤ m− 1, 0 ≤ i ≤ n− 1}.

If we want to think of the array from the previous examples, the entry j+mi is in the ith row and
jth column, so the array has n rows and m columns.

Fix t such that 0 ≤ t ≤ m − 1 and define the set Ct = {t +mi : 0 ≤ i ≤ n − 1} (this is the
column corresponding to the congruence class of [t] ∈ Zm).

Since gcd(m, j +mi) = gcd(m, j), the integers that are coprime to m are precisely those in the
columns Ct where gcd(m, t) = 1. There are exactly φ(m) such choices of t.

For a fixed t, we can write

Ct = {t+m(0), t+m(1), t+m(2), . . . , t+m(n− 1)}.

Since gcd(m,n) = 1, by Lemma 36 there is a bijection f : Zn → Zn such that f([i]) = [t +m(i)].
Therefore Ct contains exactly one representative of each congruence class in Zn, or equivalently,
{[t + m(0)], [t + m(1)], [t + m(2)], . . . , [t + m(n − 1)]} = Zn. We can conclude that each set Ct

contains φ(n) integers coprime to n.
There are φ(m) values of t so that gcd(k,m) = 1 if and only if k ∈ Ct. Also, each Ct contains

exactly φ(n) elements coprime to n. Therefore there are φ(n)φ(m) integers coprime to mn, so
φ(n)φ(m) = φ(nm). ■

Lecture 18 (14/02)
Propositions 34 and 37 allow us to compute φ(n) for any integer n.

Theorem 38. Suppose a positive integer has prime factorisation n = pe11 · · · pekk where the pi are
distinct prime factors and ei > 0 for all i. Then

φ(n) =
k∏

i=1

(
peii − pei−1

i

)
=

k∏
i=1

pei−1
i (pi − 1) = n

k∏
i=1

(
1− 1

pi

)
.

Proof. Note that if p and q are distinct primes, then gcd(pe, qf ) = 1. With this in mind, the proof
is left as an exercise (proceed by induction on k). ■

We may also write

φ(n) = n
k∏

i=1

(
1− 1

pi

)
= n

∏
p|n

(
1− 1

p

)
which means the product is taken over all primes dividing n.

Example. We have 120 = 23 · 3 · 5 so φ(120) = 120(1− 1
2)(1−

1
3)(1−

1
5) = 120(12)(

2
3)(

4
5) = 32.

Exercise. Show there are integers n with φ(n) = 2, 4, 6, 8, 10, and 12, but not 14.

We finish our study of the totient function with an important property that will rear its head
again as the course goes on.

The function φ(n) counts the number of integers a in {0, . . . , n − 1} that have gcd(a, n) = 1.
Those of you with a keen eye will notice that in general, 1 is not the only possible value for gcd(a, n).
Why don’t we count the others? Great question. Let’s count them for n = 12.

For 12, the possible values of gcd(a, 12) are precisely the positive divisors of 12. That is,
gcd(a, 12) ∈ {1, 2, 3, 4, 6, 12} for all a ∈ Z. Let’s count how many integers a in {0, . . . , 11} have
each of these greatest common divisors with 12.
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gcd(a, 12) a How many a?

1 1,5,7,11 4
2 2,10 2
3 3,9 2
4 4,8 2
6 6 1
12 0 1

It’s not so clear that there’s anything interesting to say here, but let’s add another column, this
time writing down a

gcd(a,12) .

gcd(a, 12) a How many a? a
gcd(a,12)

1 1,5,7,11 4 1,5,7,11
2 2,10 2 1,5
3 3,9 2 1,3
4 4,8 2 1,2
6 6 1 1
12 0 1 0

In the last column, the first row is a set of representatives for the elements of Z∗
12. The second row

is precisely the set of integers in {0, . . . , 5} that are coprime to 6. The third row is eactly those
integers we count to compute φ(4). The pattern continues! So, in the column that is counting how
many a there are, we have φ(12), φ(6), φ(4), φ(3), φ(2), and φ(1) respectively. Since every number
in {0, . . . , 11} falls into one of these rows, we have

φ(1) + φ(2) + φ(3) + φ(4) + φ(6) + φ(12) = 12.

Coincidence? No way!

Lemma 39. Let n be a positive integer and d a positive divisor of n. Let

Sd =
{
a ∈ {0, . . . , n− 1} : gcd(a, n) =

n

d

}
.

Then |Sd| = φ(d).

Proof. Let Td = {b ∈ {0, . . . , d − 1} : gcd(b, d) = 1} and note φ(d) = |Td|. So, we want to show
that |Sd| = |Td|. Let f : Sd → Td be given by f(a) = ad

n . It suffices to show f is a bijection.

To see f is well-defined, note that since gcd(a, n) = n
d ,

n
d | a so ad

n is an integer. Furthermore,

since 0 ≤ a < n and d and n are positive, 0 ≤ f(a) < nd
n = d. Therefore f(a) ∈ {0, . . . , d − 1}.

Finally, we need to check that gcd(f(a), d) = 1. Since gcd(a, n) = n
d , by Bezout’s identity there

exist u, v ∈ Z such that

au+ nv =
n

d

=⇒ ad

n
u+

nd

n
v =

n

d

d

n
=⇒ f(a)u+ dv = 1

so gcd(f(a), d) = 1 and f is a well-defined function.
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For injectivity, suppose f(a) = f(a′), so ad
n = a′d

n . Since d ̸= 0 and n ̸= 0, this implies a = a′

and f is injective. For surjectivity, let b ∈ Td, so gcd(b, d) = 1. Then by Bezout’s identity there
exist u, v ∈ Z so that

bu+ dv = 1

=⇒
(n
d
b
)
u+ nv =

n

d

so gcd(nd b, n) |
n
d . Since

n
d | n

d b and
n
d | n, we have n

d | gcd(nd b, n). Since all integers involved here are
positive, we can conclude gcd(nd b, n) =

n
d . Therefore

n
d b ∈ Sd and f(nd b) = b so f is surjective. ■

Lecture 19 (25/02)

Theorem 40. Let n be a positive integer. Then∑
d|n

φ(d) = n

where
∑

d|n denotes the sum over all positive divisors d of n.

Proof. The sets {Sd : d | n} partition the set {0, . . . , n − 1} (that is, every element of the set
{0, . . . , n − 1} belongs to exactly one of the sets Sd). In particular, a ∈ S n

gcd(a,n)
. Let d1, . . . , dk

be the positive divisors of n. Then n = |Sd1 | + |Sd2 | + · · · + |Sdk | and by Lemma 39 we have
n =

∑
d|n φ(d). ■

6 Multiplicative functions

You may have noticed by now that in number theory, we find ourselves counting things. A lot. For
example, φ(n) counts the number of congruence classes in Z∗

n. We may wish to know how many
squares there are for Z∗

n. Once we have the prime factorisation of a number, we can easily count
the number of divisors. Or perhaps, we wish to know how many squares there are in Zn. Or cubes!

Before we make a definition, let’s see what’s interesting about some of these functions. Consider
Euler’s phi function φ(n) = |Z∗

n|. We know that if gcd(n,m) = 1, φ(nm) = φ(n)φ(m). This makes
things awfully convenient if we want to compute φ(n) in general. This property pops up over and
over when counting things to do with the integers.

Here are some examples of multiplicative functions before we give the general definition.

Example. Euler’s phi function, φ(n) = |Z∗
n| is an example of a multiplicative function. We know

that when gcd(n,m) = 1, φ(nm) = φ(n)φ(m).

Example. The function τ(n) is defined to be the number of positive divisors of n. So, τ(12) = 6
since the positive divisors of 12 are 1, 2, 3, 4, 6, and 12.

The function σ(n) is defined to be the sum of the positive divisors of n. So, σ(12) = 1 + 2 +
3 + 4 + 6 + 12 = 28.

Both τ and σ are called divisor functions, and we can write them

τ(n) =
∑
d|n

1 and σ(n) =
∑
d|n

d.

We will see a little later on that whenever gcd(n,m) = 1, τ(nm) = τ(n)τ(m) and σ(nm) =
σ(n)σ(m), although you can prove these properties directly now if you’d like!
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Exercise. Prove that if gcd(n,m) = 1, τ(nm) = τ(n)τ(m) and σ(nm) = σ(n)σ(m).

All of these functions count something that depends on a positive integer n. So they are
functions that eat positive integers, and generally spit out integers, although the following definition
allows the functions to take value in the complex numbers.

Definition. An arithmetic function is a function f : Z>0 → C. A multiplicative function is
an arithmetic function f satisfying f(nm) = f(n)f(m) whenever gcd(n,m) = 1.

For our first result about multiplicative functions, for a positive integer n, let Dn = {a ∈ Z>0 :
a | n}, that is, the set of positive divisors of n.

Lemma 41. Let n and m be positive coprime integers. Then the function h : Dn × Dm → Dnm

given by h(a, b) = ab is a bijection.

Proof. This proof is an exercise. ■

We now have a sweet little lemma that helps us easily prove some functions are indeed multi-
plicative.

Lemma 42. Let g be a multiplicative function and f(n) =
∑

d|n g(d) for all n. Then f is a
multiplicative function.

Proof. Let n and m be positive coprime integers. Then f(nm) =
∑

d|nm g(d). However, by the
previous lemma,

f(nm) =
∑
a|n

∑
b|m

g(ab) =
∑
a|n

∑
b|m

g(a)g(b)

since if a | n and b | m, gcd(a, b) = 1. We can rewrite the latest expression as

∑
a|n

∑
b|m

g(a)g(b) =

∑
a|n

g(a)

∑
b|m

g(b)


so f(nm) = f(n)f(m) as required. ■

To apply this lemma, let’s introduce the following multiplicative functions.

Definition. Define multiplicative functions u(n) = 1 and N(n) = n for all n ∈ Z>0. The function
u is sometimes referred to as the unit function.

Note that both N and u are multiplicative.

Theorem 43. The divisor functions τ and σ are multiplicative.

Proof. We have τ(n) =
∑

d|n 1 =
∑

d|n u(d) and σ(n) =
∑

d|nN(d). Therefore τ and σ are multi-
plicative by Lemma 42. ■

Exercise. Show that for every integer k ≥ 0, the function σk(n) =
∑

d|n d
k is multiplicative. Note

that σ0 = τ and σ1 = σ.

39



Example. Let’s write down a formula for τ(n) and σ(n) in terms of the prime factorisation of n.
Let n = pe11 · · · pekk . Since τ and σ are multiplicative, we have

τ(n) =
k∏

i=1

τ(peii ) and σ(n) =
k∏

i=1

σ(peii ).

So, we just need to work out how τ and σ behave on prime powers.
The divisors of pe are 1, p, p2, . . . , pe. Therefore τ(pe) = e+ 1 and

σ(pe) = 1 + p+ p2 + · · ·+ pe =
pe+1 − 1

p− 1

since σ(pe) is just a geometric series. Therefore

τ(n) =

k∏
i=1

(ei + 1) and σ(n) =

k∏
i=1

(
pei+1
i − 1

pi − 1

)
.

Lecture 20 (26/02)

6.1 Möbius inversion

Let’s gather up a few similar looking identities from the previous sections.

N(n) =
∑
d|n

φ(d)

τ(n) =
∑
d|n

u(d)

σ(n) =
∑
d|n

N(d).

Equations like this, relate one multiplicative function with another. It turns out, there is a neat
little way to invert these relations, and it relies on a surprising little function called the Möbius
function.

Definition. Define the Möbius function µ : Z>0 → C as the multiplicative function defined by

µ(pe) =

{
−1 if e = 1

0 otherwise,

where p is a prime and e ∈ Z>0.

So, for example, µ(15) = µ(5)µ(3) = (−1)(−1) = 1, and µ(12) = µ(22)µ(3) = 0.

Exercise. Prove that µ(1) = 1.

Let’s see what we can build out of this function. We’ll investigate the multiplicative function
I(n) =

∑
d|n µ(d).

When n = 1 we have I(1) = µ(1) = 1. We know I is multiplicative, so let’s figure out what it
does to prime powers. We have

I(pe) = µ(1) + µ(p) + µ(p2) + · · ·+ µ(pe) = µ(1) + µ(p) = 0.
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Therefore we immediately conclude the following for n ∈ Z>0:

I(n) =
∑
d|n

µ(d) =

{
1 if n = 1

0 otherwise.

We’ll see little later why we call this function I (for identity). The Möbius function seems a little
ad-hoc, but it turns out to play a vital role in the study of multiplicative functions.

Theorem 44 (Möbius inversion formula). Let f : Z>0 → C be an arbitrary function, and define
F (n) =

∑
d|n f(d) for all n ∈ Z>0. Then

f(n) =
∑
d|n

µ(d)F
(n
d

)
.

Proof. We have ∑
d|n

µ(d)F (
n

d
) =

∑
d|n

µ(d)
∑
d′|n

d

f(d′)

=
∑
d′|n

f(d′)
∑
d| n

d′

µ(d)

=
∑
d′|n

f(d′)I(
n

d′
)

= f(n)

completing the proof. ■

This proof is rather opaque, so it’s a good exercise to go through it line by line, justifying each
step and trying to build some intuition.

