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Free products of circularly ordered groups
with amalgamated subgroup

Adam Clay and Tyrone Ghaswala

Abstract

This paper gives necessary and sufficient conditions that the free product with amalgamation of
circularly ordered groups admit a circular ordering extending the given orderings of the factors.
Our result follows from establishing a categorical framework that allows the problem to be
restated in terms of amalgamating certain left-ordered central extensions, where we are able to
apply work of Bludov and Glass.

1. Introduction

A group G is left-orderable if its elements admit a strict total ordering that is invariant under
multiplication from the left. A group is called circularly orderable if G admits an orientation
cocycle c : G3 → {0,±1} that is invariant under multiplication from the left. When G is
countable, these properties are equivalent to admitting faithful order-preserving actions by
homeomorphisms on R and S1, respectively.

Understanding the behaviour of left orderability and circular orderability with respect to
various group-theoretic constructions (such as direct products, extensions, free products and
free products with amalgamation) is one of the basic questions which has, at times, proved to
be an obstacle to a number of applications. For example, it was not until recent years that
Bludov and Glass [3, Theorem A] provided necessary and sufficient conditions that the free
product with amalgamation of a family of left-ordered groups be left-orderable, and that it
admit an ordering extending the given orderings of the factors. Their work was readily applied
to the solvability of the word problem in left-orderable groups [3, Theorem E], was used to
left-order the fundamental groups of many 3-manifolds [4, 10, 12] and was also extended to
give conditions that an arbitrary graph of groups with left-orderable vertex groups be left-
orderable [9].

This paper further builds on the results of Bludov and Glass to determine necessary and
sufficient conditions that the free product with amalgamation of an arbitrary family of circularly
ordered groups be circularly orderable, with an ordering that extends the given orderings of
the factors. Such conditions are given in Propositions 4.4 and 4.9.

Our approach is to observe that certain classical lifting and quotient constructions, which
allow one to pass from a circularly ordered group (G, c) to a left-ordered cyclic central extension
G̃ (and vice versa), behave functorially. In fact, these two functors provide an equivalence
between appropriately defined categories LO∗ and Circ of left-ordered and circularly ordered
groups, respectively. Under such a setup, one might expect that amalgamated free products of
circularly ordered groups will correspond to certain colimits in Circ, and that these colimits
would be carried via the categorical equivalence to colimits in LO∗ — where one can then
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apply the results of Bludov and Glass to construct a left ordering that descends to a circular
ordering on the original amalgamated free product.

Although this is roughly the correct idea, it turns out that the categories LO∗ and Circ do
not admit colimits (though it does turn out that each is a tensor category when equipped with
a certain colimit-like operation defined in [1]). We therefore embed these categories in larger
categories where the desired colimits exist, allowing us to pursue the line of proof above on
sound mathematical footing. As a result, we give necessary and sufficient conditions that a free
product with amalgamation of circularly ordered groups {(Gi, ci)}i∈I be circularly ordered, by
examining certain left-ordered cyclic central extensions {(G̃i, <ci)}i∈I . If Hi ⊂ Gi is a subgroup
for each i ∈ I and φi : H → Hi are order-preserving isomorphisms with a circularly ordered
group (H, d) for all i ∈ I, then these amalgamating isomorphisms will lift to give φ̃i : H̃ → H̃i,
as the lifting construction is functorial. We prove:

Theorem 1. Suppose that (Gi, ci) are circularly ordered groups for i ∈ I, each equipped
with a subgroup Hi ⊂ Gi and an order-preserving isomorphism φi : (H, d) → (Hi, ci) from a
circularly ordered group (H, d). The following are equivalent.

(i) The group ∗i∈IGi(Hi

φi∼= H) admits a circular ordering c which extends the orderings ci
of Gi for all i ∈ I.

(ii) The group ∗i∈IG̃i(H̃i

˜φi∼= H̃) admits a left ordering < which extends each of the left

orderings <ci of G̃i for i ∈ I.

One can also approach this theorem with a more narrow view, by setting up an isomorphism

between a quotient of ∗i∈IG̃i(H̃i

˜φi∼= H̃) and the group ∗i∈IGi(Hi

φi∼= H), and then checking
that the isomorphism restricts appropriately to certain subgroups identified with lifts of the
factors (see Remark 2.10). Although direct, this approach masks the fact that the group
isomorphism exists for general categorical reasons, and fails to uncover the additional data
yielded by the larger categories that contain colimits of diagrams in LO∗ and Circ: In the
course of constructing the colimit corresponding to a collection of circularly ordered groups
(Gi, ci) with subgroups Hi identified as above, we find that the colimit carries data (in the
form of a collection of 2-cocyles) that encode information about all possible extensions of

the circular orderings {ci}i∈I to a circular ordering of ∗i∈IGi(Hi

φi∼= H) (Theorem 1, and
Remark 3.10(1)).

Equipped with Theorem 1, one still faces the obstacle of verifying that the necessary and
sufficient conditions of Bludov and Glass hold for a particular family of left-ordered groups
(see the discussion preceding Theorem 4.1), which is quite difficult in general. However, there
are a few natural special cases where the conditions are somewhat easier to verify, leading to
simplified versions of our main result. For example, it is easy to amalgamate circularly ordered
groups along convex subgroups (as is also the case with left-ordered groups [3, Corollary 5.2]):

Proposition 1.1. Suppose that (Gi, ci) are circularly ordered groups for i ∈ I, each
equipped with a convex subgroup Hi ⊂ Gi and an order-preserving isomorphism φi : (H, d) →
(Hi, ci) from a circularly ordered group (H, d). Then, the group ∗i∈IGi(Hi

φi∼= H) admits a
circular ordering c which extends the orderings ci of Gi for i ∈ I.

This simplified version is of interest to us as it yields immediate applications to fundamental
groups of 3-manifolds, see Example 5.6 and the motivation below.

It is also possible to amalgamate circularly ordered groups along order-isomorphic
rank-one abelian subgroups and their circularly ordered analogues. Although useful (see,



AMALGAMATING CIRCULARLY ORDERED GROUPS 777

[2, Lemma 4.12]), this result is fundamentally different from the analogous result for left-
orderable groups, which states that amalgamation of left-orderable groups along rank one
abelian subgroups always produces a left-orderable group ([3, Corollary 5.2], cf. Example 5.9).
Nevertheless, once circular orderings of 3-manifold groups are better understood, we expect
this special case will also have applications to in the realm of 3-manifold topology analogous
to [10, Theorem 2.7].

Proposition 1.2. Suppose that (Gi, ci) are circularly ordered groups for i ∈ I, each
equipped with a subgroup Hi ⊂ Gi and an order-preserving isomorphism φi : (H, d) → (Hi, ci)
from a circularly ordered group (H, d).

If H is either:

(i) a subgroup of the rational points of S1 equipped with the standard ordering, or
(ii) Q or Z equipped with the ordering d(q1, q2, q3) = 1 if and only if q1 < q2 < q3 (up to

cyclic permutation),

then ∗i∈IGi(Hi

φi∼= H) admits a circular ordering that extends each of the ci.

As implied above, our interest in extending the work of Bludov and Glass to the case
of circularly ordered groups stems from current work in low-dimensional topology. Left-
orderable groups have recently come to prominence in the field of low-dimensional topology
via conjectured connections between foliations, Heegaard–Floer homology and left-orderability
of the fundamental groups of 3-manifolds [5, Conjecture 1; 14, Conjecture 2.5]. In this setting,
the question of left-orderability of free products with amalgamation arises naturally when
considering the fundamental groups of compact, orientable, non-geometric 3-manifolds, as such
fundamental groups are encoded by graphs of groups with edge groups isomorphic to Z ⊕ Z.

In some sense, however, circular orderability is the natural way to begin a study of
left-orderability in the context of 3-manifold fundamental groups, as there are often direct
connections between circular orderings and the topology of the underlying manifold. For
example, if M is a compact, connected, orientable 3-manifold, the existence of a circular
ordering of π1(M) is tied directly to whether M supports a co-orientable taut foliation, via
Thurston’s universal circle construction [8]. One can also create circular orderings of π1(M)
when M is a cusped hyperbolic 3-manifold admitting a certain type of nice triangulation via a
study of the action of π1(M) on the cusps of the universal cover of M ([16], cf. Example 5.6).
In contrast, aside from cases where |H1(M)| = ∞ (in which case, π1(M) is known to be
left-orderable by [6]), most left orderings of 3-manifold fundamental groups arise by first
constructing a circular ordering via a representation of π1(M) into a group of homeomorphisms
of S1, and then using one of a variety of ad hoc techniques to show that the Euler class of the
representation is trivial.

This work is therefore inspired by the following problem, raised in [1, Section 4]†:

Problem 1.3. Suppose that M is a 3-manifold with geometric pieces M1, . . . ,Mn, and
that π1(Mi) admits a circular ordering ci. Determine necessary and sufficient conditions in
terms of the gluing maps which recover M from the pieces Mi, and the circular orderings
ci, which guarantee the existence of an ordering c of π1(M) extending each of the ci (cf.
[4, Theorem 1.7(2)]).

The paper is organized as follows. In Section 2, we review definitions and place them in a
categorical framework. In Section 3, we expand the categories introduced in Section 2 to include

†The authors of [1] pose the question in terms of a decomposition of π1(M) arising from a Heegaard splitting.
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certain colimits and establish our main theorem. We restate the theorem in the language of
circular orderings in Section 4, obtaining a circularly orderable analogue to the theorem of
Bludov and Glass for amalgamations of left-orderable groups. Section 5 covers two relevant
special cases where amalgamation always yields a circularly ordered group. Last, Section 6
shows that the categories introduced in Section 2 are in fact tensor categories when paired
with an operation introduced in [1].

2. Background and categorical framework

We begin with the definition of a left ordering of a group, and what is commonly called the
cocycle definition of a circular ordering of a group.

Definition 2.1. A left ordering of a group G is a strict total ordering < such that g < h
implies fg < fh for all f, g, h ∈ G. When G admits a left ordering <, we call G left ordered
and write (G,<). Given a left ordering, we can define the positive cone P = {g ∈ G : g > id}.

Given left-ordered groups (G,<) and (H,≺), an order-preserving homomorphism is a
homomorphism φ : G → H such that g1 < g2 if and only if φ(g1) ≺ φ(g2) for all g1, g2 ∈ G.

It is easily checked that a positive cone P of a left ordering satisfies P · P ⊂ P and
P 
 P−1 = G \ {id}. On the other hand, given a subset P of a group G satisfying P · P ⊂ P and
P 
 P−1 = G \ {id}, we can define a left ordering < with positive cone P by g < h whenever
g−1h ∈ P . Therefore, to define a left ordering of a group it suffices to specify its positive cone.