Exercise. Justify each step in the previous proof.

The proof isn’t terribly important, but the result does yield a very useful result.

Corollary 45. Let f and F be arithmetic functions so that F (n) =
∑

d|n f(d) for all n ∈ Z>0.
Then f is multiplicative if and only if F is multiplicative.

Proof. We have already proved that if f is multiplicative, then F is multiplicative in Lemma 42.
For the converse, by the Möbius inversion formula we have

f(n) =
∑
d|n

µ(d)F
(n
d

)
.
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Let m,n be positive coprime integers. Then

f(mn) =
∑
d|mn

µ(d)F
(mn
d

)
=
∑
a|m

∑
b|n

µ(ab)F
(mn
ab

)
=
∑
a|m

∑
b|n

µ(a)µ(b)F
(m
a

)
F
(n
b

)

=

∑
a|m

µ(a)F
(m
a

)∑
b|n

µ(b)F
(n
b

)
= f(m)f(n)

completing the proof. ■

Since N is a multiplicative function, this gives us a new (although secretly the same) proof that
the totient function is multiplicative!

Lecture 21 - 28/02

Example. Let’s apply the Möbius inversion formula to the equation N(n) =
∑

d|n φ(d). We have

φ(n) =
∑
d|n

µ(d)N(
n

d
) =

∑
d|n

nµ(d)

d
= n

∑
d|n

µ(d)

d
.

Exercise. Apply the Möbius inversion formula to the following equations. What comes out?

I(n) =
∑
d|n

µ(d)

τ(n) =
∑
d|n

u(n)

σ(n) =
∑
d|n

N(n).

7 The group of units

We saw earlier that the power tables lead us to Euler’s Theorem and Fermat’s Little theorem. Let’s
squeeze some more juice out of them. Here are some power tables for Z∗

n from earlier, as well as
one for n = 12.

Z∗
5 1 2 3 4

x1 1 2 3 4
x2 1 4 4 1
x3 1 3 2 4
x4 1 1 1 1

Z∗
7 1 2 3 4 5 6

x1 1 2 3 4 5 6
x2 1 4 2 2 4 1
x3 1 1 6 1 6 6
x4 1 2 4 4 2 1
x5 1 4 5 2 3 6
x6 1 1 1 1 1 1

Z∗
9 1 2 4 5 7 8

x1 1 2 4 5 7 8
x2 1 4 7 7 4 1
x3 1 8 1 8 1 8
x4 1 7 4 4 7 1
x5 1 5 7 2 4 8
x6 1 1 1 1 1 1

Z∗
12 1 5 7 11

x1 1 5 7 11
x2 1 1 1 1
x3 1 5 7 11
x4 1 1 1 1
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Let’s pay even closer attention to where the 1s are. In the first three tables, the first row where all
the entries are 1s is in the xφ(n) row. However, although the xφ(12) row is all 1s, it’s not the first
place it happens in Z∗

12 (it also happens in the x2 row).
In fact, there are special columns in the first three tables where the first 1 appears where Euler’s

theorem tells us there must be a 1, and every other unit appears in that column before then! For
example, look at the column [3] in Z∗

7. The first power that is [1] is [3]6 = [3]φ(7), and every unit
appears in that column. In other words, every unit is a power of [3] in Z7. There is no special
column like that in Z∗

12.
There is another thing worth noticing, which is apparent in the tables for Z∗

7 and Z∗
9. Besides

in the first column, the 1s only appear in the rows corresponding to divisors of φ(n). In particular,
no entry in the x1 or xφ(n)−1 rows (besides in the first column) are 1. This phenomenon is perhaps
not too surprising: If [a]k = 1 for some positive k, and this is the first positive k where it happens,
then all the 1s in the column corresponding to [a] should appear in multiplies of k. If φ(n) is not
a multiple of k, then [a]φ(n) ̸= [1], which would contradict Euler’s theorem.

But enough handwaving, let’s formalise these observations.

Definition. Let n be a positive integer and [a] ∈ Z∗
n. The order of [a] in Z∗

n (sometimes denoted
ord([a]) or |[a]|) is the smallest positive integer k such that [a]k = [1] in Zn.

So, in Z∗
7 for example, ord([2]) = 3, ord([3]) = 6 and ord([6]) = 2. It is always the case that

ord([1]) = 1 in Z∗
n.

Exercise. Let n be a positive integer and [a] ∈ Z∗
n. Prove that if [a]p = [1] for some prime p, and

[a] ̸= [1] in Zn, then ord([a]) = p.

Let’s first prove that the order of an element in Z∗
n must divide φ(n).

Proposition 46. Let [a] ∈ Z∗
n. If [a]k = [1] for some integer k, then ord([a]) | k.

Proof. This is left as an exercise (Question 3 on Assignment 3). ■

Exercise. Use Proposition 46 to prove that for n > 2, φ(n) is even.

7.1 Mersenne Numbers

Let’s see a couple of applications of this new point of view. First up, a slick proof that there are
infinitely many primes (the first such proof in these notes).

Theorem 47. There are infinitely many primes.

Proof. Towards a contradiction, let p be the largest prime and let q be a prime divisor of 2p − 1.
Then q | 2p − 1 so [2]p = [1] in Zq. Since q is prime, [2] ∈ Z∗

q . Since p is prime, ord([2]) = p and so
p | q − 1 by Proposition 46. Therefore p ≤ q − 1 so p < q, a contradiction. ■

Numbers of the form 2p − 1 turn out to be important in the search for primes, and they are
called Mersenne numbers. The first few Mersenne numbers are

3, 7, 31, 127

which are all prime. However, 211 − 1 = 2047 = 23 · 89 so it’s not prime. It is unknown whether
or not there are infinitely many Mersenne numbers that are prime (called Mersenne primes), but
it is currently the best way we know for finding large primes. In fact, there is a collaborate project
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called the Great Internet Mersenne Prime Search (GIMPS). As of October 2024, GIMPS has found
18 Mersenne primes, 16 of which were the largest at the time of their discovery. which has found
the 15 largest primes known. The largest prime currently known is the Mersenne prime

2136,279,841 − 1

which has 41, 024, 320 digits. The prime was found on October 12, 2024.
While it is unknown whether or not there are infinitely many Mersenne primes, we can prove

that any two Mersenne numbers are coprime.

Proposition 48. Let m and n be positive coprime integers. Then 2m − 1 and 2n − 1 are coprime.

Proof. Let g = gcd(2m − 1, 2n − 1), and note that since both 2m − 1 and 2n − 1 are odd, g is odd.
Therefore [2] ∈ Z∗

g. Since g | 2m − 1 we have [2]m = [1], and similarly [2]n = [1], in Zg. Let x, y ∈ Z
be such that mx+ ny = 1. Then

[2]1 = [2]mx+ny = ([2]m)x([2]n)y = [1]

in Zg. Therefore g | (2− 1) so g = 1. ■

Lecture 22 - 03/03

7.2 Primitive Roots

As we saw in the power tables above, Z∗
5, Z∗

7, and Z∗
9 all have a special column which contains every

unit. This is not the case for Z12. Having this property is desirable. Let’s look at Z∗
7 for example.

The element [3] gives rise to one of these columns, and we have Z∗
7 = {[3]0, [3]1, [3]2, [3]3, [3]4, [3]5}.

So the powers of [3] generate all of Z∗
7. The existence of such elements will allow us to prove some

powerful results.

Definition. An element [a] ∈ Z∗
n such that ord([a]) = φ(n) is called a primitive root mod n (or

a generator of Z∗
n).

Example. The primitive roots mod 7 are [3] and [5] (this can be verified by looking at the power
table.

The element [2] ∈ Z∗
11 is a generator since [2]2 ̸= [1] and [2]5 = [−1] ̸= [1] in Z11 (why is it

enough to just check the second and fifth powers here?).

Exercise. Prove that [a] is a generator in Z∗
n if and only if [a]φ(n)/p ̸= [1] in Zn for every prime p

that divides φ(n).

Exercise. Find all (if any) generators of Z∗
19. How many are there?

Exercise. Suppose [a] is a generator of Z∗
n. How many generators are there?

You may ask why we use the term “generator” (or “primitive root” for that matter, but let’s
just focus on “generator” for now). It’s because a generator generates every other element of Z∗

n!
More precisely:

Exercise. Suppose [a] is a generator of Z∗
n. Prove that for all [b] ∈ Z∗

n, there exists a positive
integer k so that [a]k = [b].
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If a generator for Z∗
n exists, then we can deduce a lot about how powers of elements behave in

Z∗
n.

Example. Let’s find all elements x ∈ Z19 so that x3 = [1].
First we’ll show that [2] is a generator of Z19. We have

[2]2 = [4]

[2]4 = [−3]

[2]6 = [7]

[2]8 = [9]

[2]9 = [−1]

and since [2]6 ̸= [1] and [2]9 ̸= [1], [2] is a generator of Z19.
Now, [0] is not a solution to x3 = [1], so we only need to consider the units in Z19. Since [2] is

a generator of Z∗
19, we have Z∗

19 = {[2]k : 0 ≤ k < 18}.
Now, suppose [2]k satisfies [1] = ([2]k)3 = [2]3k. Since ord([2]) = 18, we know 18 | 3k. It’s a

quick exercise to prove that 18 | 3k if and only if 6 | k, so all the solutions are given by [2]0, [2]6,
and [2]12. We can compute these powers to be [1], [7], and [11].

Of course, we could have just checked all 19 possibilities, but this is more fun!
Knowing about primitive roots helps us investigate solutions to polynomials, as in the previous

example. Our next goal is to prove that generators exist for Z∗
p for all primes p. In order to do

that, we need to investigate solutions to polynomials in Zp!

7.3 Polynomials in Zp

Just about everything we cover in this section works for polynomials over a field F. Recall a field is
a ring (a set with addition and multiplication) where every non-zero element has an inverse. For the
sake of this course, the examples of fields to keep in mind for this section are the real numbers R,
the complex numbers C, the rational numbers Q, and of course, Zp when p is prime. So whenever
you see F, you will be just fine replacing it with Zp.

We start with an extremely useful fact about fields.

Proposition 49. For all elements a, b ∈ F, if ab = 0 then a = 0 or b = 0.

Proof. Suppose ab = 0 and a ̸= 0. Then a is a unit so ab = 0 implies a−1ab = a−1 · 0 and we
conclude b = 0. ■

Exercise. Show that the above proposition doesn’t hold in Zn whenever n is composite. Show
that the above proposition does hold in Z. Therefore being a field is sufficient for the proposition
to hold, but not necessary!

Now, onto polynomials!

Lecture 23 - 05/03

Definition. A polynomial in the variable x with coefficients in F is an expression of the
form f(x) = anx

n + an−1x
n−1 + · · ·+ a1x+ a0, where n is a non-negative integer, ai ∈ F for all i,

and an ̸= 0. We also say f(x) = 0 is a polynomial.
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The degree of f(x) = anx
n + · · · + a0 is n, denoted deg(f(x)) = n. The degree of the zero

polynomial is undefined.
The set of all polynomials in x over F is denoted F[x]. When the variable is clear from context,

or unimportant, we may denote f(x) simply by f .

Example. 3x2 − 2x ∈ R[x] is a degree 2 polynomial with real coeffients. [3]x2 − [2]x ∈ Z5[x] is a
degree 2 polynomial with coefficients in Z5. We also have [2] ∈ Z5, which is a degree-0 polynomial.

The set of polynomials F[x], comes with multiplication and addition, just like Zn is a set with
multiplication and addition. This turns F[x] into a ring. The multiplication and addition works as
you’re used to, and depends on the addition and multiplication in F.

Example. Let f, g ∈ Z5[x] be f = x3 + [2]x− [1] and g = [3]x2 + [2]x+ [1]. Then

f + g = x3 + [3]x2 + [4]x

and

fg = (x2 + [2]x− [1])([3]x3 + [2]x+ [1])

= [3]x6 + [2]x3 + x2 + [6]x4 + [4]x2 + [2]x+ [−1]x3 + [−2]x+ [−1]

= [3]x6 + [6]x4 + [1]x3 + [5]x2 + [0]x+ [0]

= [3]x6 + x4 + x3.

Of course, when we write x3 we really mean [1]x3, and we simply leave out terms of the form
[0]xk.

Exercise. Write down all the units in Z11[x].

Up until this point there we haven’t seemed to need F to be a field. In fact, we can define Z[x]
and Zn[x] as we have already, and these too are rings. However, for what is about to follow, it’s
important that F is a field.

Proposition 50. Let f, g ∈ F[x] with f ̸= 0 and g ̸= 0. Then deg(fg) = deg(f) + deg(g).

Proof. Let f = anx
n + · · · + a0 and g = bmx

m + · · · + b0, with an ̸= 0 and bm ̸= 0. Then
fg = anbmx

n+m + h for some h ∈ F[x] with deg(h) < n+m. We have anbm ̸= 0 since an ̸= 0 and
bm ̸= 0, implying deg(fg) = n+m. ■

Exercise. Suppose f and g are non-zero polynomials in F[x]. Prove that if f + g ̸= 0, then
deg(f + g) ≤ max{deg(f), deg(g)}.

Just like in Z, we have a division algorithm in F[x], which is amazingly useful.

Theorem 51 (Division algorithm for polynomials). Let f, g ∈ F[x] with g ̸= 0. Then there exist
unique polynomials q, r ∈ F[x] so that f = qg + r, where deg(r) < deg(g) or r = 0.

Proof. We begin with existence, for which we will induct on the degree of f . For the base case,
suppose f = 0 or deg(f) < deg(g). Then taking q = 0 and r = f suffices. Suppose now that f(x) =
anx

n + · · ·+ a0 and g(x) = bmx
m + · · ·+ b0 with n ≥ m. Assume that for all polynomials h ∈ F[x]

with deg(h) < n, there exist polynomials q, r ∈ F[x] satisfying h = qg + r and deg(r) < deg(g) or
r = 0.
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Consider the polynomial

f ′(x) = f(x)− an
bm
xn−mg(x)

which is such that deg(f ′) < n. Therefore, by the inductive assumption, there exist polynomials
q′, r ∈ F[x] so that

f(x)− an
bm
xn−mg(x) = q′(x)g(x) + r(x)

where deg(r) < deg(g) or r = 0. If we let q(x) = q′(x) + an
bm
xn−m, we have f(x) = q(x)g(x) + r(x),

completing the existence part of the proof.
For uniqueness, suppose f = qg + r = q′g + r′ where deg(r) < deg(g) or r = 0, and deg(r′) <

deg(g) or r′ = 0. Then g(q − q′) = r′ − r. If r = r′, then since g ̸= 0, we have q = q′ and we’re
done. So suppose r ̸= r′. Then deg(r− r′) < deg(g). Since r− r′ ̸= 0, we cannot have q = q′. Then
deg(g(q − q′)) ≥ deg(g), contradicting the fact that deg(r − r′) < deg(g). Alas, we are forced to
conclude r = r′ and q = q′, completing the proof. ■

Exercise. Show that the division algorithm fails in Z[x]. Hint: consider g = 2x.

Polynomials themselves aren’t functions, they are simply elements of a ring (so things you can
add and multiply). However, polynomials in F[x] do indeed define functions from F to F.

Definition. Let f = anx
n + · · ·+ a0 ∈ F[x]. Define the function f : F → F by f(b) = anb

n + · · ·+
a1b+ a0.

For example, the polynomial f(x) = x2 ∈ R[x] defines a function f : R → R, given by f(a) = a2

for all a ∈ R.

Example. Let f(x) = x2 ∈ Z7[x]. Then

f([0]) = [0]

f([1]) = f([−1]) = [1]

f([2]) = f([−2]) = [4]

f([3]) = f([−3]) = [2].

Example (An important example!). Let p be a prime and let f(x) = xp ∈ Zp[x]. We have
f([0]) = [0]. For [a] ̸= [0], Fermat’s little theorem tells us f([a]) = [a]p = [a].

So, f(x) = xp and g(x) = x define the same function from Zp → Zp, but they are not equal as
polynomials (indeed, deg(f(x)) = p and deg(g(x)) = 1).

Lecture 24 - 07/03 (quiz)

Lecture 25 - 10/03

Definition. Let f(x) ∈ F[x]. A root of f(x) is an element c ∈ F so that f(c) = 0.

So, as we saw in the last lecture, the roots of x3 − [1] in Z19[x] are [1], [7], and [11].
Roots of polynomials turn out to tell us a lot about how the polynomials factor.

Definition. Let f, g ∈ F[x]. We say f divides g, denoted f | g, if there exists q ∈ F[x] so that
fq = g.
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In Z5[x], for example, x2 + [4] = (x+ [4])(x+ [1]), so x+ [4] | x2 + [4].
Now, a useful proposition.

Proposition 52. Let f(x) ∈ F[x] and c ∈ F. Then f(c) = 0 if and only if (x− c) | f(x).

Proof. By the division algorithm, there exists a polynomial q(x) ∈ F[x] and a constant (a degree-0
polynomial or the zero polynomial) d so that

f(x) = (x− c)q(x) + d.

If f(c) = 0, then 0 = (c − c)q(x) + d so d = 0 and (x − c) | f(x). Conversely, if (x − c) | f(x)
then (x− c)h(x) = f(x), and by the uniqueness in the division algorithm, q(x) = h(x) and d = 0.
Therefore f(c) = (c− c)q(c) = 0. ■

In Assignment 2 you proved that if x2 = [a] had a solution in Zp, then there were exactly 2
solutions. However, not every choice of [a] has a solution (for example if [a] = [2] and p = 5). So the
polynomial x2−[a] ∈ Zp[x] has at most 2 roots. In a previous example, we saw that x3−[1] ∈ Z11[x]
has exactly 3 solutions. The fundamental theorem of algebra tells us that a degree d polynomial in
C[x] has exactly d roots (if counted with multiplicity). In R[x], a degree d polynomial has at most
d solutions.

Theorem 53. Let f(x) ∈ F[x] be such that f(x) is not the zero polynomial. Then f(x) has at most
deg(f(x)) roots.

Proof. We will proceed by induction on the degree of f . If deg(f) = 0, then f = c ̸= 0 for some
constant c ∈ F, so f has no roots.

Assume now that if deg(g) = k, then there are at most k roots of g. Let f ∈ F[x] be such that
deg(f) = k + 1. If f has no roots, we’re done. Suppose f has a root c. Then f(x) = (x − c)g(x)
for some g(x) ∈ F[x]. Since deg(f) = 1+deg(g) we know deg(g) = k. By the inductive hypothesis,
g has at most k roots. Now suppose d is a root of f other than c. Then 0 = f(d) = (d− c)(g(d)).
Since d− c ̸= 0 and since F is a field, g(d) = 0, so d is a root of g. Therefore all roots other than c
of f are roots of g and there are at most k + 1 roots of f . ■

Note that in this theorem, we are not counting the roots with multiplicity. However, the theorem
would still be true even if we count the roots with multiplicity (see if you can prove this)!

Exercise. Construct a cubic polynomial in Z7[x] with exactly 2 roots.

We now have what we need to return to our study of primitive roots.

7.4 Back to primitive roots

The goal now is to show that Z∗
p has a generator when p is prime. In fact, we can prove something

stronger. Not only is it the case that there is an element with order p− 1, but for every d dividing
p− 1, there are φ(d) elements of order d in Z∗

p.
Let’s take Z∗

11 as an example. Here is the power table for Z∗
11.
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Z∗
11 1 2 3 4 5 6 7 8 9 10

x1 1 2 3 4 5 6 7 8 9 10
x2 1 4 9 5 3 3 5 9 4 1
x3 1 8 5 9 4 7 2 6 3 10
x4 1 5 4 3 9 9 3 4 5 1
x5 1 10 1 1 1 10 10 10 1 10
x6 1 9 3 4 5 5 4 3 9 1
x7 1 7 9 5 3 8 6 2 4 10
x8 1 3 5 9 4 4 9 5 3 1
x9 1 6 4 3 9 2 8 7 5 10
x10 1 1 1 1 1 1 1 1 1 1

The possible orders of elements in Z∗
11 are 1, 2, 5, and 10, and of course, we can read off the

orders straight from the power table. Since we have the power table in front of us, we can even see
that [2] is a generator. Let’s write out the elements of Z∗

11 as powers of [2] and keep track of their
orders.

ord([2]0) = ord([1]) = 1

ord([2]1) = ord([2]) = 10

ord([2]2) = ord([4]) = 5

ord([2]3) = ord([8]) = 10

ord([2]4) = ord([5]) = 5

ord([2]5) = ord([10]) = 2

ord([2]6) = ord([9]) = 5

ord([2]7) = ord([7]) = 10

ord([2]8) = ord([3]) = 5

ord([2]9) = ord([6]) = 10

We know [2] has order 10, and the important thing to notice here, is that the other powers of
[2] that have order 10 are precisely those powers [2]k such that gcd(10, k) = 1. In particular, there
are exactly φ(10) such elements. If we look at the elements of order 5, these correspond to powers
[2]k such that gcd(k, 10) = 2, and there are exactly φ(5) such elements. This should start to feel
like the arguments we used in Lemma 39! Similarly, there are φ(2) elements of order 2, and φ(1)
elements of order 1.

Let’s try to prove some of these observations in general.

Lecture 26 - 12/03

Lemma 54. Let [a] ∈ Z∗
n and suppose ord([a]) = t. Then ord([a]k) = t if and only if gcd(k, t) = 1.

Proof. Let gcd(k, t) = d and suppose ord([a]k) = t. We have

([a]k)
t
d = ([a]t)

k
d = [1].

If d > 1, then t
d < t, contradicting the assumption that ord([a]k) = 1. Therefore gcd(k, t) = 1.
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Conversely, suppose gcd(k, t) = 1, so there exist u, v ∈ Z so that ku + tv = 1. Note that
([a]k)t = ([a]t)k = [1] so ord([a]k) | t. Let s = ord([a]k), so in particular [a]ks = [1]. Then

[a]s = [a](ku+tv)s = ([a]ks)u([a]t)vs = 1.

Since ord([a]) = t, we have t | s so we conclude t = ord([a]k). ■

We can now use this lemma to count exactly now many elements of every possible order there
are in Z∗

p. As a consequence we will get that Z∗
p has a generator for all primes p.

Theorem 55. Let p be a prime. Then Z∗
p has φ(d) elements of order d for every positive divisor

d of p− 1.

Proof. Let Ωd = {[a] ∈ Z∗
p : ord([a]) = d}. Since every element in Z∗

p has an order dividing p − 1
we have ∑

d|p−1

|Ωd| = p− 1

(recall
∑

d|p means the sum is taken over all positive divisors d of p− 1). By Theorem 40 we have∑
d|p−1

φ(d) = p− 1.

Putting these together we get ∑
d|p−1

(φ(d)− |Ωd|) = 0.

If we can show φ(d) ≥ |Ωd| for all d, then we will have a sum of nonnegative integers being equal
to 0, and we can conclude that φ(d) = |Ωd|. So let’s do that.

If there is no element of order d, then |Ωd| = 0 and φ(d) ≥ |Ωd|. So let’s assume [a] ∈ Z∗
p has

order d. Now, ([a]k)d = ([a]d)k = [1], so every power of [a] is a root of f(x) = xd− [1] ∈ Zp[x]. Since
ord([a]) = d, the d distinct elements {[a]0, [a]1, . . . , [a]d−1} are roots of f(x). Since deg(f(x)) = d,
this is a complete set of roots of f(x) (by Theorem 53).

Every element of order d in Z∗
p is a root of xd − [1], so every element of order d is a power of

[a]. By Lemma 54, there are exactly φ(d) powers of [a] that have order d, so φ(d) = |Ωd|.
We may now conclude φ(d) = |Ωd| for all positive divisors d of p− 1. ■

If we take this theorem and focus on the elements of order p− 1 we get the following important
result.

Corollary 56. Let p be a prime. There exists a generator of Z∗
p.

Exercise. Find composite positive integers n and m so that Z∗
n has a generator and Z∗

m does not.

Let’s exploit this result as best as we can. You may have noticed the curious thing that
sometimes −1 has a square root in Zp. More precisely, for some primes p, there exists an element
[a] so that [a]2 = [−1] in Zp.

For example, [2]2 = [−1] in Z5, but there is no square root of [−1] in Z7. We are now in a
position to completely classify which primes p admit a square root of −1 in Zp. Another way of
phrasing the existence of a square root is to say the polynomial x2 + [1] has a root in Zp.

Proposition 57. Let p be an odd prime. The polynomial x2 + [1] ∈ Zp[x] has a root if and only if
p ≡ 1 (mod 4).
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Proof. Suppose [a] is a root of x2+[1]. Then [a]2 = [−1] so [a]4 = [1]. Since [a] ̸= [1] and [a]2 ̸= [1],
ord([a]) = 4. Therefore 4 | p− 1.

Conversely, suppose p ≡ 1 (mod 4), so 4 | p− 1. By Theorem 55, there are φ(4) = 2 elements
of order 4, call them [b] and [c]. Then [b]4 = [1] so ([b]2)2 = [1]. Since ord([b]) = 4, [b]2 ̸= [1]
so ord([b]2) = 2. However, Theorem 55 tells us there is exactly one element of order 2, and that
element is [−1]. Therefore [b]2 = [−1]. ■

Neat! Let’s keep pushing.

Proposition 58. There are infinitely many primes p such that p ≡ 1 (mod 4).