Definition 2.2. Given a G-set S, an invariant circular ordering on S is a function
c : G3 → {±1, 0} such that

(i) c−1(0) = Δ(S), where Δ(S) := {(a1, a2, a3) ∈ S3 | ai = aj , for some i �= j};
(ii) the function c satisfies the cocycle condition

c(a2, a3, a4) − c(a1, a3, a4) + c(a1, a2, a4) − c(a1, a2, a3) = 0

for all a1, a2, a3, a4 ∈ S; and
(iii) c(a1, a2, a3) = c(g · a1, g · a2, g · a3) for all g ∈ G and a1, a2, a3 ∈ S.

When G admits an invariant circular ordering c under the action of left multiplication on itself,
we call G circularly ordered and write (G, c).

Given circularly ordered groups (G, c) and (H, d), an order-preserving homomorphism is a
homomorphism φ : G → H such that c(g1, g2, g3) = d(φ(g1), φ(g2), φ(g3)) for all g1, g2, g3 ∈ G.

Note that order-preserving homomorphisms of both left-ordered groups and circularly
ordered groups are necessarily injective.

Let φ : G → H be an injective homomorphism. Suppose that < is a left order on H
with positive cone P . Define the pullback of < by φ as the left order <φ on G given by
g1 <φ g2 if φ(g1) < φ(g2). The positive cone of <φ is given by φ∗P := {g ∈ G : φ(g) ∈ P}.
Similarly, suppose that c is a circular ordering on H. Define the pullback of c by φ as the
circular ordering φ∗c on G given by φ∗c(g1, g2, g3) := c(φ(g1), φ(g2), φ(g3)). With this notation,
an injective homomorphism φ : (G, c) → (H, d) of circularly ordered groups (respectively,
ϕ : (G,<) → (H,≺) of left-ordered groups) is order preserving exactly when φ∗d = c (respec-
tively, ≺ϕ=<).

Important in the study of circularly ordered groups is the relation between a group (G, c)
and its left-ordered lift, (G̃c, <c, zc). Here, and in what follows, the notation (G,<, z) will be
used to denote a left-ordered group G with ordering < and a chosen positive, cofinal, central
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element z ∈ G. Recall an element z ∈ G is cofinal with respect to a left ordering < of G (or
<-cofinal for short) if

G = {g ∈ G | ∃k ∈ Z such that z−k < g < zk}.

Construction 2.3 [18]. Given a circularly ordered group (G, c), construct (G̃c, <c, zc) as
follows. Let G̃c denote the central extension of G by Z constructed by equipping the set Z ×G
with the operation (n, a)(m, b) = (n + m + fc(a, b), ab), where

fc(a, b) =
{

0 if a = id or b = id or c(id, a, ab) = 1
1 if ab = id (a �= id) or c(id, ab, a) = 1.

Define the positive cone of a left ordering <c by

P = {(n, a) | n � 0} \ {(0, id)}.
The central element zc = (1, id) is positive and cofinal with respect to <c. When no confusion
will arise from doing so, we will denote G̃c by G̃.

It can be checked that if φ : H → G is an injective homomorphism and c is a circular ordering
of G, then fφ∗c = φ∗fc where φ∗fc(h1, h2) := fc(φ(h1), φ(h2)) for all h1, h2 ∈ H.

Remark 2.4. The functions c : G3 → Z and fc : G2 → Z are both 2-cocycles, where c is
expressed in homogeneous coordinates, and f is expressed in inhomogeneous coordinates. In
fact, [c] = 2[fc] in H2(G; Z) and Construction 2.3 is the well-known construction that gives
rise to a bijection between elements of H2(G; Z) and equivalence classes of central extensions
of G [7, Chapter IV.3]. Indeed, consider the set-theoretic section s : G → G̃c of the central
extension

1 −→ 〈zc〉 ι−→ G̃c −→ G → 1

by defining s(g) ∈ G̃c to be the unique element such that id �c s(g) <c zc. Then,

ι
(
zfc(a,b)c

)
= s(a)s(b)s(ab)−1

(see Lemma 2.8), that is, fc(a, b) measures the failure of s to be a homomorphism. In other
words, [fc] ∈ H2(G; Z) is the Euler class of the identity homomorphism G → G. Note that it
is possible for two different circular orderings c, d on G to be such that [fc] = [fd] ∈ H2(G; Z).
Although this implies that the central extensions G̃c and G̃d are isomorphic, it may be that
G̃c and G̃d are not isomorphic as left-ordered groups.

When (G,<, z) is a left-ordered group with a positive cofinal central element z, we can take
a quotient of G by 〈z〉 and arrive at a circularly ordered group.

Construction 2.5 [18]. Given (G,<, z), let G = G/〈z〉. Define a circular ordering c< on
G as follows: For every g〈z〉 ∈ G/〈z〉, define the minimal representative of g〈z〉 to be the unique
g ∈ g〈z〉 satisfying id � g < z. Then, set

c<(g1〈z〉, g2〈z〉, g3〈z〉) = sign(σ),

where σ is the unique permutation in S3 such that gσ(1) < gσ(2) < gσ(3).

These two constructions are not inverses to one another, but provide an equivalence of
categories in a sense that we now make precise.
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Definition 2.6. Define a category Circ whose objects are circularly ordered groups (G, c),
and whose morphisms φ : (G, c) → (H, d) are order-preserving homomorphisms.

Define a category LO∗ whose objects are left-ordered groups (G,<, z) equipped with a
central, positive, cofinal element. Morphisms φ : (G,<, z) → (H,≺, w) are order-preserving
homomorphisms φ : G → H such that φ(z) = w.

It is tempting to define categories whose morphisms include non-injective homomorphisms,
say by replacing the condition c(g1, g2, g3) = d(φ(g1), φ(g2), φ(g3)) on morphisms in Circ with
|c(g1, g2, g3) − d(φ(g1), φ(g2), φ(g3))| � 1 and similarly modifying the definition of morphisms
in LO∗ (this would allow quotient maps where the kernel is a convex subgroup, c.f. Lemma 5.1).
However, with this modification, Circ and LO∗ are no longer equivalent categories, and
the construction in Section 6 does not yield a bifunctor on Circ. See Remark 2.11 and
Proposition 6.1 for more details on this point.

We now build functors L : Circ → LO∗ and Q : LO∗ → Circ in the following way: On
objects, define L and Q by Constructions 2.3 and 2.5, respectively. If φ : (G, c) → (H, d) is
a morphism in Circ, then define L(φ) = φ̃ : G̃ → H̃ by φ̃((n, a)) = (n, φ(a)). For a morphism
θ : (G,<, z) → (H,≺, w) in LO∗, define Q(θ) = θ : G → H by θ(g〈z〉) = θ(g)〈w〉. The proof of
the following lemma is a straightforward calculation, so we omit it.

Lemma 2.7. The mappings L : Circ → LO∗ and Q : LO∗ → Circ are well-defined functors.

To prove that L and Q give an equivalence of categories, we must first prove the following
key technical lemma. Given (G,<, z), define the function f< : G

2 → Z by

zf<(a〈z〉,b〈z〉) = (a)(b)(ab)−1.

Given (G, c), let (G̃,<c, zc) be the object obtained by applying the functor L. Define an

isomorphism ηG : G̃ → G by (n, a)〈zc〉 �→ a. In the next proof, note that for an extension built
from a 2-cocycle f as in Construction 2.3, (n, a)−1 = (−n− f(a, a−1), a−1) = (−n− 1, a−1).

Lemma 2.8. With the notation above, f< = fc< and η∗Gc = c<c
.

Proof. We will first show f< = fc< . If a = id or b = id, then we immediately have
f<(a〈z〉, b〈z〉) = fc<(a〈z〉, b〈z〉) = 0. Since z is central in G, we have id � ab < z2. If ab < z,
then ab = ab so f<(a〈z〉, b〈z〉) = 0. Since id < b, id < a < ab = ab, so c<(id, a〈z〉, ab〈z〉) = 1
and fc<(a〈z〉, b〈z〉) = 0. On the other hand, assume z � ab. Then, abz = ab so ab(ab)−1 = z
and f<(a〈z〉, b〈z〉) = 1. Since b < z, ab = z−1ab < a. Therefore, id � ab < a. If id = ab, then
a〈z〉b〈z〉 = id so we have fc<(a〈z〉, b〈z〉) = 1. If id < ab, then c<(id, ab〈z〉, a〈z〉) = 1 implying
fc<(a〈z〉, b〈z〉) = 1 and we may conclude f< = fc< .

We now show η∗Gc = c<c
. Minimal representatives in G̃ take the form (n, a) = (0, a).

Note that (0, a) < (0, b) if and only if (0, a)−1(0, b) = (fc(a−1, b) − 1, a−1b) is in the posi-
tive cone of <c, which occurs precisely when fc(a−1, b) = 1. Consider an arbitrary triple
((n1, a1)〈zc〉, (n2, a2)〈zc〉, (n3, a3)〈zc〉) ∈ G \ Δ(G). Let σ ∈ S3 be the unique permutation such
that (0, aσ(1)) <c (0, aσ(2)) <c (0, aσ(3)), which is equivalent to

fc(a−1
σ(1), aσ(2)) = fc(a−1

σ(2), aσ(3)) = 1.

Since (aσ(1), aσ(2), aσ(3)) /∈ Δ(G), this is equivalent to the condition

c(id, a−1
σ(1)aσ(2), a

−1
σ(1)) = c(id, a−1

σ(2)aσ(3), a
−1
σ(2)) = 1.
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Since c is invariant under left multiplication we have c(aσ(1), aσ(2), id) = c(aσ(2), aσ(3), id) = 1.
Applying the cocycle condition gives c(aσ(1), aσ(2), aσ(3)) = 1. Therefore, we have

c<c
((n1, a1)〈zc〉, (n2, a2)〈zc〉, (n3, a3)〈zc〉) = sign(σ) = c(a1, a2, a3),

completing the proof since ηG((ni, ai)〈zc〉) = ai. �

Proposition 2.9. The functors Q and L provide an equivalence of categories LO∗ ∼= Circ.

Proof. First note that isomorphisms in Circ and LO∗ are simply morphisms that are also
group isomorphisms, since both categories admit a faithful functor to the category of groups. We
will start by showing LQ � 1LO∗ . Let (G,<, z) be an object in LO∗ and note that every element
of G can be written uniquely as zna, where n ∈ Z and a ∈ a〈z〉 is the minimal representative.
Viewed this way, the group structure is given by (zna)(zmb) = zn+m+f<(a〈z〉,b〈z〉)ab where f<
is the cocycle from Lemma 2.8. Furthermore, id < zna if and only if z−n < a, which occurs
precisely when n � 0. Therefore, the positive cone of < is given by

P< = {zna ∈ G | n � 0} \ {id}.
Now construct a map νG : LQ(G) → G by (n, a〈z〉) �→ zna. This map is a bijection, and since
f< = fc< (by Lemma 2.8) it is a group isomorphism. Since νG((1, id)) = z and since (n, a〈z〉)
in the positive cone of <c< is mapped to νG(n, a〈z〉) = zna ∈ P<, we conclude νG is an
isomorphism in LO∗. It remains to check that the νG give natural isomorphisms between
LQ and 1LO∗ . Let θ : (G,<, z) → (H,≺, w) be a morphism in LO∗. Then,

νH θ̃((n, a〈z〉)) = νH((n, θ(a)〈w〉)) = wnθ(a) = wnθ(a) = θ(zna) = θνG((n, a〈z〉)),
so LQ � 1LO∗ .