Proof. Suppose towards a contradiction that {p1, p2, . . . , pk} is the set of primes congruent to 1
(mod 4). Consider m = (2p1p2 · · · pk)2 + 1, and let q be a prime divisor of m. Note q ̸= pi for all i,
and q is an odd prime. Then (2p1p2 · · · pk)2 ≡ −1 (mod q), so q ≡ 1 (mod 4), a contradiction. ■

The main result in this section is that Z∗
p has a generator when p is prime. It turns out that

this is not the only time this happens. Indeed, if you go back to your power tables, Z∗
4 and Z∗

9 also
have generators, and so does Z∗

10. The complete story, which we shall not prove in this course, is
that Z∗

n has a generator if and only if n = 1, 2, 4, pk, or 2pk where p is an odd prime and k ∈ Z>0.

Lecture 27 - 14/03

8 The Gaussian Integers

One of the most amazing things in number theory, and indeed in mathematics, is that to solve
problems in a particular area, you often need to expand your scope of investigation.

The problem we will be focused on is the following. A lattice square is a square in R2 with
the property that the coordinates of its vertices are integers. What are the possible areas of lattice
squares? An innocent enough question.

So, for example, there is a lattice square with vertices (0, 0), (0, 1), (1, 0), (1, 1), and another
with vertices (2, 1), (1,−2), (−1, 2), (−2,−1). The former square has area 1, and the latter has area
5. In fact, the side length of a lattice square will always be of the form

√
a2 + b2 for some a, b ∈ Z,

and so the area of such a square will be an integer of the form a2 + b2.
We can therefore rephrase our question as which integers n can be written as

n = a2 + b2

where a and b are integers. More succinctly: Which integers are the sum of two squares?

Exercise. Prove that an integer n is a sum of two squares if and only if n is the area of a lattice
square.

There are a few ways to answer this question, but the most scenic and intriguing must surely
be through the Gaussian integers - an analogue of the integers inside the complex numbers.

Definition. The Gaussian integers are the set Z[i] = {a+ bi ∈ C : a, b ∈ Z}.

Since the Gaussian integers live in C, they inherit addition and multiplication from C. Explicitly,
for z = a+ bi and w = c+ di in Z[i] we have

z + w = (a+ c) + (b+ d)i and zw = (ac− bd) + (ad+ bc)i.
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One way to remember how these operations work is to just do regular addition and multiplica-
tion, but wherever you see i2, replace it with −1. The set Z[i] endowed with the addition and
multiplication from C forms a ring, but not a field.

Exercise. Show that i is a unit in Z[i], but 1 + i is not.

Let z = a+ bi ∈ C. Recall that the real part of z is Re(z) = a, and the imaginary part of z is
Im(z) = b.

Just like the integers Z lie on the number line, it is often helpful to have a geometric picture of
Z[i]. A useful geometric picture is to have Z[i] lying on the Gaussian plane. The Gaussian plane
is a way of plotting complex numbers on R2. The complex number z = a+ bi ∈ Z is plotted at the
point (a, b) ∈ R2.

Exercise. Remind yourself how addition and multiplication work geometrically on the Gaussian
plane. If you haven’t seen it before, plot out a bunch of examples, make a conjecture, and prove it!

Just like the integers have the absolute value, and polynomials have degree, the Gaussian
integers have a notion of size.

Definition. Let z = a + bi. The complex conjugate of z is z̄ = a − bi. The norm of z is
N(z) = zz̄ = a2 + b2.

If we denote |z| to be the distance from the origin to z in the Gaussian plane, then N(z) = |z|2.
Recall from solving Pell’s equation, that we made use of a different norm. The important thing

about that norm was that it was multiplicative. The same thing is true here.

Proposition 59. Let z, w ∈ Z[i]. Then

� N(z) = 0 if and only if z = 0.

� N(zw) = N(z)N(w).

Proof. This is left as an exercise. ■

Staring at the norm for a while may give you a glimpse as to why the Gaussian integers are
important when answering the question of which integers are sums of two squares. Indeed, suppose
n = a2 + b2 and m = c2 + d2. Then n = N(a+ bi) and m = N(c+ di). Since the norm plays nicely
with multiplication we have

nm = N((a+ bi)(c+ di)) = (ac− bd)2 + (ad+ bc)2.

What we have proved is that if n and m are sums of two squares, then so is nm. This argument
should be remeniscent of how we created new solutions out of old ones for Pell’s equation!

8.1 Number theory in the Gaussian Integers

Since Z[i] has addition and multiplication, and a notion of size, the goal is to develop analogues
of our theorems for Z. The ultimate aim is to develop a theory of primes and factorisation into
primes in Z[i]. To that end, let’s begin at the beginning.

Definition. Let z, w ∈ Z[i]. We say z divides w and write z | w if there exists q ∈ Z[i] such that
zq = w.
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In the integers, the elements 1 and −1 were special when it came to divisibility, because 1 | a
and −1 | a for all a ∈ Z. This is a reflection of the fact that the only units in Z are ±1. That is,
Z∗ = {−1, 1}.

Proposition 60. The group of units in the Gaussian integers is Z[i]∗ = {1,−1, i,−i}.

Proof. First note that 12 = 1, (−1)2 = 1, and i(−i) = 1, so the elements 1,−1, i,−i are indeed
units. Suppose now that z ∈ Z[i]∗, so zw = 1 for some w ∈ Z[i]. Then N(z)N(w) = N(1) = 1.
Since N(z), N(w) ∈ Z≥0, we must have N(z) = N(w) = 1. The only z ∈ Z[i] with N(z) = 1 are
1,−1, i,−i, completing the proof. ■

Exercise. Prove that u ∈ Z[i] has the property that u | z for all z ∈ Z[i] if and only if u ∈ Z[i]∗.

Recall that in the integers, if a ∤ b, we can still investigate the relationship between a and b
through the division algorithm. The division algorithm in the integers relies on the fact that there
is a notion of size on the integers, namely the usual ordering. In Z[i], we also have a notion of size,
and just like with F[x], this opens the door to a division algorithm.

Lecture 28 - 17/03

Theorem 61 (The division algorithm for the Gaussian integers). . Let z, w ∈ Z[i] with w ̸= 0.
Then there exists q, r ∈ Z[i] so that z = qw + r and N(r) < N(w).

Notice that there is no mention of uniqueness here, and indeed, the q and r are not unique!
The idea of the proof is very similar in spirit to that for Z. As an example, suppose w = 2+ i.

The set of multiples of w in Z[i] is {α ∈ Z[i] : α = βw for some β ∈ Z[i]}. Let’s plot these multiples
on the Gaussian plane.

w

z

r

The multiples of 2 + i tesselate the Gaussian plane by squares shown above. Now, given any
Gaussian integer z, it lies in one of these planes. By taking z and adding multiples of 2+ i, we can
move the point to lie within one of the four squares adjacent to 0, and lie within the blue circle.
The Gaussian integers inside the blue circle are precisely those with norm less than N(2 + i) = 5.
For example, if z = 3+ 3i (indicated by the thick blue dot), we have that z + (−2)(2 + i) = −1+ i
lies inside the blue circle (also indicated by a thick blue dot). Therefore z = 2w+r where r = −1+i
and N(r) = 2 < 5.
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This example also exhibits the non-uniqueness of the division algorithm. By moving z around
by different multiples of 2 + i we can get three different remainders r satisfying the condition
N(r) < 5. One of them is r = −1 + i. Can you find the other two?

That’s the geometric picture, but sometimes we may not want to draw out the Gaussian plane,
especially when the Gaussian integers in question are large. In practice, we can perform the division
algorithm algebraically much like we do in the integers.

With the integers, suppose we want to divide 13 by 4 and find the remainder. So we want to
find q, r ∈ Z so that 13 = 4q + r and 0 ≤ r < 4. What we do is find the floor of 13

4 (in this case, 3)
and set that to be q. This gives 13 = 3 · 4 + r. Then it’s easy to figure out what r is! We’ll do the
same thing in Z[i].

Suppose w = 2 + i and z = 3 + 3i. Then

z

w
=

3 + 3i

2 + i
=

(3 + 3i)(2− i)

5
=

9

5
+

3

5
i.

Now we choose the closest integers to the coefficients, and make those the coefficients of our Gaussian
integer q. In this case, q = 2 + i. This gives

r = 3 + 3i− (2 + i)(2 + i) = −i.

So we have z = qw + r where q = 2 + i and r = −1. Sure enough, N(r) < N(w).

Exercise. Find Gaussian integers q and r so that 3 + 4i = q(1 + i) + r and N(r) < 2.

Exercise. What does the division algorithm for Z[i] say if we restrict our attention to Gaussian
integers with imaginary part 0?

8.2 Greatest common divisors

We have a division algorithm, so it’s natural to want a Euclidean algorithm in Z[i]. We can always
keep applying the division algorithm until we can do so no longer, but what does it give us?
Hopefully some kind of greatest common divisor. It will, but there is a twist.

Example. Let z = 2 + 2i and w = −4 + 2i. We certainly have that 2 | z and 2 | w. Is this the
Gaussian integer with the largest norm that divides both w and z? Let’s check.

We have N(z) = 8, N(w) = 20, and N(2) = 4. Since gcd(20, 8) = 4, we know that the norm of
any common divisor of w and z must be at most 4. Therefore 2 has the maximum possible norm
of any Gaussian integer that is a common divisor of z and w (to justify this more rigorously, see
the next exercise). However, notice that

2i(1− i) = z and 2i(1 + 2i) = w.

So 2i is also a common divisor, and N(2i) = N(2) = 2.

Exercise. Suppose α is a common divisor of z and w in Z[i]. Prove that N(α) | gcd(N(z), N(w)).

So curiously, there doesn’t seem to be a unique greatest common divisor. This kind of thing
actually happens in the integers also! Note that 2 is the greatest common divisor of 4 and 6, but
−2 is also a common divisor. If we consider the absolute value to be the measure of size, then both
2 and −2 have the same size! In the integers we get around this by using the usual ordering on
the integers. However, in Z[i] there is no “usual ordering”. To get around this, we must allow for
multiplication by units.
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Definition. Let z, w ∈ Z[i]. We say z and w are associates if there exists a unit u ∈ Z[i]∗ such
that z = uw.

Lecture 29 - 19/03
In the example above, the two “greatest common divisors” of 2+ 2i and −4+2i are associates.

This is not a coincidence, as we’ll see below.

Definition. Let w, z ∈ Z[i], with w ̸= 0 or z ̸= 0. A greatest common divisor of z and w
is a common divisor d ∈ Z[i] of maximum norm (that is if c is another common divisor, then
N(d) ≥ N(c)). We write gcd(z, w) to denote a greatest common divisor.

From the example above, we see gcd(z, w) = 2 or 2i. The notation is a little difficult because
greatest common divisors are not unique, but when we write gcd(z, w), we take that to represent
any greatest common divisor.

Although it is not unique, we will see a little further down that if c and d are greatest common
divisors of z and w, then c and d are associates.

Exercise. Compute a greatest common divisor 3 + 4i and 1 + i.

It turns out that the Euclidean algorithm works in Z[i] (that is it terminates with a greatest
common divisor). Not only can you perform Euclid, but you can perform Dilcue! The most valuable
part of all of this is that Bezout’s identity holds in Z[i]. The proof is also very similar!

Theorem 62 (Bezout’s identity in the Gaussian integers). Let z, w ∈ Z[i], not both zero, and let
d be a greatest common divisor of z and w. Then there exist u, v ∈ Z[i] satisfying d = zu+ wv.

Proof. Let S = {zu+wv ∈ Z[i] : u, v ∈ Z[i]}, and let δ be a non-zero element in S with the smallest
possible norm. Such an element exists since N(a) ∈ Z≥0 for all a ∈ Z[i].

Let δ = zu0 + wv0. Our goal is to show δ is an associate of d. To do that, we will first show
that δ is a greatest common divisor of z and w.

To see δ is a common divisor of z and w, write z = qδ+ r with N(r) < N(δ) as per the division
algorithm. Then

r = z − qδ = z − q(zu0 + wv0) = z(1− qu0) + w(qv0).

Therefore r ∈ S and since δ is an element of minimal norm in S and N(r) < N(δ), we must have
N(r) = 0 so r = 0. Alas, z = qδ and δ | z. A similar argument gives δ | w.

Suppose now that c is another common divisor, and write z = cα and w = cβ for α, β ∈ Z[i].
Then δ = zu0 + wv0 = c(αu0 + βv0) so c | δ. Therefore, N(c) | N(δ). Since the norm takes values
in non-negative integers, it follows that N(c) ≤ N(δ), so δ is a greatest common divisor.

Now, since d | z and d | w, we have d | zu0 + wv0 and so d | δ. Write dγ = δ for γ ∈ Z[i]. Then
N(d)N(γ) = N(δ) and since N(d) = N(δ) ̸= 0, we must have N(γ) = 1. Therefore γ ∈ Z[i]∗ (so d
and δ are associates). We now have

d = γ−1δ = z(γ−1u0) + w(γ−1v0)

completing the proof. ■

Just like with the integers, to find gaussian integers u and v satisfying zu+wv = gcd(z, w), we
perform the Euclidian algorithm forwards and then backwards!