To see QL � 1Circ, recall the maps ηG : QL(G) → G from Lemma 2.8. These are easily
checked to be group isomorphisms, and since η∗Gc = c<c

by Lemma 2.8, the ηG are isomorphisms
in Circ. Let φ : (G, c) → (H, d) be a morphism in Circ. Then,

ηH φ̃((n, a)〈zc〉) = ((n, φ(a))〈zd〉) = φ(a) = φηG((n, a)〈zc〉),
so the ηH give a natural isomorphism QL � 1Circ. We conclude LO∗ ∼= Circ. �

Remark 2.10. With these notions established, it is possible to give a rough sketch of the
ideas that follow. Suppose that (Gi, ci) are circularly ordered groups for i ∈ I with subgroups Hi

and order-preserving isomorphisms φi: (H, d)→(H, ci) from some circularly ordered group (H, d).

The categorical equivalence outlined above yields, for each i, an isomorphism ψi : G̃i → Gi.

These isomorphisms piece together to yield a map ψ :∗i∈IG̃i(H̃i

˜φi∼=H̃)/〈z〉→∗i∈IGi(Hi

φi∼=H)

when we identify each G̃i with the subgroup G̃i/〈z〉 in the quotient ∗i∈IG̃i(H̃i

˜φi∼= H̃)/〈z〉
(here, z is the cofinal central element in the free product with amalgamation that results
from identifying all of the cofinal central elements of the factors).

Assuming that it is possible to extend the left orderings <ci of the lifts to a left ordering of

the group ∗i∈IG̃i(H̃i

˜φi∼= H̃)/〈z〉, one checks that z is necessarily cofinal in the resulting ordering

so that the group ∗i∈IGi(Hi

φi∼= H) inherits a circular ordering by applying Construction 2.5. A
similar argument proves the other direction of Theorem 1 (see the proof of Theorem 1). Note
that the isomorphisms one constructs in each case appear inherently categorical in nature —
something that we explain in the next section.
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Remark 2.11. Suppose one were to modify the definitions of Circ and LO∗ to allow
for non-injective homomorphisms, as in the comments following Definition 2.6. Although the
categories themselves will still be well defined, Constructions 2.3 and 2.5 can no longer be
defined on morphisms in a way that yields an equivalence of categories (despite the fact
that one obtains a bijection on the objects up to isomorphism), and so the corresponding
generalization of Proposition 2.9 fails. To see this, note that the object ({1}, c1) in the modified
category of circularly ordered groups is the terminal object, while its lift (Z, <, 1) is not terminal
(for example, there is no morphism (Q, <, 1) → (Z, <, 1)). Because of this, the arguments of
Proposition 2.9 break down, as whenever φ : (G, c) → (H, d) is not injective the condition
φ∗fd = fc fails (a key fact in proving L is a well-defined functor). Interestingly, although L
loses its status as a well-defined functor, Q remains a faithful functor that is bijective on
objects up to isomorphism, but it is no longer full.

3. Circularly ordering free products with amalgamation

An amalgamation diagram in a category is a diagram consisting of an object A, a set of
objects {Gi}i∈I and for each i ∈ I, a morphism ϕi : A → Gi. We will denote such a diagram
by (A, {(ϕi, Gi)}i∈I).

With the goal of circularly ordering free products with amalgamation of circularly ordered
groups in a way compatible with the ordering of each factor, one may hope to simply
investigate colimits of amalgamation diagrams in Circ. However, this approach cannot possibly
work, since even when the corresponding free product with amalgamation of the underlying
groups is circularly orderable (with an order extending the orders on the factors), there is no
corresponding colimit in Circ. For example, consider the amalgamation diagram

D = (({id}, c0), {(ι1, (A1, d1)), (ι2, (A2, d2))})
in Circ where Ai = Z and di = c is the circular ordering on Z determined by c(x, y, z) = 1
whenever x < y < z. Consider the free group F2 = 〈a1, a2〉 and identify A1 and A2 via inclusion
Ai = 〈ai〉 < F2. Since there is a circular ordering on F2 extending the circular orderings on A1

and A2 [1], if a colimit for D exists it must be of the form (F2, d) for some circular ordering d
on F2.

Now consider the identity morphisms (Ai, di) → (Z, c). If (F2, d) were indeed a colimit of
the diagram, by the universal property there would be a morphism (F2, d) → (Z, c). However,
Circ does not admit non-injective homomorphisms, so a colimit of D cannot exist.

Even though taking colimits in Circ is impossible, it is still possible to obtain a circular
ordering on a free products with amalgamation (compatible with given orderings of the factors)
via a categorical construction. To do this, we will embed Circ and LO∗ in categories BigCirc
and BigLO∗, respectively, that do admit colimits corresponding to circularly ordered and
left-ordered free products with amalgamation.

Many of the building blocks for these categories are familiar constructions that can be found
in any elementary group cohomology textbook, such as [7].

3.1. The big categories

A sectioned central extension is the data (E,G, ι, π, s) where

is a central extension with a set-theoretic section s : G → E such that s(id) = id. A sec-
tioned central extension morphism θ : (E,G, ι, π, s) → (F,H, ε, ρ, t) is a group homomorphism
θ : E → F such that θι = ε and θs = tθ. Here, θ : G → H is defined by θ(π(g)) = ρθ(g). A
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sectioned central extension morphism that is also a group isomorphism is called a sectioned
central extension isomorphism.

We say sectioned central extensions (E,G, ι, π, s) and (F,G, ε, ρ, t) are equivalent if there
exists a sectioned central extension morphism θ : E → F such that θ is the identity map G → G.
Such a morphism is called an equivalence. Note that all equivalences are sectioned central
extension isomorphisms, but the converse does not hold.

Recall that for a group G, a normalized 2-cocycle is a function f : G2 → Z such that
f(id, g) = f(g, id) = 0 for all g ∈ G and f(g2, g3) − f(g1g2, g3) + f(g1, g2g3) − f(g1, g2) = 0 for
all g1, g2, g3 ∈ G. Denote the set of such cocycles by Γ2(G,Z).

Definition 3.1. Define the category BigCirc as follows. Objects are pairs (G,S) where
G is a group and S ⊂ Γ2(G,Z) is a non-empty subset. A morphism φ : (G,S) → (H,T ) is a
group homomorphism φ : G → H such that φ∗(T ) ⊂ S.

Define the category BigLO∗ as follows. Objects are non-empty sets {(Eα, G, ια, πα, sα)}α∈A
of sectioned central extensions such that no two in the set are equivalent. A morphism

θB : {(Eα, G, ια, πα, sα)}α∈A → {(Fβ , H, εβ , ρβ , tβ)}β∈B

is a set of sectioned central extension morphisms

θB = {θβ : Eαβ
→ Fβ | θβ = θβ′ for all β, β′ ∈ B}.

The identity morphism is given by θα = id : Eα → Eα for all α ∈ A. Given

{(Eα, G, ια, πα, sα)}α∈A
θB−→ {(Fβ , H, εβ , ρβ , tβ)}β∈B

ψΛ−→ {(Iλ, J, νλ, ωλ, rλ)}λ∈Λ,

define ψΛθB : {(Eα, G, ια, πα, sα)}α∈A → {(Iλ, J, νλ, ωλ, rλ)}λ∈Λ by the set of sectioned central
extension morphisms {ψλθβ | β = βλ}.

The definition of composition of morphisms in BigLO∗ can be rephrased in plain lan-
guage by saying that we create the set of all possible compositions of sectioned central
extension morphisms.

Recall the following standard constructions from [7, Chapter IV.3]. Given f ∈ Γ2(G,Z),
construct the associated sectioned central extension (G̃f , G, ιf , πf , sf ) as follows. Let G̃f

be the group with underlying set Z ×G and multiplication defined by (a, g)(b, h) = (a +
b + f(g, h), gh). Define ιf (a) = (a, 1), πf ((a, g)) = g and sf (g) = (0, g). Conversely, given
a sectioned central extension (E,G, ι, π, s) define the associated cocycle fs ∈ Γ2(G,Z) by
ιfs(g, h) = s(g)s(h)s(gh)−1.

Define the map L : BigCirc → BigLO∗ as follows. On objects, map (G, {fα}α∈A) to the
set of associated sectioned central extensions {(G̃fα , G, ιfα , πfα , sfα)}α∈A. Let

φ : (G, {fα}α∈A) → (H, {fβ}β∈B)

be a morphism in BigCirc. For each β ∈ B, there is some αβ ∈ A such that φ∗fβ = fαβ
. Define

the sectioned central extension morphism φ̃β : G̃fαβ
→ H̃fβ by φ̃β(a, g) = (a, φ(g)). Under the

functor L, map φ to {φ̃β | β ∈ B}.
On the other hand, define the map Q : BigLO∗ → BigCirc as follows. Map an object

{(Eα, G, ια, πα, sα)}α∈A in BigLO∗ to the object (G, {fsα}α∈A) in BigCirc. Map a morphism
{θβ}β∈B : {(Eα, G, ια, πα, sα)}α∈A → {(Fβ , H, εβ , ρβ , tβ)}β∈B to the morphism θβ : G → H.

We wish to show that these rules for L and Q define functors that give an equivalence of
categories. Furthermore, we will see that Circ and LO∗ naturally embed in BigCirc and
BigLO∗ in such a way that L and Q are restrictions of L and Q.
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Lemma 3.2. Sectioned central extensions (E1, G, ι1, π1, s1) and (E2, G, ι2, π2, s2) are
equivalent if and only if the associated cocycles f1, f2 ∈ Γ2(G,Z) are equal.

Proof. Suppose that θ : E1 → E2 is an equivalence. Then,

ι2f2(a, b) = s2(a)s2(b)s2(ab)−1 = θ(s1(a)s1(b)s1(ab)−1) = θι1f1(a, b) = ι2f1(a, b)

and since ι2 is injective, f1 = f2. Conversely, note that every element in Ei can be uniquely
written as ιi(n)si(a) for some n ∈ Z and a ∈ G. If f1 = f2, then the map θ : E1 → E2 given by
θ(ι1(n)s1(a)) = ι2(n)s2(a) is the desired equivalence of sectioned central extensions. �

Lemma 3.3. The maps L : BigCirc → BigLO∗ and Q : BigLO∗ → BigCirc are functors.

Proof. The map L is well defined on objects by Lemma 3.2. To prove L is well defined
on morphisms, let fi = Γ2(Gi,Z) for i = 1, 2, and φ : G1 → G2 be a homomorphism such that
φ∗f2 = f1. It suffices to show φ̃ : ((G̃1)f1 , G1, ιf1 , πf1 , sf1) → ((G̃2)f2 , G2, ιf2 , πf2 , sf2) given by
(n, a) = (n, φ(a)) is a sectioned central extension morphism. We have φ̃ι1 = ι2 and φ̃s1 = s2φ

since φ̃ = φ. Since φ∗f2 = f1, φ̃ is a homomorphism. It is easy to check φ̃ϕ = φ̃ϕ̃ and the
identity map is lifted to the identity map. Therefore, L is a well-defined functor.

To check Q is a well-defined functor it suffices to verify that if

θ : (E,G, ι, π, s) → (F,H, ε, ρ, t)

is a sectioned central extension morphism, then θ
∗
ft = fs. We have

εft(θ(a), θ(b)) = t(θ(a))t(θ(b))t(θ(ab))−1 = θ(s(a)s(b)s(ab)−1) = θιfs(a, b) = εfs(a, b),

and since ε is injective, θ
∗
ft = fs. Noting that Q preserves identity morphisms and (θ)(ψ) = θψ

completes the proof. �

Proposition 3.4. The functors Q and L provide an equivalence of categories BigLO∗ ∼=
BigCirc.

Proof. We first show QL = 1BigCirc. Suppose f ∈ Γ2(G,Z) and consider the associated
sectioned central extension (G̃f , G, ιf , πf , sf ). Then,

ιf (fsf (a, b)) = (0, a)(0, b)(0, ab)−1 = (f(a, b), ab)(−f(ab, (ab)−1), (ab)−1) = (f(a, b), id)

so f = fsf . It follows that QL(G,S) = (G,S) for all (G,S) ∈ BigCirc. Moreover, for every

morphism φ : (G,S) → (H,T ), we have φ̃ = φ, so we conclude QL = 1BigCirc.
Next we will show LQ � 1BigLO∗ . Let (E,G, ι, π, s) be a sectioned central extension.

Every element of E is uniquely written as ι(n)s(a) for n ∈ Z and a ∈ G. Furthermore,
(ι(n)s(a))(ι(m)s(b)) = ι(n + m + fs(a, b))s(ab). Define μE : G̃fs → E by

μE((n, a)) = ι(n)s(a)

and observe μE is a sectioned central extension isomorphism. Note that isomor-
phisms in BigLO∗ are sets of sectioned central extension isomorphisms. Now suppose
{(Eα, G, ια, πα, sα)}α∈A is an object in BigLO∗. Abusing notation, let fα = fsα and define
the isomorphism

μEA = {μEα
: G̃fα → Eα} : {(G̃fα , G, ιfα , πfα , sfα)}α∈A → {(Eα, G, ια, πα, sα)}α∈A.

We will show the μEA gives a natural isomorphism LQ � 1BigLO∗ . Let

θB = {θβ : Eαβ
→ Fβ} : {(Eα, G, ια, πα, sα)}α∈A → {(Fβ , H, εβ , ρβ , tβ)}β∈B
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be a morphism in BigLO∗. Fix β ∈ B. Then,

θβμEαβ
((n, a)) = θβ(ιαβ

(n)sαβ
(a)) = εβ(n)tβ(θβ(a)) = μFβ

((n, θβ(a))) = μFβ
θ̃β((n, a)),

so θβμEαβ
= μFβ

θ̃β : G̃fαβ
→ Fβ . Then,

θBμEA = {θβμEαβ
| β ∈ B} = {μFβ

θ̃β | β ∈ B} = μFBLQ(θB).

Therefore, LQ � 1BigLO∗ , completing the proof. �

We now shift our attention to identifying Circ and LO∗ embedded in BigCirc and
BigLO∗, respectively. Define a functor IC : Circ → BigCirc by IC(G, c) = (G, {fc}), where
fc ∈ Γ2(G,Z) is defined in Construction 2.3. On morphisms, set IC(φ) = φ. Since a mor-
phism φ : (G, c) → (H, d) in Circ is an injective homomorphism, φ∗fd = fc so IC is a
well-defined functor.

Define a functor IL : LO∗ → BigLO∗ as follows. Let (G,<, z) be an object in LO∗. Define
IL(G,<, z) = {(G,G/〈z〉, ι, π, s)} where ι(1) = z, π : G → G/〈z〉 is the quotient map, and
s(g〈z〉) = g where g is the minimal representative of g〈z〉. On morphisms, define IL(θ) = {θ}.
To see IL is a well-defined functor, let θ : (G,<, z) → (H,≺, w) be a morphism in LO∗, and let
IL(G,<, z) = (G,G/〈z〉, ι, π, s) and IL(H,≺, w) = (H,H/〈w〉, ε, ρ, t). Since θ is a morphism
in LO∗, θ(z) = w and θ(g) = θ(g) for all g ∈ G. Therefore, θι = ε and θs = tθ, so IL is a
well-defined functor.

Lemma 3.5. The functors IL and IC have the following properties.

(i) The functors IL and IC are faithful.
(ii) A morphism φ : IC(G, c) → IC(H, d) in BigCirc is of the form IC(φ) if and only if φ

is injective.
(iii) A morphism {θ} : IL(G,<, z) → IL(H,≺, w) is of the form IL(θ) if and only if θ is

injective.
(iv) The functors IL and IC are injective on objects.
(v) The functors IL and IC are injective on morphisms.

Proof. Property (1) is immediate. For (2), since all morphisms in Circ are injective, any
morphism of the form IC(φ) in BigCirc is also injective. Conversely, suppose that (G, c)
and (H, d) are circularly ordered groups and φ : G → H is injective such that φ∗fd = fc.

Then, by the proof of Proposition 2.9, φ = ηH φ̃η−1
G so φ is a morphism in Circ. For (3),

let IL(G,<, z) = {(G,G, ι, π, s)} and note that the positive cone P< ⊂ G of the left order <
is given by {ι(n)s(a〈z〉) | n � 0} \ {id}. Let IL(H,≺, w) = {(H,H, ε, ρ, t)} and let θ : G → H
be an injective sectioned central extension morphism. Then, θ(ι(n)s(a〈z〉)) = ε(n)t(θ(a)〈w〉),
so θ(P<) = P≺ and θ is a morphism in LO∗. Conversely, every morphism of the form IL(θ)
is injective since all homomorphisms in LO∗ are injective. For injectivity of IL on objects,
suppose IL(G,<, z) = (G,G, ι, π, s) and IL(H,≺, w) = (H,H, ε, ρ, t) are the same object in
BigLO∗. Then, G = H, and since ι = ρ, ι(1) = z = w = ε(1). The positive cones P< and
P≺ are equal since t = s, so (G,<, z) = (H,≺, w). To see IC is injective on objects, suppose
(G, c) �= (G, d) in Circ. Since circular orderings are invariant under left multiplication, we may
assume there are a, b ∈ G such that c(id, a, ab) �= d(id, a, ab) so fc(a, b) �= fd(a, b). Therefore,
IC(G, c) �= IC(G, d), proving (4). Finally, (5) follows from (1) and (4). �

Lemma 3.5 allows us to identify LO∗ and Circ as subcategories of BigLO∗ and BigCirc,
respectively. Indeed, we can conclude that Circ and LO∗ are isomorphic (not just equivalent)
to the subcategories of BigCirc and BigLO∗ consisting of objects in the image of IC and
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IL, and morphisms consisting of all injective morphisms in the respective categories. The
next lemma shows that the equivalences Q and L from Proposition 2.9 are induced by the
equivalences Q and L from Proposition 3.4.

Lemma 3.6. We have equality of functors ICQ = QIL : LO∗ → BigCirc and a natural
isomorphism of functors ILL � LIC : Circ → BigLO∗.

Proof. Let (G,<, z) be an object in LO∗. Then, ICQ(G,<, z) = (G, {fc<}) and

QIL(G,<, z) = (G, {fs}),
where s : G → G is s(g〈z〉) = g. Therefore, ICQ(G,<, z) = QIL(G,<, z) by Lemma 2.8 since
in the notation of Lemma 2.8, f< = fs. For any morphism θ : (G,<, z) → (H,≺, w) in LO∗,
ICQ(θ) = QIL(θ) = θ : G → H. Therefore, ICQ = QIL.

On the other hand, ILL(G, c) = IL(G̃c, <c, zc), which we will denote by {(G̃c, G̃c, ιc, πc, sc)},
and note that LIC(G, c) = {(G̃fc , G, ιfc , πfc , sfc)}. Define ζG : G̃c → G̃fc by ζG((n, a)) = (n, a).
Since the multiplication on both G̃c and G̃fc are given by (n, a)(m, b) = (n + m + fc(a, b), ab),
it is clear that ζG is a sectioned central extension isomorphism. Therefore,

{ζG} : ILL(G, c) → LIC(G, c)

is an isomorphism in BigLO∗. Now, let φ : (G, c) → (H, d) be a morphism in Circ. Then,
{ζH}ILL(φ)(n, a) = LIC{ζG}(φ)(n, a) = (n, φ(a)) and ILL � LIC . �

Remark 3.7. It is clear that the image of IL consists of singletons of sectioned central
extensions (and similarly the image of IC consists of pairs (G,S) where S is a set containing
a single 2-cocycle). However, if we restricted our attention to the subcategories of BigCirc
and BigLO∗ consisting of sets of size 1, we would again be in a situation where amalgamation
diagrams do not have colimits.

3.2. Amalgamated free products in BigCirc and BigLO∗

We wish to show that colimits of amalgamation diagrams in the image of Circ and LO∗ inside
BigCirc and BigLO∗ exist. By Lemma 3.5, it suffices to show that in BigCirc, colimits of
amalgamation diagrams exist when the objects in the diagrams are of the form (G,S) where
S is a singleton, and all morphisms in the diagram are injective homomorphisms.

In BigCirc, consider the amalgamation diagram D = ((H, {d}), {(φi, (Gi, {ci}))}i∈I) where
φi : H → Gi is an injective homomorphism for all i ∈ I that identifies H with a subgroup
Hi ⊂ G. For the remainder of this section, let G̃i denote (G̃i)ci , H̃i will denote the lift of Hi

with respect to the restriction of ci and H̃ will denote H̃d. Set

GD = ∗i∈IGi(Hi

φi∼= H) and G
˜D = ∗i∈IG̃i(H̃i

˜φi∼= H̃).

Let δi : Gi → GD be the inclusion homomorphisms, and set

T = {f ∈ Γ2(GD,Z) | δ∗i f = ci for all i ∈ I}.