Exercise. Compute a greatest common divisor of 3 + i and −3− 4i.
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Using the latter part of the proof of Bezout’s identity, we have the following corollary.

Corollary 63. Let z, w ∈ Z[i], not both zero. If c and d are greatest common divisors of z and w,
then c and d are associates.

Proof. This is an exercise. See if you can extract the argument from the proof of Bezout’s identity
above. ■

Our goal is to talk about primes in Z[i], and in particular to prove the following important
property (which you should recall is true in the integers): If π is prime in Z[i] and π | zw, then π | z
or π | w. Once we have this, we will also have a theorem about unique factorisation into primes in
Z[i].

Before we do that, or indeed before we define what a prime is in Z[i], we must first talk about
coprimeness.

Definition. We say that z, w ∈ Z[i] are coprime if gcd(z, w) = 1.

Recall that this definition really says that {1,−1, i,−i} are all the greatest common divisors of
z and w.

Example. The Gaussian integers z = 1 − 2i and w = 1 + 2i are coprime. To see this, let d be a
common divisor of both z and w. Then d | z + w so d | 2. Since N(2) = 4 we must have N(d) | 4.
However, we also have that N(d) | N(z) so N(d) | 5. Since N(d) is a common divisor of 4 and 5,
it must be the case that N(d) = 1. Therefore d is a unit in Z[i] and we conclude that z and w are
coprime.

Just like in the integers, once we have Bezout’s identity, we get the following super useful
proposition.

Proposition 64. Let z, w ∈ Z[i]. Then z and w are coprime if and only if there exist u, v ∈ Z[i]
such that zu+ wv = 1.

Proof. This is left as an exercise. ■

The previous Proposition is a wonderfully powerful characterisation of being coprime, as we
have seen time and time again in this course. In fact, here is one of the more useful properties of
coprime integers, transferred over to coprime Gaussian integers.

Proposition 65. Let z, w, γ ∈ Z[i] be such that z and w are coprime. If z | wγ, then z | γ.

Proof. We imitate the proof from the integers. Since z | wγ, write zδ = wγ. Since z and w are
coprime there exist u, v ∈ Z[i] satisfying zu + wv = 1. Multiplying by γ gives zγu + wγv = γ.
Therefore z(γu+ δv) = γ, and z | γ. ■

8.3 Gaussian primes

We are finally ready to talk about primes in Z[i], which we call Gaussian primes. While it is tempt-
ing to say that a prime is something whose only divisors are 1 and itself, there are no Gaussian
integers with this property! This is because of all those pesky units, which divide every Gaussian in-
teger! Given any Gaussian integer z, we automatically have eight divisors: 1,−1, i,−i, z,−z, iz,−iz.
Notice that the story is in parallel with the integer story that every n ∈ Z has four divisors: ±1
and ±n. We can state this fact a little more succinctly by saying all the associates of 1 and all the
associates of z are divisors of z. These are the divisors we get for free! With this in mind, we make
the following definition of a prime element in Z[i].
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Definition. Let π be a Gaussian integer that is not a unit. We say π is a Gaussian prime if
z | π implies that z ∈ Z[i]∗ or z is an associate of π.

Lecture 30 - 21/03
Let’s find some Gaussian primes!

Example. Consider π = 1 + i. Then N(π) = 2. Now suppose z | π. Then N(z) | N(π), so
N(z) = 1 or N(z) = 2. If N(z) = 1, then z is a unit. If N(z) = 2, there are only four possibilities.
They are {1 + i,−1 + i, 1− i,−1− i} (try to justify this for yourself!). All of these are associates
of π. Therefore π is a Gaussian prime.

Example. Let π = 1 + 2i, so N(π) = 5. Suppose z | π, so N(z) = 1 or 5. Again, if N(z) = 1,
z ∈ Z[i]∗. To show π is prime, it remains to show that if N(z) = 5, then z is an associate of π. It
is tempting to do what we did in the previous example, and just check all Gaussian integers with
norm 5. However, there are Gaussian integers with norm 5 that are not associates of 1 + 2i. For
example, 1 − 2i. However, it turns out that 1 − 2i is not a divisor of 1 + 2i, so all is not lost! By
writing down all Gaussian integers of norm 5, you can check that the only ones that divide π are
precisely the associates of π.

Since I don’t want to write down all eight (so many!!!) Gaussian integers with norm 5, let’s just
prove this directly. Suppose zw = π and N(z) = 5. Then 5N(w) = 5. Therefore, N(w) = 1 and
w ∈ Z[i]∗. Alas, z is an associate of π and π is a Gaussian prime.

The previous example relied on the following useful exercise.

Exercise. Suppose z | w and N(z) = N(w). Then z and w are associates.

With this exercise in our back pockets, and armed with the fact that N(zw) = N(z)N(w), we
have a quick way of identifying some Gaussian primes.

Proposition 66. Let z ∈ Z[i] be such that N(z) is a prime in the integers. Then z is a Gaussian
prime.

Proof. Suppose N(z) = p where p is a prime in Z. Let w ∈ Z[i] be such that w | z. Then N(w) = 1
or p. If N(w) = 1, then w ∈ Z[i]∗. If N(w) = p = N(z), then w and z are associates. Alas, z is a
Gaussian prime. ■

Great, so we automatically know that 1 + i, 1 + 2i, 3 + 2i, 4 + i, and 12 + 13i (and all their
associates) are Gaussian primes! Indeed, note that 122 + 132 = 313 which is an integer prime.

It will turn out to be essential to specify whether or not an integer a is a Gaussian prime or
an integer prime. Sometimes integer primes are referred to as rational primes, and we may use
either term.

Let’s now prove a very important property about Gaussian primes, which we will use multiple
times for the rest of this section. This property is shared by integer primes (see Proposition 11)
and is commonly known as Euclid’s lemma.

Theorem 67 (Euclid’s lemma for Gaussian primes). Let π be a Gaussian prime and suppose π | zw
for some z, w ∈ Z[i]. Then π | z or π | w. More generally, if π | z1z2 · · · zk, then π | zj for some j.

Proof. Suppose π ∤ z. Let d be a common divisor of π and z. Since π is a Gaussian prime, d is
either a unit or an associate of π. Since π ∤ z, no associate of π is a divisor of z. Therefore d is a
unit so π and z are coprime. Therefore, π | w by Proposition 65. The general statement follows by
induction on k and is left as an exercise. ■
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Wonderful! We can now address the question of which (integer) primes can be written as a sum
of two squares. Let’s try to write some down. For starters we have 2 = 12 + 12. We can just check
by looking at sums of 02, 12, and 22 that 3 is not the sum of two squares. For the next prime, we
have 5 = 22 + 12.

The fact that 3 is not the sum of two squares is a reflection of a more general phenomenon,
that reveals itself when looking at things mod 4. For any a ∈ Z, a2 ≡ 0 or 1 (mod 4). Therefore,
we know that a sum of two squares is congruent to either 0, 1, or 2 (mod 4). So we immediately
know that 3, 7, 11, and every prime that is congruent to 3 (mod 4) cannot be written as a sum of
two squares.

For the integer primes p that are congruent to 1 (mod 4), being able to find a, b ∈ Z such that
p = a2 + b2 is equivalent to finding a + bi ∈ Z[i] such that N(a + bi) = p. The remarkable thing
here is that finding such a Gaussian integer is always possible!

The next theorem is known as Fermat’s Christmas Theorem, since Fermat wrote about the
problem in a letter to Marin Mersenne (of Mersenne prime fame) dated Christmas day in 1640.
Although the theorem is affectionately named after Fermat, what we are about to prove was first
published by Albert Girard in 1625.

Theorem 68 (Fermat’s Christmas Theorem or Girard’s Theorem). Let p be an odd prime. Then
p is the sum of two squares if and only if p ≡ 1 (mod 4).

Proof. Since p is an odd prime, it is either congruent to 1 or 3 (mod 4). If p ≡ 3 (mod 4), then it
cannot be the sum of two squares as discussed above. For the converse, suppose p ≡ 1 (mod 4).
Then x2 + [1] ∈ Zp[x] has a root, so there exists m ∈ Z satisfying p | m2 + 1. In Z[i] we have
p | (m + i)(m − i). However, the imaginary part of m±i

p is 1
p , which is not an integer. Therefore

p ∤ (m+i) and p ∤ (m−i). We can therefore conclude that p is not a Gaussian prime. Let z ∈ Z[i] be
a divisor of p that is not a unit or an associate of p. It must be the case that 1 < N(z) < N(p) = p2.
However, since z | p, we have N(z) | N(p). The only possibility for N(z) is that N(z) = p. Writing
z = a+ bi we have a2 + b2 = p, completing the proof. ■

It is certainly worth taking a step back and paying attention to all the ingredients that went
into that proof. We needed to know that if p ≡ 1 (mod 4), x2 + [1] ∈ Zp[x] has a root. The
existence of such a root relied on generators existing for Z∗

p whenever p is prime. We needed to
venture into the complex plane and study Gaussian integers. We needed know that Euclid’s lemma
holds for Gaussian primes. We needed properties of the norm on C, which we used many times
without mention. Phew!

Remarkably, an odd prime p being the sum of two squares is equivalent to [−1] being a square
in Zp, which is equivalent to p ≡ 1 (mod 4). Since we know there are infinitely many primes p ≡ 1
(mod 4), we know there are infinitely many primes p that are the sum of two squares!

Exercise. Write 61, 89, and 109 as the sum of two squares. In how many different ways are each
of those integer primes expressable as a sum of two squares?

Exercise. Suppose that p is an integer prime and suppose there exist perfect (integer) squares
a, b, c, d so that p = a + b = c + d. Prove that {a, b} = {c, d}. That is, prove that if a prime is
expressable as the sum of two squares, it is uniquely expressable as the sum of two squares. Hint:
Euclid’s lemma may come in handy here.

Lecture 31 - 24/03
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8.4 The classification of Gaussian primes

Now that we’ve played around with Gaussian primes a little, we have a natural question. Which
elements a+ bi ∈ Z[i] are Gaussian primes?

We already have some partial results. For example, we know that if N(z) = p where p is
an integer prime, then z is a Gaussian prime. The proof of Fermat’s Christmas theorem secretly
showed that if p is an integer prime such that p ≡ 1 (mod 4), then p is not a Gaussian prime (can
you extract an argument for that from the proof?).

For example, 5 is not a Gaussian prime since 5 = (1 + 2i)(1− 2i).
So, curiously, not every integer prime is a Gaussian prime, but some are (like 3). By extending

the integers from Z to Z[i], we have introduced new ways to factor some previously unfactorable
numbers!

Let’s begin our classification by investigating the relationship between integer primes and Gaus-
sian primes.

Exercise. Prove that if p+ 0i is a Gaussian prime, then p is an integer prime.

Proposition 69. Let a ∈ Z≥0. Then a ∈ Z[i] is a Gaussian prime if and only if a is an integer
prime congruent to 3 (mod 4).

Proof. Assume that a ≡ 3 (mod 4) and a is a prime. Let z | a in Z[i]. Then N(z) | N(a) = a2.
Since the only positive integer divisors of a2 are 1, a, and a2, to show that a is a Gaussian prime, it
suffices to show that N(z) ̸= a. Since a ≡ 3 (mod 4), it is not the sum of two integer squares, and
therefore it cannot be the norm of a Gaussian integer. Alas, N(z) ̸= a and a is a Gaussian prime.

Conversely, suppose a is not an integer prime congruent to 3 (mod 4). By the previous exercise,
if a is not a prime, then a is not a Gaussian prime. If a = 2, then a = (1 + i)(1 − i) so a is not
a Gaussian prime. If a ≡ 1 (mod 4), then by Fermat’s Christmas Theorem, a = b2 + c2 for some
b, c ∈ Z. Therefore, a = (b− ci)(b+ ci). Since a is a prime, it is not an integer square, and so b ̸= 0
and c ̸= 0. Therefore b+ ci /∈ Z[i]∗ and b+ ci is not an associate of a. We can finally conclude a is
not a Gaussian prime. ■

Exercise. Prove that there are infinitely many Gaussian primes.

Okay, let’s gather up all the primes we’ve found so far. We know that if N(π) = p for some
integer prime p, then π is a Gaussian prime (Proposition 66). We know that if p ≡ 3 (mod 4) is an
integer prime, then p is a Gaussian prime (Proposition 69). It turns out that these are all of them!

Theorem 70. Let π be a Gaussian prime. Then π is either

� an associate of 1 + i,

� an associate of an integer prime p where p ≡ 3 (mod 4), or

� N(π) = p where p is an integer prime such that p ≡ 1 (mod 4).

Proof. Let π be a Gaussian prime. The first step is to prove that π divides an integer prime. To
see this, note that N(π) = ππ. Since N(π) is a positive integer, it is a product of integer primes.
Therefore, π divides a product of integer primes and so must divide one of them by Euclid’s lemma.
Let p be such an integer prime.