Lemma 3.8. The object (GD, T ) with the morphisms δi : (Gi, {ci}) → (GD, T ) is the colimit
of D.

Proof. The maps δi : (Gi, {ci}) → (GD, T ) are clearly morphisms in BigCirc. Let (B,S) be
an object in BigCirc with morphisms ψi : (Gi, {ci}) → (B,S) such that ψiφi = ψjφj for all
i, j ∈ I. Let Ψ : GD → B be the unique homomorphism arising from the universal property of
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the free product with amalgamation, so Ψδi = ψi for all i. It suffices to show Ψ∗(S) ⊂ T . Let
s ∈ S. Then, for each i ∈ I, δ∗i Ψ

∗(s) = ψ∗
i (s) = ci, so Ψ∗(s) ∈ T , completing the proof. �

The next lemma identifies the colimit, up to isomorphism, of the amalgamation diagram D̃
in BigLO∗ obtained by applying the functor L to D.

Lemma 3.9. Let f ∈ T . There is a group isomorphism Θ : G
˜D → (G̃D)f such that for each

i ∈ I,

Θ−1δ̃i : G̃i → G
˜D

is the inclusion homomorphism.

Proof. Consider the maps δ̃i : G̃i → (G̃D)f arising from lifts of the canonical inclusions. Note
that δ̃iφ̃i = δ̃iφi = δ̃jφj = δ̃j φ̃j for all i, j ∈ I, so the universal property of the free product with
amalgamation G

˜D yields a map Θ : G
˜D → (G̃D)f . Since (G̃D)f is generated by (1,0) along with

{(0, g) | g ∈ Gi for some i ∈ I}, Θ is surjective. For injectivity, observe that S ⊂ Gi is a set
of right coset representatives of Gi/φi(H) if and only if {(0, s) | s ∈ S} is a set of right coset
representatives of G̃i/φ̃i(H̃).

Now, suppose w = (n, h)(0, g1) · · · (0, gk) is the normal form of an element in G
˜D that satisfies

Θ(w) = id. Then, using the fact that Θ acts as δ̃i on each factor in the free product, we compute

Θ(w) =

(
n +

k∑
i=1

f(hg1 · · · gi−1, gi), hg1 · · · gk
)
.

The right-hand side is the identity if and only if it is equal to (0, id) (as an element of Z × GD).
Since hg1 · · · gk is the normal form of an element in GD, we must have h = g1 = · · · = gk = id.
Therefore,

∑k
i=1 f(hg1 · · · gi−1, gi) = 0, so n = 0 and Θ is an isomorphism. The fact that

Θ−1δ̃i : G̃i → G
˜D

is the inclusion homomorphism for each i follows immediately from the construction of Θ. �

We now have the machinery in place to prove our main result. In what follows below, when
H is a subgroup of a circularly ordered group (G, c), we will write (H, c) to denote the subgroup
H equipped with the restriction ordering arising from c.

Theorem 1. Suppose that (Gi, ci) are circularly ordered groups for i ∈ I, each equipped
with a subgroup Hi ⊂ Gi and an order-preserving isomorphism φi : (H, d) → (Hi, ci) from a
circularly ordered group (H, d). The following are equivalent.

(i) The group ∗i∈IGi(Hi

φi∼= H) admits a circular ordering c which extends the orderings ci
of Gi for i ∈ I.

(ii) The group ∗i∈IG̃i(H̃i

˜φi∼= H̃) admits a left ordering < which extends each of the left

orderings <ci of G̃i for i ∈ I.

Proof. Let D = ((H, {fd}), {(φi, (Gi, {fci}))}i∈I) be the amalgamation diagram in BigCirc,
and let D̃ be the amalgamation diagram in BigLO∗ obtained by applying the functor L to D.
Since L is an equivalence of categories by Lemma 3.4 and D has a colimit by Lemma 3.8, the
diagram D̃ has a colimit. By Lemma 3.8, the colimit of D is the object (GD, {fα}α∈A) along
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with the inclusion homomorphisms δi : Gi → GD. By Lemma 3.9, the colimit of D̃ is given by
the object {(G

˜D,GD, ι, π, sα)}α∈A where ι(1) = (1, id),

π((n, h)(0, g1) · · · (0, gk)) = hg1 · · · gk,
and sα(hg1 · · · gk) = (−∑k

i=1 fα(hg1 · · · gi−1, gi), h)(0, g1) · · · (0, gk). The morphisms

{ϕi,α}α∈A : L(Gi, {fci}) → {(G
˜D,GD, ι, π, sα)}α∈A

are given by ϕi,α = σi for all α ∈ A, where σi : (G̃i)fci → G
˜D is the inclusion homomorphism.

Suppose that (1) holds. Then, there is some α ∈ A such that fα = fc. By Lemma 3.6,
L(GD, {fc}) = {(G

˜D,GD, ι, π, sc)} gives rise to a left ordering < on G
˜D. Since the morphisms

{σi} : L(Gi, {fci}) → {(G
˜D,GD, ι, π, sc)} are such that σi is injective, σi is an order preserving

homomorphism by Lemma 3.5 (3). Since the σi are the inclusion homomorphisms, < extends
each of the <ci . Similarly, if (2) holds, then there is some β ∈ A such that {(G

˜D,GD, ι, π, sβ)}
corresponds to the left order < on G

˜D. Then, Q{(G
˜D,GD, ι, π, sβ)} = (GD, {fβ}) and c = c<fβ

is the desired circular ordering on GD extending each of the ci on Gi. �

Remark 3.10. We close out the section with the following remarks about Theorem 1.

(i) Defining BigCirc (and BigLO∗) as we have done gives rise to colimits of amalgamation
diagrams in Circ (and LO∗) that contain (as part of their defining data) all circular orderings
(and left orderings) on free products with amalgamation that extend the orderings on the
factor groups.

(ii) The proof provides a bijection between circular orderings c on GD extending each of the
ci on Gi and left orderings < on G

˜D extending each of the <ci on G̃i.
(iii) The fact that all the sectioned central extensions in the colimit of D̃ have the same

underlying central extension implies that all circular orderings c extending each of the ci give
the same cohomology class [fc] ∈ H2(GD; Z).

4. Lifting, quotients and compatible normal families of orderings

The goal of this section is to explore necessary and sufficient conditions that ∗i∈IGi(Hi

φi∼= H)
admits a circular ordering c which extends the orderings ci of Gi for each i, which can be
stated in terms of circular orderings (or families of circular orderings) of the groups Gi. First,
we recall such conditions in the case of left-orderable groups, and generalize the terminology
used there to the case of circular orderings.

Denote the collection of all left orderings of a group G by LO(G), and the collection of all
circular orderings of G by CO(G). Appropriately topologized, each becomes a compact Haus-
dorff space [1, 17]. These spaces also each come equipped with a G-action by homeomorphisms,
defined as follows. Recall that if (G,<) is a left-ordered group, for each h ∈ G there is a left
ordering <h defined by g1 <h g2 if and only if g1h < g2h. If the positive cone of the ordering
< is P , then the positive cone of <h is h−1Ph. Similarly, if (G, c) is a circularly ordered group,
then for each h ∈ G there is a circular ordering ch defined by ch(g1, g2, g3) = c(g1h, g2h, g3h)
[1]. Note that since circular orderings and left orderings are left-invariant, <h and ch are simply
the orders obtained by pulling back < and c by the automorphism of G given by conjugation
by h. A normal family of left orderings (respectively, circular orderings) of a group G is a set
N ⊂ LO(G) (respectively, N ⊂ CO(G)) that is invariant under the G-action.

Let {(Gi, <i)}i∈I be a collection of left-ordered groups with positive cone Pi ⊂ Gi, and let
H be a group. For each i, let φi : H → Gi be an injective homomorphism with image Hi ⊂ Gi.
We say the collection {<i}i∈I is compatible with {φi}i∈I if for all i, j ∈ I, φ∗

iPi = φ∗
jPj or



AMALGAMATING CIRCULARLY ORDERED GROUPS 789

equivalently, if <φi

i and <
φj

j are the same left order on H. Given sets Si ⊂ LO(Gi), we say
{Si}i∈I is compatible with {φi}i∈I if for all i, j ∈ I, φ∗

iSi = φ∗
jSj .

We have the following theorem from Bludov and Glass, which is [3, Theorem A].

Theorem 4.1. Suppose that {(Gi, <i)}i∈I are left-ordered groups, H is a group and for each

i, φi : H → Gi is an injective homomorphism with image Hi ⊂ Gi. The group ∗i∈IGi(Hi

φi∼= H)
is left-orderable (via an ordering extending each of the <i) if and only if the collection {<i}i∈I

is compatible with {φi}i∈I and there exist normal families Ni ⊂ LO(Gi) with <i∈ Ni for all i
such that {Ni}i∈I is compatible with {φi}i∈I .

We define compatibility of circular orderings similarly. Suppose that we have a collection of
circularly ordered groups {(Gi, ci)}i∈I , a group H and for each i an injective homomorphism
φi : H → Gi with image Hi ⊂ Gi. We say the collection {ci}i∈I is compatible with {φi}i∈I if
for all i, j ∈ I, φ∗

i ci = φ∗
jcj . Given sets Si ⊂ CO(Gi), we say {Si}i∈I is compatible with {φi}i∈I

if for all i, j ∈ I, φ∗
iSi = φ∗

jSj .
Our goal is to prove an analogous theorem to Theorem 4.1 for circularly orderable groups.

Recall the lifting and quotienting constructions from Section 2.

Lemma 4.2. Let (G,<, z) be an object of LO∗, and let g ∈ G. Then c<g = c
g〈z〉
< as circular

orderings on G.

Proof. Given (g1〈z〉, g2〈z〉, g3〈z〉) ∈ G
3 \ Δ(G), note that c<g (g1〈z〉, g2〈z〉, g3〈z〉) = sign(σ),

where σ is the unique permutation such that ĝσ(1) <
g ĝσ(2) <

g ĝσ(3). Here, ĝσ(i) is the unique
element of gσ(i)〈z〉 such that id �g ĝσ(i) <

g z, that is, it is the minimal representative with
respect to <g. It follows that id � g−1ĝσ(i)g < z and thus g−1ĝσ(i)g = g−1gσ(i)g, the minimal
representative with respect to <. Thus, ĝσ(1) <

g ĝσ(2) <
g ĝσ(3), which is equivalent to

g−1ĝσ(1)g < g−1ĝσ(2)g < g−1ĝσ(3)g,

is equivalent to g−1gσ(1)g < g−1gσ(2)g < g−1gσ(3)g.
On the other hand,

c
g〈z〉
< (g1〈z〉, g2〈z〉, g3〈z〉) = c<(g−1g1g〈z〉, g−1g2g〈z〉, g−1g3g〈z〉) = sign(τ),

where τ is the unique permutation such that g−1gτ(1)g < g−1gτ(2)g < g−1gτ(3)g. Thus, σ = τ
and the lemma follows. �

Lemma 4.3. Let (G, c) be a circularly ordered group, and let g ∈ G. Then, [fcg ] = [fc] in
H2(G; Z).

Proof. Let (G̃c, <c, zc) be the lift of (G, c), and let g̃ = (0, g) ∈ G̃. Then, by Lemma 4.2,
f
c
g̃〈zc〉
<c

= fc
<

g̃
c

. Let ν : G → G̃/〈zc〉 be the isomorphism given by ν(h) = (0, h)〈zc〉. Then,
ν∗fc<c

= fc by Lemma 2.8.
The two cocycles fc<c

and fc
<

g̃
c

both correspond to the central extension

1 −→ Z
ι−→ G̃ −→ G̃/〈zc〉 −→ 1,

so [fc<c
] = [fc

<
g̃
c

] in H2(G̃/〈zc〉; Z). Indeed, let s1, s2 : G̃/〈zc〉 → G̃ be the sections given

by s1((0, h)〈zc〉) = (0, h) and s2((0, h)〈zc〉) = (̂0, h) where (0, h) and (̂0, h) are the minimal
representatives of (0, h) with respect to <c and <

(0,g)
c , respectively. Then, fc<c

is the cocycle
obtained from the section s1, and fc

<
g̃
c

is the cocycle obtained from s2 (see Remark 2.4).



790 ADAM CLAY AND TYRONE GHASWALA

We now claim that as cocycles on G, ν∗f
c
g̃〈zc〉
<c

= fcg . Let a, b ∈ G. Then,

ν∗f
c
g̃〈zc〉
<c

(a, b) = f
c
g̃〈zc〉
<c

((0, a)〈zc〉, (0, b)〈zc〉)

= fc<c
((0, g−1ag)〈zc〉, (0, g−1bg)〈zc〉)

= ν∗fc<c
(g−1ag, g−1bg)

= fc(g−1ag, g−1bg)

= fcg (a, b).

Putting all of this together, in H2(G; Z), we have

[fc] = ν∗
[
fc<c

]
= ν∗

[
fc

<
g̃
c

]
= ν∗

[
f
c
g̃〈zc〉
<c

]
= [fcg ]

completing the proof. �

Given a circularly orderable group G, we call a collection of circular orderings S ⊂ CO(G)
cohomologically constant if the Euler class function e : S → H2(G; Z) given by e(c) = [fc] is
constant. That is, [fc] = [fc′ ] for all c, c′ ∈ S.

We are now ready to prove one direction of the analogous result to Theorem 4.1 for circularly
orderable groups.

Proposition 4.4. Suppose that {(Gi, ci)}i∈I are circularly ordered groups, H is a group
and for each i, φi : H → Gi is an injective homomorphism with image Hi ⊂ Gi. If there is a

circular ordering c on ∗i∈IGi(Hi

φi∼= H) extending each of the ci, then there exist cohomologically
constant normal families Ri ⊂ CO(Gi) such that ci ∈ Ri for all i ∈ I and the collections {ci}i∈I

and {Ri}i∈I are compatible with {φi}i∈I .

Proof. To ease notation, let G = ∗i∈IGi(Hi

φi∼= H) and for each i, let δi : Gi → G be the
inclusion homomorphism. Since c extends each of the ci, we have δ∗i c = ci for all i ∈ I. Then,
for i, j ∈ I,

φ∗
i ci = φ∗

i δ
∗
i c = φ∗

jδ
∗
j c = φ∗

jcj ,

so {ci}i∈I is compatible with {φi}i∈I .
To construct the families Ri ⊂ CO(Gi), first construct a family R ⊂ CO(G) by

R = {cw : w ∈ G}. For each i ∈ I, define Ri = δ∗i R. Note that R is cohomologically constant
by Lemma 4.3, so Ri is cohomologically constant. Since ci = δ∗i c, we have ci ∈ Ri. For
compatibility, let i, j ∈ I. Since φ∗

i δ
∗
i c

w = φ∗
jδ

∗
j c

w, φ∗
iRi = φ∗

jRj and {Ri}i∈I is compatible
with {φi}i∈I . Finally, for normality let δ∗i c

w ∈ Ri, and let g ∈ Gi. Then, (δ∗i c
w)g = δ∗i c

δi(g)w,
completing the proof. �

We now shift our focus to proving a partial converse to Proposition 4.4, which is
Proposition 4.9.

Suppose that {Gi, ci}i∈I are circularly ordered groups, H is a group and for each i,
φi : H → Gi is an injective homomorphism with image Hi ⊂ Gi. Assume that for each i there
is a cohomologically constant normal family Ri ⊂ CO(Gi) such that ci ∈ Ri, and both {ci}i∈I

and {Ri}i∈I are compatible with {φi}i∈I .
The strategy to prove Proposition 4.9 is to construct normal families R̃i ⊂ LO(G̃i), show

that {R̃i}i∈I is compatible with {φ̃i}i∈I and use Theorem 4.1 and Theorem 1 to conclude that
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∗i∈IGi(Hi

φi∼= H) is circularly orderable via a circular ordering extending each of the ci. We will
first construct the R̃i and show it is normal.

Construction 4.5. Suppose (G, c) is a circularly ordered group, and let R ⊂ CO(G)
be a cohomologically constant normal family of circular orderings such that c ∈ R. Let
R = {cα : α ∈ A}. For each α ∈ A, choose a function dα : G → Z such that

fc(a, b) − fcα(a, b) = dα(a) + dα(b) − dα(ab)

for all a, b ∈ G. Such a function exists since R is cohomologically constant. Let (G̃,<, z) be the
lift of (G, c), and recall the positive cone P ⊂G̃ of< is given by P ∪ {id}={(n, a)∈G̃ : n�0}.
For each α ∈ A and ϕ ∈ H1(G; Z) = Hom(G,Z), define the positive cone Pα,ϕ ⊂ G̃ by

Pα,ϕ ∪ {id} = {(n, a) ∈ G̃ : n + dα(a) + ϕ(a) � 0}.
The set Pα,ϕ can be seen to be a positive cone as follows. Let (G̃α, <cα , zcα) be the lift of
(G, cα) with positive cone Qα. There is an equivalence of short exact sequences Φα,ϕ : G̃ → G̃α

given by Φα,ϕ(n, a) = (n + dα(a) + ϕ(a), a). Then, Φ∗
α,ϕQα = Pα,ϕ.

Define the family R̃ ⊂ LO(G̃) to be the set R̃ = {Pα,ϕ : α ∈ A, ϕ ∈ H1(G; Z)}.

Remark 4.6. Note that if d′α : G → Z is another choice of function so that
fc(a, b) − fcα(a, b) = d′α(a) + d′α(b) − d′α(ab), then dα − d′α ∈ H1(G; Z). Therefore, R̃ does not
depend on our choices of dα.

Furthermore, every equivalence of short exact sequences Φ : G̃α → G̃ is of the form Φα,ϕ, so
we are constructing the family R̃ by pulling back the positive cones Qα via every equivalence
of short exact sequences G̃ → G̃α. In fact, we could have equivalently defined R̃ as the set of
left orders ≺ on G̃ such that ηGQ(G̃,≺, z) = (G, cα) for some α ∈ A, where Q is the quotient
functor from Lemma 2.7 and ηG : G̃/〈z〉 → G is the isomorphism from Lemma 2.8.

The next two lemmas prove that R̃ is a normal family.

Lemma 4.7. Let (G, c) be a circularly ordered group, and let R = {cα : α ∈ A} ⊂ CO(G)
be a cohomologically constant normal family such that c ∈ R. Let g ∈ G \ {id} and suppose
α, β ∈ A are such that fcα(a, b) = fcβ (gag−1, gbg−1) for all a, b ∈ G. Choose dα, dβ : G → Z as
in Construction 4.5. Then, ϕg,α,β : G → Z given by

ϕg,α,β(a) = −1 + fc(g, a) + fc(ga, g−1) + dβ(gag−1) − dα(a)

is a homomorphism.

Proof. Let a, b ∈ G. From the definition of dα and dβ , we have

dα(a) + dα(b) − dα(ab) = fc(a, b) − fcα(a, b), and

dβ(gag−1) + dβ(gbg−1) − dβ(gabg−1) = fc(gag−1, gbg−1) − fcβ (gag−1, gbg−1).

Note also that since g �= id, fc(g−1, g) = 1. In the computation below, we will use these facts
freely, rearrange terms as necessary and enclose in square braces any terms that are to be
replaced using the cocycle condition. We calculate:

ϕg,α,β(ab) − ϕg,α,β(a) − ϕg,α,β(b)

= −1 + fc(g, ab) + fc(gab, g−1) + dβ(gabg−1) − dα(ab)



792 ADAM CLAY AND TYRONE GHASWALA

+ 1 − fc(g, a) − fc(ga, g−1) − dβ(gag−1) + dα(a)

+ 1 − fc(g, b) − fc(gb, g−1) − dβ(gbg−1) + dα(b)

= 1 + fc(g, ab) + [fc(gab, g−1)] − fc(g, a) − fc(ga, g−1) − fc(g, b) − fc(gb, g−1)

+ fc(a, b) − fcα(a, b) − fc(gag−1, gbg−1) + fcβ (gag−1, gbg−1)

= 1 + [fc(a, b) − fc(ga, b) + fc(g, ab) − fc(g, a)] + [fc(b, g−1) − fc(gb, g−1) − fc(g, b)]

+ fc(ga, bg−1) − fc(ga, g−1) − fc(gag−1, gbg−1)

= 1 + [−fc(g, bg−1) + fc(ga, bg−1) − fc(gag−1, gbg−1)] − fc(ga, g−1)

= 1 + −fc(gag−1, g) − fc(ga, g−1)

= [fc(g−1, g) − fc(gag−1, g) + fc(ga, id) − fc(ga, g−1)]

= 0,

completing the proof. �

Lemma 4.8. Let (G, c) be a circularly ordered group, and let R = {cα : α ∈ A} ⊂ CO(G)
be a cohomologically constant normal family such that c ∈ R. Let (G̃,<, z) be the lift of (G, c).
The set R̃ ⊂ LO(G) from Construction 4.5 is a normal family of left orderings on G̃.

Proof. Consider a positive cone Pα,ϕ ∈ R̃ and let g ∈ G \ {id}. Since (m, id) ∈ G̃ is central
and (m, g) = (m, id)(0, g), it suffices to show (0, g)Pα,ϕ(0, g)−1 ∈ R̃.

Let β ∈ A be such that fcα(a, b) = fcβ (gag−1, gbg−1). Define the homomorphism
ψ : G → Z by ψ(a) = ϕ(a) − ϕg,α,β(a) (where ϕg,α,β is defined in Lemma 4.7). We will show
(0, g)Pα,ϕ(0, g)−1 = Pβ,ψ.