If p = 2, we have N(π) = 4. If N(π) = 4, then π would be an associate of 2. However,
2 = (1 + i)(1 − i) and so is not prime. So we must have N(π) = 2. The only Gaussian integers
with norm 2 are associates of 1 + i.
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If p ≡ 3 (mod 4), then since p is a Gaussian prime and π | p, we must have that π is an associate
of p.

Finally, suppose p ≡ 1 (mod 4). Then p = a2 + b2 = (a + bi)(a − bi). Since π | p, π | a + bi
or π | a− bi by Euclid’s lemma. Without loss of generality, write πz = a+ bi. Then N(π)N(z) =
N(a + bi) = p. Since p is an integer prime and N(π) > 1, it must be that N(z) = 1. Therefore
N(π) = p, completing the proof. ■

So the moral of the story is that if we want to find Gaussian primes, we just need to look at
factors of integer primes! The integer primes fall into three cases:

� The case p = 2. This gives rise to a single Gaussian prime 1 + i, and its associates.

� The case p ≡ 1 (mod 4). Each such integer prime can be written as p = a2 + b2 and gives
rise to exactly two Gaussian primes, a + bi and a − bi, and their associates. Note that we
have not proved that there are exactly two, but it’s true (see the exercise below).

� The case p ≡ 3 (mod 4). Each such integer prime (and each of its associates) is a Gaussian
prime.

Exercise. Suppose p ≡ 1 (mod 4) is an integer prime. Prove that there exists a Gaussian prime
divisor α of p with the property that every prime divisor π of p is an associate of either α or α.

There are many other properties of integer primes that also hold for Gaussian primes. For
example, it is true that every Gaussian integer can be written as a product of Gaussian primes, and
such a prime factorisation is unique (after possibly reordering the product and replacing each Gaus-
sian prime by an associate). See if you can state and prove an analogue in Z[i] of the fundamental
theorem of arithmetic.

Now that we know what the primes are, let’s do the one thing we are compelled to do: factor!

Example. We have
91 = 7 · 13 = 7(3 + 2i)(3− 2i)

which is the Gaussian prime factorisation of 91 ∈ Z[i].

Exercise. Factor 17 + 4i into Gaussian primes.

Lecture 32 - 26/03
A lot of the past chunk of the course has involved, in some way or another, odd integer primes.

Let’s pause for a moment and put together a bunch of results from the last few sections.

Theorem 71. Let p be an odd (integer) prime. Then the following are equivalent.

� p ≡ 1 (mod 4).

� p = a2 + b2 for some a, b ∈ Z.

� [−1] is a square in Z∗
p.

� p is not a Gaussian prime.

It’s a great exercise to gather up the relevant results from the course to prove this theorem.
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8.5 Integers that are sums of two squares

Let’s shift our attention now to the more general question of which integers are sums of two squares.
One way to think about this problem is to ask which integers are norms of Gaussian integers.

Our first bit of progress into this problem comes from remembering that norms play nicely with
multiplication.

Example. we know 5 = 22 + 12 = N(2 + i) and 13 = 32 + 22 = N(3 + 2i). Therefore

65 = N(2 + i)N(3 + 2i) = N((2 + i)(3 + 2i)) = N(4 + 7i) = 42 + 72.

Great! So any product of numbers that are sums of two squares are again sums of two squares.
On the other hand, we know that if n ≡ 3 (mod 4), it cannot be the sum of two squares.

Consider now the prime factorisation of some positive integer n. We know 2 is a sum of two
squares, as is every (integer) prime p ≡ 1 (mod 4). So if the prime factorisation of n contains only
2 and primes congruent to 1 (mod 4), then n will be the sum of two squares. If there are an odd
number of primes congruent to 3 (mod 4) in the prime factorisation, then n ≡ 3 (mod 4), so n will
not be able to be written as the sum of two squares.

This leaves us in a situation where n ≡ 1 (mod 4), but n does contain some prime divisors
congruend to 3 (mod 4). Let’s look at some examples.

Example. We know 35 = 5 · 7 ≡ 3 (mod 4) so 35 certainly cannot be written as a sum of two
squares.

Example. On the other hand, 245 = 5 · 72 can be written as a sum of two squares since 5 and 72

are both sums of squares. More concretely,

245 = N(1 + 2i)N(7) = N(7 + 14i) = 72 + 142.

This is intriguing because 7 ≡ 3 (mod 4), and yet 245 can be written as a sum of two squares!

Example. Consider 7 ·11 = 77 ≡ 1 (mod 4). Note that both 7 and 11 are congruent to 3 (mod 4).
We can just check all pairs of integers a, b ≤

√
77 and conclude that 77 is not a sum of two squares.

This works, but doesn’t generalise well. Let’s give a slightly more general argument.
Suppose 77 = a2 + b2 for some a, b,∈ Z. Looking at this in Z7 we have [a]2 + [b]2 = [0]. If

[a] ̸= [0], then [a]−1 exists and we have [−1] = ([b][a]−1)2. So [−1] is a square and it must be the case
7 ≡ 1 (mod 4), a contradiction! Therefore we must have [a] = 0, and as a consequence, [b] = [0].
However, if 7 | a, then 72 | a2, and similarly 72 | b2. Therefore we must have 72 | a2 + b2 = 77,
which is false! Alas, we can conclude that 77 is not a sum of two squares.

We could have argued similarly for 11 and reached a similar contradiction since 112 ∤ 77.

Theorem 72. Let n ∈ Z>0 be such that n = 2v
∏
peii
∏
q
fj
j where each pi ≡ 1 (mod 4) and qi ≡ 3

(mod 4). Then n is the sum of two squares if and only if every fj is even.

Proof. Suppose each fj is even. Then each qfj is a square, and in particular is a sum of two squares

(the other being 02). Since each pi is the sum of two squares, and 2 is the sum of two squares, n is
the sum of two squares.

Lecture 33 - 28/03
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Conversely, suppose n = a2 + b2 for some integers a, b ∈ Z. We can write n = k2m where the
prime factorisation of m contains no powers greater than 1. We want to show that if p is a prime
and p | m, then p ≡ 1 (mod 4).

To this end, let d = gcd(a, b). Then

n

d2
=
(a
d

)2
+

(
b

d

)2

.

Since m has no divisors which are perfect squares, it must be the case that d2 | k2. Writing d2t = k2

we get

tm =
(a
d

)2
+

(
b

d

)2

.

Now, suppose p | m is a prime. Let x = a
d and y = b

d , and note that x and y are coprime integers.
Since p | m we have, in Zp, [0] = [x]2 + [y]2.

Note that [x] = [0] if and only if [y] = [0]. However, if [x] = [y] = [0], we must have p | x and
p | y, contradicting the fact that x and y are coprime. Therefore [x] ̸= [0]. Since Zp is a field, [x]−1

exists and after some rearranging we have [−1] = ([y][x]−1)2. Therefore [−1] is a square in Zp, and
p ≡ 1 (mod 4). ■

Hooray! So we know 52 · 73 · 1113 cannot be written as a sum of two squares, but 52 · 74 · 1114
can!

8.6 Pythagorean triples

If there is any theorem in mathematics that just about everyone knows, or at least has heard of,
it’s the Pythagorean theorem. It turns out that the statement is usually recalled as an implication,
but it’s really and if-and-only-if statement!

Theorem 73 (Pythagoras, probably). Let a, b, c be positive real numbers that are the side lengths
of a triangle. Then a2 + b2 = c2 if and only if the sides with lengths a and b form a right angle.

Cool. This is a very very useful theorem. If you’re building something and you want to make
sure two pieces of material are at a right angle, you can use this theorem and then shout out to all
the people around you “see, math is useful!”.

When a child is born into this world, the first right-angled triangle to which they are introduced
is the triangle with side lengths 3, 4, and 5. Then they might see 6, 8, 10, but they quickly realise
it’s just the 3, 4, 5 triangle in disguise. The next one they see is the 5, 12, 13 triangle, which
inevitably blows their little infant minds! Surely there must be more triples of integers like this.

Definition. A Pythagorean triple is a triple (a, b, c) of positive integers satisfying a2 + b2 = c2.
A Pythagorean triple is primitive if gcd(a, b, c) = 1.

If we have all primitive Pythagorean triples, then we can get all Pythagorean triples by scaling.
So the question now becomes, how do we find all Pythagorean triples?

Let’s start with some useful properties.

Proposition 74. Let (a, b, c) be a primitive Pythagorean triple. Then

1. gcd(a, b) = gcd(a, c) = gcd(b, c) = 1.

2. One of a and b is odd, and the other is even.

62



3. c is odd.

Proof. 1. If d is a common divisor of any two of a, b, and c, then since a2 + b2 = c2, d must
divide the third. Therefore any common divisor of two of them must be a common divisor of
all three. Therefore d = ±1 and so gcd(a, b) = gcd(b, c) = gcd(a, c) = 1.

2. By part 1, we cannot have a ≡ b ≡ c ≡ 0 (mod 2). Since a2 + b2 ≡ c2 (mod 2), at least one
of a or b must be odd. If both a and b are odd, then c is even. Also, a2+ b2 ≡ 2 (mod 4) and
c2 ≡ 0 (mod 4). Therefore, both a and b cannot be odd. It follows that exactly one of a or b
is odd.

3. By part 2, if exactly one of a or b is odd, c2 = a2 + b2 ≡ 1 (mod 2) and thus c is odd.
■

We can now parametrise all primitive Pythagorean triples! Once again, our lives are simplified
by exploiting the Gaussian integers.

Lecture 34 (31/03)

Lemma 75. Suppose a2 + b2 = c2 is a primitive Pythagorean triple. Then a + bi and a − bi are
coprime in Z[i].

Proof. Suppose there exists a Gaussian prime π that is a common divisor of a+ bi and a− bi. We
will show that it follows that a and b are not coprime integers.

Note that (a+ bi) + (a− bi) = 2a and −i(a+ bi) + i(a− bi) = 2b and so π | 2a and π | 2b. First
we will show that π cannot divide 2. If it did, then π is an associate of 1 + i and so N(π) = 2.
However, since π | a + bi, N(π) | N(a + bi) = c2. This is a problem since c2 is odd, so N(π) ̸= 2.
We conclude that π ∤ 2.

Since π is a Gaussian prime, π | a and π | b by Euclid’s lemma. Therefore a and b are not
coprime in Z[i] and thus they are not coprime in Z (see the exercise following the proof).

We have shown that if π is a common divisor of a+bi and a−bi, then a and b are not coprime in
Z. Therefore (a, b, c) cannot be a primitive Pythagorean triple (by Proposition 74(1)), completing
the proof. ■

Exercise. Let a, b ∈ Z. Prove that a and b are coprime in Z if and only if a and b are coprime in
Z[i].

The proof of the main theorem below exploits some ideas from the Gaussian integers, and in
particular the next fact, which is an exercise.

Exercise. Let z, w ∈ Z[i] be coprime and suppose zw = γ2 for some γ ∈ Z[i]. Then z = uδ2 for
some δ ∈ Z[i] and u ∈ Z[i]∗.

Great, let’s try to find Pythagorean triples! We will look, one last time in this course, in the
Gaussian integers.

Suppose (a, b, c) is a primitive Pythagorean triple, so c2 = (a+ bi)(a− bi). By Lemma 75, a+ bi
and a− bi are coprime in Z[i]. Then from the previous exercise we can write a+ bi = u(m+ ni)2

for some unit u ∈ Z[i]∗. Expanding this out gives

a+ bi = u(m2 − n2 + 2mni)
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If u = ±1, then equating real and imaginary parts gives

a = ±(m2 − n2) and b = ±2mn.

The roles of a and b are switched if u = ±i. So, we have a place to look for Pythagorean triples!
Indeed, let m,n ∈ Z and set a = m2 − n2, b = 2mn and c = m2 + n2. Then

a2 + b2 = (m2 − n2)2 + 4m2n2

= m4 + n4 − 2m2n2 + 4m2n2

= (m2 + n2)2

= c2.

Furthermore, we showed above that if you start with a primitive Pythagorean triple, you get
integers m and n.

Theorem 76 (Classification of Primitive Pythagorean Triples). Let (a, b, c) be a primitive Pythagorean
triple such that 2 | b. There exist positive coprime integers m and n, one of which is even, such
that

a = m2 − n2, b = 2mn, and c = m2 + n2.

Conversely, if m and n are positive coprime integers, one of which is even, then

(m2 − n2, 2mn,m2 + n2)

is a primitive Pythagorean triple.

Proof. We begin with the converse. Before the statement of the theorem, we have verified that
(m2−n2, 2mn,m2+n2) is a Pythagorean triple. To see it is primitive, suppose p is a prime divisor
of all three integers. Since exactly one of m and n is even, m2+n2 is odd, so p ̸= 2. Since p | 2mn,
we must have p | m or p | n. If p | m, then since p | m2 + n2, we must have p | n2 and so p | n.
We can similarly deduce that if p | n then p | m. However, this contradicts the assumption that
gcd(m,n) = 1. Therefore such a prime p cannot exist, and (m2 − n2, 2mn,m2 + n2) is a primitive
Pythagorean triple.