Let (n, a) ∈ Pα,ϕ ∪ {id}, so n + dα(a) + ϕ(a) � 0. Then,

(0, g)(n, a)(0, g)−1 = (n− 1 + fc(g, a) + fc(ga, g−1), gag−1).

To check that (0, g)(n, a)(0, g)−1 ∈ Pβ,ψ ∪ {id}, we have

n− 1 + fc(g, a) + fc(ga, g−1) + dβ(gag−1) + ψ(a)

= n− 1 + fc(g, a) + fc(ga, g−1) + dβ(gag−1) + ϕ(a)

− (−1 + fc(g, a) + fc(ga, g−1) + dβ(gag−1) − dα(a))

= n + dα(a) + ϕ(a) � 0.

Therefore, (0, g)(n, a)(0, g)−1 ∈ Pβ,ψ ∪ {id} and (0, g)Pα,ϕ(0, g)−1 ⊂ Pβ,ψ. Since both sets are
positive cones, we have (0, g)Pα,ϕ(0, g)−1 = Pβ,ψ, completing the proof. �

The next proposition provides a partial converse to Proposition 4.4.

Proposition 4.9. Suppose that {(Gi, ci)}i∈I are circularly ordered groups, H is a group and
for each i, φi : H → Gi is an injective homomorphism with image Hi ⊂ Gi. Suppose further that
for each i ∈ I, φ∗

i : H1(Gi; Z) → H1(H; Z) is surjective. If there exist cohomologically constant
normal families Ri ⊂ CO(Gi) such that ci ∈ Ri for all i ∈ I and the collections {ci}i∈I and
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{Ri}i∈I are compatible with {φi}i∈I , then there is a circular ordering c on ∗i∈IGi(Hi

φi∼= H)
extending each of the ci.

Proof. Fix i ∈ I, and suppose ci = cγ ∈ Ri. Then, dγ : G → Z is necessarily a homomor-
phism. Let (G̃i, <i, zi) be the lift of (Gi, ci) with positive cone Pi. Then, Pi = Pγ,−dγ

∈ R̃i. By
Theorem 1, Theorem 4.1 and Lemma 4.8, it suffices to show that both {<i}i∈I and {R̃i}i∈I

(where R̃i is defined in Construction 4.5) are compatible with {φ̃i}i∈I . Let (H̃,≺, z) be the lift
of (H,φ∗

i ci), which is independent of i by compatibility, and recall that φ̃i : H̃ → G̃i is given
by φ̃i(n, h) = (n, φi(h)).

Fix i, j ∈ I. Then, φ̃∗
iPi ∪ {id} = φ̃∗

jPj ∪ {id} = {(n, h) ∈ H̃ : n � 0}. Therefore, {<i}i∈I is
compatible with {φ̃i}i∈I .

For compatibility of {R̃i}i∈I , let cα ∈ Ri, and choose cβ ∈ Rj such that φ∗
i cα = φ∗

jcβ . Let
ϕ ∈ H1(Gi,Z). We first claim that ψ : H → Z given by ψ(h) = dαφi(h) + ϕφi(h) − dβφj(h) is
a homomorphism. Since ϕφi is a homomorphism, we have

ψ(ab) − ψ(a) − ψ(b) = dαφi(ab) − dβφj(ab) − dαφi(a) + dβφj(a) − dαφi(b) + dβφj(b)

= φ∗
i fcα(a, b) − φ∗

i fci(a, b) − φ∗
jfcβ (a, b) + φ∗

jfcj (a, b)

= 0,

since φ∗
i fcα = φ∗

jfcβ and φ∗
i fci = φ∗

jfcj . Choose ψ̂ ∈ H1(Gj ,Z) with the property that φ∗
j ψ̂ = ψ.

It suffices to show φ̃∗
iPα,ϕ = φ̃∗

jPβ,ψ̂.

Let (n, h)∈ φ̃∗
iPα,ϕ∪{id}, so n+dαφi(h)+ϕφi(h)�0. We want to show (n, h)∈ φ̃∗

jPβ,ψ̂∪{id}.
We have

n + dβφj(h) + ψ̂φj(h) = n + dβφj(h) + ψ(h)

= n + dβφj(h) + dαφi(h) + ϕφi(h) − dβφj(h)

= n + dαφi(h) + ϕφi(h)

� 0.

Therefore, φ̃∗
iPα,ϕ ⊂ φ̃∗

jPβ,ψ̂ and since both are positive cones in H, they are equal, completing
the proof. �

However the techniques of Propostion 4.9 do not tell the whole story. In the example that
follows, we produce groups G1 and G2, injective homomorphisms φi : H → Gi and equip the
functions Gi with a circular orderings ci compatible with {φ1, φ2}. Further, we equip the groups
G1 and G2 with normal, compatible, cohomologically constant families of circular orderings
R1 and R2 containing c1 and c2, respectively. However, the hypothesis that φ∗

i : H1(Gi; Z) →
H1(H; Z) be surjective for each i will fail in our setup, and consequently the families R̃1 and R̃2

produced by Construction 4.5 are not compatible with {φ̃1, φ̃2}. Nevertheless, ∗i∈IGi(Hi

φi∼= H)
admits a circular ordering c extending each of the ci.

Example 4.10. Set G1 = Z × Zn for some n � 2 and G2 = Z � Z2, where the action of Z2

on Z is multiplication by −1. Let H be an infinite cyclic group generated by t, and define
φi : H → Gi by φi(t) = (1, 0), where (1, 0) is understood as either an element of G1 or G2

depending on the subscript of φi.
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Define ψ : Zn → S1 by ψ(1) = e2πi/n and let c denote the standard ordering of S1. Equip
Zn with the circular ordering ψ∗c and let R1 consist of the two circular orderings of G1 that
arise lexicographically from the short exact sequence

1 → H
φ1→ G1 → Zn → 1,

using the two standard linear orderings of H and the circular ordering ψ∗c of Zn. Fix c1 to be
the circular ordering of R1 arising from the linear ordering of H satisfying t > id. Let R2 be
the two circular orderings of G2 that arise lexicographically from the short exact sequence

1 → H
φ2→ G2 → Z2 → 1

and fix c2 to be the circular ordering arising from a choice of linear ordering of H satisfying
t > id.

By construction, the families R1 and R2 are normal and compatible with the maps {φ1, φ2}.
Moreover, they are cohomologically constant: In the case of R2, this follows from an application
of Lemma 4.3, in the case of R1 this follows from a direct analysis of the lifts and their
corresponding short exact sequences. Now let us analyse the families R̃i that arise from an
application of Construction 4.5.

Let < denote the natural lexicographic ordering of Z × Z where the second factor is cofinal,
and P its positive cone. There is an order-isomorphism Ψ1 : (G1, c1) → Q(Z × Z, <, (0, n)) and
thus there is an order-isomorphism Φ : (G̃1, <c1 , zc1) → (Z × Z, <, (0, n)), it is the composition

(G̃1, <c1 , zc1)
LΨ1→ LQ(Z × Z, <, (0, n))

νZ×Z→ (Z × Z, <, (0, n)).

Here, νZ×Z is the isomorphism arising from the categorical equivalence defined in Proposi-
tion 2.9 and Q,L refer to the lift and quotient functors of Lemma 2.7.

Let δ : Z × Z → Z × Z denote the automorphism with matrix
[

1 0
n 1

]
. One can verify that

for each k ∈ Z, the left ordering <k corresponding to the positive cone (δk)∗P also satisfies
Q(Z × Z, <k, (0, n)) ∼= (G1, c1) where ∼= is an order-isomorphism. Set S = {(δk ◦ Φ)∗P | k ∈ Z}
and note that S ⊂ R̃1, for if ≺∈ S, then ηGQ(G̃1,≺, zc1) = (G1, c1) (see Remark 4.6). Moreover,
the orderings of S are distinct upon restriction to any rank two abelian subgroup of G̃1, and
so φ̃∗

1S is infinite. In particular, so is φ̃∗
1R̃1.

On the other hand, if we let K = 〈x, y | xyx−1 = y−1〉, then K admits exactly four left
orderings, and all arise lexicographically from the short exact sequence

1 → 〈y〉 → K → Z → 1,

where the quotient is generated by the image of x. Fixing a left ordering < of K with y > 1,
one can verify that there is an order-isomorphism Ψ2 : (G2, c2) → Q(K,<, x2) so that K ∼= G̃2

by reasoning similar to the case of G1. In particular, because K only has four left orderings,
|φ̃∗

2R̃| � 4 and so R̃1 and R̃2 cannot be compatible with {φ̃1, φ̃2}.
This incompatibility arises from the fact that φ∗

2 : H1(G2; Z) → H1(H; Z) cannot be surjec-
tive, since G2/G

′
2 is torsion and thus H1(G2; Z) is trivial while H1(H; Z) = H1(Z; Z) is infinite.

Note, however, that the required normal families of left orderings do exist and are constructed
in the course of the proof of Proposition 1.1.

Thus we ask the following question:

Question 4.11. Do there exist sufficient conditions on the groups (Gi, ci) which guarantee
the existence of a circular ordering c as in Theorem 1(1), which make no reference to left
orderings of the lifts G̃i? In particular, is it possible to drop the surjectivity assumption on the
first cohomology in Proposition 4.9?
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5. Special cases of amalgamation

Perhaps the most natural corollaries of the theorem of Bludov–Glass are that amalgamation
of left-ordered groups along convex subgroups or along rank one abelian subgroups preserves
left-orderability. There are analogous results in the case of circularly ordered groups, which we
prove below.

Recall that a subgroup H of a left-ordered group (G,<) is convex if whenever h1, h2 ∈ H
and h1 < g < h2 for some g ∈ G, then g ∈ H. We recall the generalization to circularly ordered
groups. Suppose that H is a proper subgroup of a circularly ordered group (G, c). Then, H is
said to be convex with respect to the circular ordering c of G if for every g ∈ G \H, f ∈ G and
h1, h2 ∈ H, whenever c(h1, g, h2) = 1 and c(h2, f, h1) = 1, then f ∈ H (this is in analogy with
an established definition in the case of two-sided invariant circular orderings, see, for example,
[13]). We first establish a few elementary results concerning convex subgroups in circularly
ordered groups, some of which appear in [11].

Lemma 5.1. Suppose that (G, c) is a circularly ordered group and let H ⊂ G be a subgroup
with |G : H| � 3. Then, H is convex if and only if the left cosets G/H inherit a circular ordering
c : (G/H)3 → {0,±1} defined by c(g1H, g2H, g3H) = c(g1, g2, g3) whenever g1H, g2H, and g3H
are distinct cosets.