For the forward direction, suppose a2+b2 = c2 with gcd(a, b, c) = 1 and 2 | b. Then gcd(a, b) = 1,
and a and c are odd. By Lemma 75, a + bi and a − bi are coprime in Z[i]. Thus, there exists
m+ ni ∈ Z[i] satisfying

a+ bi = u(m+ ni)2 = u(m2 − n2) + 2umni.

Suppose m and n have the same parity (they are both even or both odd). Then, depending on the
value of u ∈ Z[i]∗, the real and imaginary parts of u(m2 −n2)+ 2umni are both even. This cannot
happen since a is odd. Therefore, we must have that exactly one of m and n is even. Since b is
even, it must be the case that u = ±1. Therefore, by equating real and imaginary parts we have

a = ±(m2 − n2) and b = ±2mn.

If necessary, we can now replace m and n by their absolute values to get 2mn > 0. We can then
switch the roles of m and n if necessary to ensure m2 − n2 > 0. After doing this, we have shown
there are positive integers m,n, exactly one of which is even, satisfying

a = m2 − n2 and b = 2mn.

It remains to show that gcd(m,n) = 1 to complete the proof. To that end, let d > 1 be a common
prime divisor of m and n. Then d | 2mn = b and d | m2 − n2 = a, contradicting our assumption
that gcd(a, b) = 1. ■

64



Hooray! We can now generate all the primitive Pythagorean triples by running through coprime
pairs of positive integers with opposite parities. Here are the first few:

(m,n) (a, b, c) = (m2 − n2, 2mn,m2 + n2)

(2, 1) (3, 4, 5)
(3, 2) (5, 12, 13)
(4, 1) (15, 8, 17)
(4, 3) (7, 24, 25)
(5, 2) (21, 20, 29)
(5, 4) (9, 40, 41)
(6, 1) (35, 12, 37)
(6, 5) (11, 60, 61)
(7, 2) (45, 28, 53)
(7, 4) (33, 56, 65)
(7, 6) (13, 84, 85)
(8, 1) (63, 16, 65)
(8, 3) (55, 48, 73)
(8, 5) (39, 80, 89)
(8, 7) (15, 112, 113)
(9, 2) (77, 36, 85)
(9, 4) (65, 72, 97)
(9, 8) (17, 144, 145)

Cool! If you see anything interesting in the table, write it down and try to prove it. For example:

Exercise. Let a, b, c be a Pythagorean triple. Prove that 3 | a, 3 | b, or 3 | c.

9 That’s All Folks

We’ve barely scratched the surface of the beautiful, deep and mysterious area of mathematics known
as number theory. Hopefully you’ve had a glimpse of the magnificence that lies ahead if you choose
to continue further into the woods. Good luck.
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A List of the first 1000 primes

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131
137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263
269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541 547 557 563 569
571 577 587 593 599 601 607 613 617 619 631 641 643 647 653 659 661 673 677 683 691 701 709 719
727 733 739 743 751 757 761 769 773 787 797 809 811 821 823 827 829 839 853 857 859 863 877
881 883 887 907 911 919 929 937 941 947 953 967 971 977 983 991 997 1009 1013 1019 1021 1031
1033 1039 1049 1051 1061 1063 1069 1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153
1163 1171 1181 1187 1193 1201 1213 1217 1223 1229 1231 1237 1249 1259 1277 1279 1283 1289
1291 1297 1301 1303 1307 1319 1321 1327 1361 1367 1373 1381 1399 1409 1423 1427 1429 1433
1439 1447 1451 1453 1459 1471 1481 1483 1487 1489 1493 1499 1511 1523 1531 1543 1549 1553
1559 1567 1571 1579 1583 1597 1601 1607 1609 1613 1619 1621 1627 1637 1657 1663 1667 1669
1693 1697 1699 1709 1721 1723 1733 1741 1747 1753 1759 1777 1783 1787 1789 1801 1811 1823
1831 1847 1861 1867 1871 1873 1877 1879 1889 1901 1907 1913 1931 1933 1949 1951 1973 1979
1987 1993 1997 1999 2003 2011 2017 2027 2029 2039 2053 2063 2069 2081 2083 2087 2089 2099
2111 2113 2129 2131 2137 2141 2143 2153 2161 2179 2203 2207 2213 2221 2237 2239 2243 2251
2267 2269 2273 2281 2287 2293 2297 2309 2311 2333 2339 2341 2347 2351 2357 2371 2377 2381
2383 2389 2393 2399 2411 2417 2423 2437 2441 2447 2459 2467 2473 2477 2503 2521 2531 2539
2543 2549 2551 2557 2579 2591 2593 2609 2617 2621 2633 2647 2657 2659 2663 2671 2677 2683
2687 2689 2693 2699 2707 2711 2713 2719 2729 2731 2741 2749 2753 2767 2777 2789 2791 2797
2801 2803 2819 2833 2837 2843 2851 2857 2861 2879 2887 2897 2903 2909 2917 2927 2939 2953
2957 2963 2969 2971 2999 3001 3011 3019 3023 3037 3041 3049 3061 3067 3079 3083 3089 3109
3119 3121 3137 3163 3167 3169 3181 3187 3191 3203 3209 3217 3221 3229 3251 3253 3257 3259
3271 3299 3301 3307 3313 3319 3323 3329 3331 3343 3347 3359 3361 3371 3373 3389 3391 3407
3413 3433 3449 3457 3461 3463 3467 3469 3491 3499 3511 3517 3527 3529 3533 3539 3541 3547
3557 3559 3571 3581 3583 3593 3607 3613 3617 3623 3631 3637 3643 3659 3671 3673 3677 3691
3697 3701 3709 3719 3727 3733 3739 3761 3767 3769 3779 3793 3797 3803 3821 3823 3833 3847
3851 3853 3863 3877 3881 3889 3907 3911 3917 3919 3923 3929 3931 3943 3947 3967 3989 4001
4003 4007 4013 4019 4021 4027 4049 4051 4057 4073 4079 4091 4093 4099 4111 4127 4129 4133
4139 4153 4157 4159 4177 4201 4211 4217 4219 4229 4231 4241 4243 4253 4259 4261 4271 4273
4283 4289 4297 4327 4337 4339 4349 4357 4363 4373 4391 4397 4409 4421 4423 4441 4447 4451
4457 4463 4481 4483 4493 4507 4513 4517 4519 4523 4547 4549 4561 4567 4583 4591 4597 4603
4621 4637 4639 4643 4649 4651 4657 4663 4673 4679 4691 4703 4721 4723 4729 4733 4751 4759
4783 4787 4789 4793 4799 4801 4813 4817 4831 4861 4871 4877 4889 4903 4909 4919 4931 4933
4937 4943 4951 4957 4967 4969 4973 4987 4993 4999 5003 5009 5011 5021 5023 5039 5051 5059
5077 5081 5087 5099 5101 5107 5113 5119 5147 5153 5167 5171 5179 5189 5197 5209 5227 5231
5233 5237 5261 5273 5279 5281 5297 5303 5309 5323 5333 5347 5351 5381 5387 5393 5399 5407
5413 5417 5419 5431 5437 5441 5443 5449 5471 5477 5479 5483 5501 5503 5507 5519 5521 5527
5531 5557 5563 5569 5573 5581 5591 5623 5639 5641 5647 5651 5653 5657 5659 5669 5683 5689
5693 5701 5711 5717 5737 5741 5743 5749 5779 5783 5791 5801 5807 5813 5821 5827 5839 5843
5849 5851 5857 5861 5867 5869 5879 5881 5897 5903 5923 5927 5939 5953 5981 5987 6007 6011
6029 6037 6043 6047 6053 6067 6073 6079 6089 6091 6101 6113 6121 6131 6133 6143 6151 6163
6173 6197 6199 6203 6211 6217 6221 6229 6247 6257 6263 6269 6271 6277 6287 6299 6301 6311
6317 6323 6329 6337 6343 6353 6359 6361 6367 6373 6379 6389 6397 6421 6427 6449 6451 6469
6473 6481 6491 6521 6529 6547 6551 6553 6563 6569 6571 6577 6581 6599 6607 6619 6637 6653
6659 6661 6673 6679 6689 6691 6701 6703 6709 6719 6733 6737 6761 6763 6779 6781 6791 6793
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6803 6823 6827 6829 6833 6841 6857 6863 6869 6871 6883 6899 6907 6911 6917 6947 6949 6959
6961 6967 6971 6977 6983 6991 6997 7001 7013 7019 7027 7039 7043 7057 7069 7079 7103 7109
7121 7127 7129 7151 7159 7177 7187 7193 7207 7211 7213 7219 7229 7237 7243 7247 7253 7283
7297 7307 7309 7321 7331 7333 7349 7351 7369 7393 7411 7417 7433 7451 7457 7459 7477 7481
7487 7489 7499 7507 7517 7523 7529 7537 7541 7547 7549 7559 7561 7573 7577 7583 7589 7591
7603 7607 7621 7639 7643 7649 7669 7673 7681 7687 7691 7699 7703 7717 7723 7727 7741 7753
7757 7759 7789 7793 7817 7823 7829 7841 7853 7867 7873 7877 7879 7883 7901 7907 7919.

B Equivalence Relations and Partitions

Equivalence classes and partitions pop up in just about every area of mathematics, and we will
see that both equivalence classes and partitions are two sides of the same coin. It is a common
occurrence for us to have a set, and then to consider certain subsets of that set to represent a single
element, or to make all the elements in a subset the same.

There are lots of natural examples of equivalence relations.

Example. The rational numbers are the first place you see an equivalence relation, except it’s so
natural that it’s often swept under the rug and we don’t even notice! A first attempt at defining
the set of rational numbers would be to consider the set{a

b
| a, b ∈ Z

}
.

This looks right, except for the fact that as written, the set thinks that 2
4 and 3

6 are different
elements. We want them to be the same! To deal with this we say

a

b
∼ c

d
if ad = bc.

Now we can correctly write

Q =
{a
b
| a, b ∈ Z

}
/ ∼

which is just fancy notation for “the set
{
a
b | a, b ∈ Z

}
except when a

b ∼ c
d , we just make them

equal”. The relation ∼ which makes two different things equal is called an equivalence relation.

Example. One that you have seen in this course is an equivalence relation on the integers Z.
Consider the set of numbers that have the same remainder when divided by 7. Then we can say
that two integers a, b ∈ Z are equivalent if 7 | a − b. Then this is an equivalence relation (see
Proposition 25), and it splits the integers up into 7 disjoint sets, one corresponding to each element
of Z7. In this scenario, we view all the integers which have the same remainder when divided by 7
as the same. Alternatively, we can view this as identifying all of these elements with each other.

Notice that the set of subsets consisting of elements of Z that are equivalent (which we will soon
call equivalence classes) cover all of Z, and no element belongs to two of these subsets. Another
way of saying this is that the subsets partition Z.

Example. Consider the set X = {1, 2, 3, 4, 5, 6} and identify 1 and 2 together, and identify 3, 4,
and 6 as the same element. In this case, the equivalence relation identifies each of the subsets
{1, 2}, {3, 4, 6}, {5}. The idea is that we may as well just consider 1 to be equal to 2, and 3 to be
equal to 4 to be equal to 6.

Notice that the subsets that define which elements are equal partition the set X. If we denote
equality in this example by ∼ we also notice that for all x, y, z ∈ X, x ∼ x, if x ∼ y then y ∼ x,
and if x ∼ y and y ∼ z, then x ∼ z.
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This last example hints at what we would formally want an equivalence relation to be, and we
would like it to imitate what we understand “=” to mean. Intuitively in any context, x = x always,
if x = y then y = x, and if x = y and y = z, then x = z. Furthermore, if we group equal things
together in a set, we should get a partition of that set into subsets consisting of things that are
equal!

Let’s formalise these ideas. In the next definition, think of a relation as something like = or ≤.
So something that takes in two elements of a set and gives back that it is either true or false.

Definition. Let X be a set. An equivalence relation on X is a relation ∼ that satisfies the
following properties.

1. x ∼ x for all x ∈ X. We say ∼ is reflexive.

2. If x ∼ y then y ∼ x. We say ∼ is symmetric.

3. If x ∼ y and y ∼ z, then x ∼ z. We say ∼ is transitive.

Definition. LetX be a set and ∼ an equivalence relation onX. For x ∈ X, define the equivalence
class of x by

[x] := {y ∈ X : y ∼ x}.

The set of equivalence classes is denoted by

X/ ∼:= {[x] : x ∈ X}.

Definition. Let X be a set. A partition of X is a collection of subsets {Yi} such that Yi∩Yj = ∅
if i ̸= j, and

⋃
i Yi = X.

Intuitively a partition is a way to split up your set into a collection of subsets in such a way
that every element of X belongs to exactly one of the subsets.

As we have seen above, we can interchange the idea of an equivalence relation on a set with the
notion of a partition. Intuitively they come hand in hand, and this is what the next proposition
shows.

Proposition 77. Let X be a set. If ∼ is an equivalence relation on X, then the set of equivalence
classes of elements in X partition X. Conversely, if we have a partition of X, it arises as the set
of equivalnce classes from an equivalence relation on X.

Proof. Suppose ∼ is an equivalence relation on X. Since x ∈ [x], every element is in an equivalence
class. It remains to show that two equivalence classes are disjoint or equal. Suppose y ∈ [x1]∩ [x2],
we want to show that [x1] = [x2]. Let z ∈ [x1]. Then since y ∈ [x1], z ∼ y and since y ∈ [x2],
y ∼ x2. By transitivity of ∼, z ∼ x2 so z ∈ [x2]. Conversely, if z ∈ [x2], z ∼ y and y ∼ x1 so z ∼ x1
and z ∈ [x1]. Therefore [x1] = [x2].

For each equivalence class T ∈ X/ ∼, pick an element x ∈ T and define the subset Yx ⊂ X by
Yx = [x]. Then by the discussion in the previous paragraph,

⋃
Yx = X and Yx ∩ Yy = ∅ if x ̸= y.

Therefore the set of equivalence classes partitions the set X.
Conversely, suppose {Yi} is a partition of X. Then define a relation on X by x ∼ y if and only

if x ∈ Yi and y ∈ Yi for the same subset Yi. Alternatively, the relation is defined by x ∼ y if they
both belong to the same subset Yi. Since if x ∈ Yi, then x ∈ Yi, we have x ∼ x. If x and y are both
in Yi for some i, then y and x both belong to the same subset, so x ∼ y implies y ∼ x. Finally, if
x ∼ y and y ∼ z we must have that x, y ∈ Yi and y, z ∈ Yj for some i, j. Then y ∈ Yi ∩ Yj , and
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since {Yi} is a partition, Yi = Yj . Therefore x, z ∈ Yi and x ∼ z. This shows ∼ is an equivalence
relation.

It remains to show the subsets Yi are exactly the equivalence classes of ∼. Let x ∈ X, then
x ∈ Yi for some i. Then [x] = {y ∈ X : y ∼ x} = {y ∈ X : y ∈ Yi} = Yi, completing the proof. ■

The important take-home message from this proposition is that we can think of equivalence
relations and partitions as two sides of the same coin. This theme occurs lots of times in this
course, and it’s always useful to have multiple ways of thinking about the same thing.

C Some Set Theory

The goal of this appendix is to go over some facts about functions between sets, and what we can
say about sizes of sets by looking at functions between sets. It is often the case that what is coming
up is taken for granted. For example, at various points in the notes above we prove that a function
is a bijection by finding an inverse. In this appendix we will show that these kinds of techniques
actually work!

C.1 Injections, Surjections, and Bijections

Intuitively we know the definitions of an injection, surjection and bijection. An injection from S to
T is a function that doesn’t send any two elements of S to the same element of T . A surjection from
S to T is a function that sends something to everything in T , or a function that hits everything in
T . A bijection is a perfect matching, kind of like a dictionary, between elements of S and elements
of T . That is, every element of S has an element of T associated to it, and vice versa. This is the
same as saying that f is both surjective and injective. Let’s make these intuitions formal.

Definition. Let f : S → T be a function.

� We say f is injective (or f is an injection) if whenever f(s1) = f(s2), we have s1 = s2.

� We say f is surjective (or f is a surjection) if for all t ∈ T , there exists an s ∈ S such that
f(s) = t.

� We say f is bijective (or f is a bijection) if f is both injective and surjective.

This definition is all well and good, but there is another way to think about injections, surjec-
tions, and bijections. The idea is as follows.

If f : S → T is an injection, then every element in T that gets hit has a unique preimage (a
unique element s ∈ S such that f(s) = t) so we can define a g : T → S such that if we do f first
and then g, we can return every element in S to itself.

If f : S → T is a surjection, then every t ∈ T has at least one preimage, so we can define
g : T → S to be a function that sends t to one of its preimages. Since every t has a preimage, this
function has the property that if we do g first and then f , every element of t ends up back where
it started.

If f : S → T is a bijection, then we can do what we did for the injections and surjections in a
unique way to get a g : T → S such that fg(t) = t for all t ∈ T and gf(s) = s for all s ∈ S.

These ideas are formalised in the following proposition. Here is a bit of notation we will use for
the proposition and throughout the notes above. Let S be a set and define the identity function
idS : S → S by idS(s) = s for all s ∈ S.
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Proposition 78. Let f : S → T be a function between sets.

� f is an injection if and only if there exists a function g : T → S such that gf = idS.

� f is a surjection if and only if there exists a function g : T → S such that fg = idT .

� f is a bijection if and only if there exists a function g : T → S such that fg = idT and
gf = idS. Furthermore, such a g is unique and we denote it g = f−1.

Proof. Suppose f is an injection. Pick an x ∈ S and for every t ∈ f(S), let st ∈ S be the unique
element of S such that f(st) = t. Recall f(S) := {t ∈ T : there exists s ∈ S such that f(s) = t}.
Define g : T → S by

g(t) =

{
st if t ∈ f(S)

x otherwise.

Since every s ∈ S is of the form st for some t ∈ T , we see gf(st) = g(t) = st for all st ∈ S so
gf = idS .

Conversely suppose f(a) = f(b) = t0 where a ̸= b in S. Suppose g : T → S is such that
gf = idS . If g(t0) ̸= a, then gf(a) ̸= a, so we must have g(t0) = a. Then we have gf(b) = a ̸= b,
so such a g cannot exist.

Suppose f is a surjection. Define g : T → S by g(t) = st where f(st) = t. Note that since f is
surjective, we can always do this. Then fg(t) = f(st) = t for all t ∈ T , so fg = idT .

Conversely, if f is anot a surjection there is some t0 ∈ T such that there is no s ∈ S such that
f(s) = t0. Let g : T → S be a candidate function such that fg = idT . Then fg(t0) ̸= t0 since
there is no element in S such that f(s) = t0. Therefore there is no function g : T → S such that
fg = idT .

Finally, if f is a bijection, then define g : T → S to be g(t) = st where st ∈ S is the unique
element such that f(st) = t. Note that every element in S is of the form st for some t. Then

gf(st) = g(t) = st and fg(t) = f(st) = t

for all st ∈ S and t ∈ T , so gf = idS and fg = idT . Conversely, if f is not injective or surjective, the
same arguments above show that there cannot exist a g : T → S such that fg = idS or gf = idT
respectively.

It remains to show that in the case when f is a bijection, the inverse g is unique. Suppose there
is another map h : T → S such that fh = idS . Then f(h(t)) = t = f(g(t)) fur all t ∈ T . Since f is
sinjective, we must have h(t) = g(t) for all t ∈ T , completing the proof. ■

As is discussed several times in the notes above, whenever you have a sutuation like this, you can
use either property as the definition in your head. For example, we can now think of an injection
has a map with a left inverse, or as a map which sends different elements to different elements.
Whichever definition is easier or more helpful in a particular situation should be the one you use.

It is worth noting here that the above proof relies on the axiom of choice, but that is a discussion
for another time and course.

In Lemma 32 we proved that multiplication by a unit induced a bijection on Z∗
n. Let’s prove it

again here (this time for all of Zn, not just Z∗
n), this time making use of Proposition 78

Lemma 79. Let [a] ∈ Z∗
n. The function ψ : Zn → Zn given by ψ([b]) = [a][b] is a bijection.

Proof. Consider the function θ : Zn → Zn given by θ([b]) = [a]−1[b]. Then θψ([b]) = θ([a][b]) =
[a]−1[a][b] = [b] and ψθ([b]) = ψ([a]−1[b]) = [a][a]−1[b] = [b]. Therefore ψθ = idZn and θψ = idZn so
ψ is a bijection. ■
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C.2 Comparing the Sizes of Sets

There are lots of times you might want to show that two sets have the same size, or that one is
bigger than the other. Here is a formal way to compare the size of two sets. Here, let |S| be the
size of a set.

Definition. Let S and T be sets.

� If there exists an injection f : S → T , then |S| ≤ |T |.

� If there exists a surjection f : S → T , then |S| ≥ |T |.

� If there exists a bijection f : S → T , then |S| = |T |.

Recall that we used this definition in the proof of Lemma 39.
If |S| and |T | are finite, it is easy to see that this agrees with our intuition about what it means

for a set to be bigger (or smaller) than another set. The advantage of this definition really becomes
apparent when comparing infinite sets, because it gives us a formal way to say whether or not an
infinite set is bigger or smaller than another infinite set.

When infinite sets get involved though, there are a few things that we need to check to make
sure our notation using ≤ and ≥ actually makes sense. It turns out that these definitions work
because of the following facts, which are far from obvious. They will be stated in terms of the
existence of functions, and then in terms of what that means with regards to the relation ≤ defined
above.

Fact 80. Let S and T be sets.

1. There exists a surjection from S to T or from T to S (or both). Equivalently, |S| ≥ |T | or
|T | ≥ |S| (or both).

2. There exists an injection f : S → T if and only if there exists a surjection g : T → S.
Equivalently |S| ≤ |T | if and only if |T | ≥ |S|.

3. If there exists an injection f1 : S → T and a surjection f2 : S → T , then there exists a
bijection f : S → T . Equivalently, if |S| ≥ |T | and |S| ≤ |T |, then |S| = |T |.

Facts 1 and 2 both rely on the axiom of choice, and Fact 3 is called the Schröder-Bernstein
theorem.

With these definitions we can formally prove that |Z| = |Q| = |N| = |Z× Z|. However, we
have |Z| ⪇ |R|, and we can prove that although there is an injection from Z to R (which is the
regular inclusion map), we cannot find a bijection. If you’re curious about this, look up Cantor’s
diagonalisation argument. It’s one of the neatest lines of reasoning you’ll see!

D Groups, rings, and fields

In this course, we have come across groups, rings, and fields, without formally talking about them.
Let’s do that to add a little algebraic context to our number theory.

71



D.1 Groups

The word group has popped up a bunch of times in the course, most notably in calling Z∗
n the group

of units. What makes Z∗
n a group is that it comes with an operation (multiplication) that eats two

elements of Z∗
n and spits out another element of Z∗

n. More than that, there is a special element [1]
(the identity with respect to the operation) with the property that [1][a] = [a], and every element
in Z∗

n has an inverse (with respect to the operation). Let’s abstract these properties out into the
definition of a group, which applies to many more structures in mathematics besides just Z∗

n.

Definition. A group is a set G together with an operation ∗ : G×G→ G such that the following
properties are satisfied.

� For all a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).

� There exists an element e, such that for all a ∈ G, e ∗ a = a ∗ e = a for all a ∈ G. We call e
the identity.

� For every a ∈ G, there exists an element a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = e. We call
a−1 the inverse of a.

If we wish to emphases the operation, we will denote the group G by (G, ∗).
Exercise. Consider (Q \ {0},÷) where Q \ {0} is the set of non-zero rational numbers, and the
operation ÷ is just division, that is a÷ b = a

b . Show that (Q \ {0},÷) is not a group.

We have already come across a whole bunch of groups, as shown in the next exercise.

Exercise. Show that the following are groups, and verify the identity is indeed the identity.

� (Z∗
n, ·) (where · is multiplication in Zn), with identity [1].

� (Qn, ·) (where Qn is the set of quadratic residues in Z∗
n, and · is multiplication in Zn) with

identity [1].

� (Zn,+) with identity [0].

� (Z,+) with identity 0.

� (R>0, ·) (where R>0 is the set of positive real numbers, and · is multiplication) with identity
1.

� (SL2(R), ·) (where SL2(R) is the set of 2 × 2 matrices with real entries and determinant 1,
and · is matrix multiplication) with identity [ 1 0

0 1 ].

The first four groups in the exercise all have the property that a ∗ b = b ∗ a for all a, b in
the group, but the last one does not (for example [ 1 1

0 1 ]
[
0 −1
1 0

]
̸=
[
0 −1
1 0

]
[ 1 1
0 1 ]). All the groups we

encounter in this course have this nice property, and they are given a special name.

Definition. Let (G, ∗) be a group. If a ∗ b = b ∗ a for all a, b ∈ G, then we say G is an abelian
group.

So, Z∗
n (with multiplication) and Zn (with addition) are abelian groups since [a][b] = [b][a] and

[a] + [b] = [b] + [a] for all [a], [b] ∈ Zn. From here on in, if we write the group Z∗
n, it is understood

that the group operation is multiplication, since it’s the only reasonable operation that turns Z∗
n

into a group! Similarly for Zn and addition. To reinforce this, we have the following exercise.

Exercise. Show that Zn with multiplication is not a group. Show that Z∗
n with addition is not a

group.

more to come...
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