Proof. The forward direction is proved in [11]. Conversely, suppose H is not convex. That is,
there exists h1, h2, g, f ∈ G such that c(h1, g, h2) = 1 and c(h2, f, h1) = 1 but g, f /∈ H. Then,
by the cocycle condition, c(h1, g, f) = 1 and c(h2, g, f) = −1. If gH and fH are distinct cosets,
then c is not well defined and we are done. Suppose not, and choose t ∈ G \H such that tH �=
gH. If c(h1, t, h2) = 1, then applying the cocycle condition gives c(h1, t, f) = 1 and c(h2, t, f) =
−1 so c is not well defined. Similarly, if c(h2, t, h1) = 1, then c(h1, g, t) = 1 and c(h2, g, t) = −1,
completing the proof. �

Lemma 5.2. Suppose that H is a proper convex subgroup of the circularly ordered group
(G, c). Then, the set

P = {h ∈ H | c(id, h, g) = 1 for some g ∈ G \H}
is the positive cone of a left ordering of H. Moreover, if < is the left ordering corresponding to
P , then for every h1, h2, h3 ∈ H, we have h1 < h2 < h3 if and only if c(h1, h2, h3) = 1 (up to
cyclic permutation of the arguments).

Proof. We first check that P 
 P−1 
 {id} = H. To see this, let h ∈ H with h �= 1 be
given and suppose g ∈ G \H. Then, either c(id, h, g) = 1 yielding h ∈ P or c(id, g, h) = 1
yielding c(id, h−1, h−1g) = 1 where h−1g ∈ G \H and thus h−1 ∈ P . Therefore, H ⊂ P ∪ P−1.
Second, suppose h ∈ P ∩ P−1, so that there exist f, g ∈ G \H such that c(id, h, g) = 1
and c(id, h−1, f) = 1. But then, from the first equality, c(h−1, id, h−1g) = 1. But since
c(id, h−1, f) = 1 with f ∈ G \H, by convexity this implies h−1g ∈ H, a contradiction.

Next, to show that P · P ⊂ P , suppose that h, k ∈ H satisfy c(id, h, g) = 1 and c(id, k, f) = 1
for some g, f ∈ G \H. If c(id, hk, g) = 1, we are done, so suppose c(id, g, hk) = 1 and note that
c(h, hk, hf) = 1 as well. Combining c(id, g, hk) = 1 and c(id, h, g) = 1, we have c(h, g, hk) = 1.
But now c(h, g, hk) = 1 and c(hk, hf, h) = 1 imply that one of hk or g lies in H by convexity,
a contradiction.

That h1 < h2 < h3 if and only if c(h1, h2, h3) = 1 (up to cyclically permuting the arguments
of c) is a straightforward check using the definition of P . �

Thus, when H is a proper convex subgroup of (G, c) we will say that H is left ordered by
restriction. We call the left ordering of H corresponding to the positive cone P of Proposition 5.2
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‘the left ordering of H arising from the restriction of c’. Note that for proper convex subgroups
H of (G, c), this agrees with [11, Definition 2.2], where one says that H is left ordered by
restriction if the set

Q = {h ∈ H | c(h−1, id, h) = 1}
forms a positive cone. One can verify that under the assumptions of Proposition 5.2, we have
Q = P .

We return to left-orderability of free products with amalgamation, and begin with an
observation that tells us how convex subgroups behave with respect to the lifting construction.
Suppose that H is a convex subgroup of (G, c) with positive cone P as in Proposition 5.2.
Define a function d : H → Z by d(id) = 0 and

d(h) =

{
1 if h /∈ P

0 if h ∈ P.

This function d satisfies fc(g, h) = d(g) − d(gh) + d(h) for all g, h ∈ H, meaning that when
H is convex, the restriction of fc to H is a coboundary. Consequently, H̃ is a split central
extension, with an explicit isomorphism φ : Z ×H → H̃ given by φ(n, h) = (n− d(h), h). Via
this isomorphism, we can identify H̃ ⊂ G̃ with Z ×H, embedding H as a subgroup of G̃ and
identifying the Z factor with 〈zc〉.

One checks that the left ordering of Z ×H arising from the restriction of <c is lexicographic
where Z is cofinal and H ⊂ G̃ is equipped with the positive cone P of Proposition 5.2†.

Lemma 5.3. Suppose that (G, c) is a circularly ordered group and that H ⊂ G is a proper

convex subgroup. With notation as above, the image of the inclusion ι : H → G̃ given by
ι(h) = (−d(h), h) (which we will simply write as H ⊂ G̃) is a convex subgroup relative to the

left ordering <c of G̃.

Proof. Denote by h̃, g̃ arbitrary non-identity elements of H ⊂ G̃ and G̃, respectively, that
project to the elements h, g under the projection map G̃ → G. Note that neither of h, g is the
identity. It suffices to check that under the assumption id <c g̃ <c h̃, we have g̃ ∈ H.

First note that h̃ ∈ H ⊂ G̃ implies h̃ = (0, h). Then, as id <c g̃ <c h̃, we know g̃ = (0, g).
Thus, id <c g̃ <c h̃ implies id <c (0, g)−1(0, h) = (fc(g−1, h) − 1, g−1h) which happens if and
only if c(id, g, h) = 1.

Now, since id <c (0, h), we know that h ∈ P , where P is the positive cone of Proposition 5.2.
So, there exists x ∈ G \H with c(id, h, x) = 1. Combining this with c(id, g, h) = 1 forces g ∈ H

by convexity, so (0, g) = g̃ ∈ H ⊂ G̃. �

We are now ready to produce the required normal families needed to circularly order
amalgamations along convex subgroups.

Lemma 5.4. Suppose that (G, c) is a circularly ordered group and that H ⊂ G is a proper

convex subgroup. Let N ⊂ LO(G̃) denote the subset of left orderings of G̃ that restrict to

lexicographic orderings of H̃ ∼= Z ×H relative to which the Z factor is cofinal in G̃. Then, N
is normal.

Proof. Note that an ordering < of H̃ ∼= Z ×H is lexicographic with Z cofinal if and only if
the only non-cofinal elements are exactly the elements of H (that is, elements in Z ×H of the

†We will always distinguish the subgroup H ⊂ G from the subgroup H ⊂ ˜G by indicating the supergroup
whenever confusion may arise.
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form (0, h)). Thus, to prove the lemma it suffices to check that for every h ∈ G̃ if h is <-cofinal,
then h is <g-cofinal for all g ∈ G. We prove this claim next.

In an ordered group (G,<) with positive cofinal central element z, the cofinal elements are

{h ∈ G | ∃k ∈ Z such that hk > z}.
So to prove our claim it suffices to show that for a given h ∈ G̃, if z < hk for some k ∈ Z, then
z <g h� for some � ∈ Z and for every g ∈ G̃.

To this end, given g, h ∈ G̃ as above, note that if hk > z, then h2k > z2. Also there exists
j ∈ Z such that zj < g � zj+1, from which we calculate z−(j+1) � g−1 < zj . Combining these
two inequalities with h2k > z2 yields z < gh2kg−1, as needed. �

Proposition 1.1. Suppose that (Gi, ci) are circularly ordered groups for i ∈ I, each
equipped with a convex subgroup Hi ⊂ Gi and an order-preserving isomorphism φi : (H, d) →
(Hi, ci) from a circularly ordered group (H, d). Then, the group ∗i∈IGi(Hi

φi∼= H) admits a
circular ordering c which extends the orderings ci of Gi for i ∈ I.

Proof. Equip each group G̃i with the normal family Ni ⊂ LO(G̃i) of all orderings of G̃i

which restrict to lexicographic orderings of H̃i
∼= Z ×Hi, as in Lemma 5.4. By the remarks

preceding Lemma 5.3, <ci∈ Ni for all i. Moreover, the lifts {<ci}i∈I are compatible with
{φ̃i}i∈I , since the order isomorphisms φ−1

i φj : (Hi, ci) → (Hj , cj) lift to order isomorphisms

φ̃−1
i φ̃j : (H̃i, <ci , zi) → (H̃j , <cj , zj).

We will show that {Ni}i∈I are compatible with {φ̃i}i∈I . To see this, it suffices to observe
that every lexicographic ordering of H̃i

∼= Z ×Hi with Z cofinal arises as the restriction of
some ordering of G̃i: This follows from Lemma 5.3, which allows us to extend any left ordering
of Hi ⊂ G̃i to a left ordering of G̃i since Hi is <ci -convex. Moreover, since the generator of Z

appearing in the direct product decomposition of H̃i
∼= Z ×Hi is the cofinal central element of

G̃, restricting this extension ordering to H̃i yields a lexicographic ordering, and so the order
is in Ni. By Theorem 4.1, Theorem 1(2) holds. Thus, Theorem 1(1) holds, completing the
proof. �

This previous proposition is readily applicable in a special case relating to Question 1.3.

Example 5.6. Suppose that M is a compact, connected, orientable hyperbolic 3-manifold
with a single torus boundary component TM ⊂ ∂M . Let ΔM denote the set of cusps in the
universal cover of M , and note that there is an action of π1(M) on ΔM for which π1(TM ) is the
stabilizer of a cusp. By [16, Lemma 2.11], provided M admits a certain nice triangulation, one
can guarantee the existence of a unique circular ordering dM : Δ3

M → {0,±1} that is invariant
under the π1(M)-action. By choosing any left ordering we please for the subgroup π1(TM )
and ordering π1(M) lexicographically, we arrive at a circular ordering cM of π1(M) such that
π1(TM ) is convex.

Let M and N be two 3-manifolds as above and let ψ : TM → TN be any homeomorphism
identifying their respective boundary tori. Equip π1(M) and π1(N) with orderings cM and
cN , respectively, where the orderings of π1(TM ) and π1(TN ) are chosen so that ψ induces an
order-isomorphism between the peripheral subgroups π1(TM ) and π1(TN ). Then, as

π1(M ∪ψ N) = π1(M) ∗ π1(N)(π1(TM )
ψ∼= π1(TN ))

and ψ is compatible with the orderings cM and cN , we conclude that π1(M ∪ψ N) is circularly
orderable with an ordering extending that of each of the factors, by Proposition 1.1.
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For the next proposition, we say that a subgroup H of a left-ordered group G with ordering
< is <-cofinal if there exists h ∈ H that is <-cofinal.

Proposition 5.7. Suppose that (Gi, <i) are left-ordered groups with subgroups Hi ⊂ Gi,
each equipped with an isomorphism φi : H → Hi for all i ∈ I. Suppose that H ⊂ Q2 is a rank
two abelian subgroup and that Hi is <i-cofinal for all i and that {<i}i∈I are compatible with

{φi}i∈I . Then, ∗i∈IGi(Hi

φi∼= H) admits a left ordering that extends each of the <i.

Proof. Since {<i}i∈I are compatible with {φi}i∈I , there is an ordering < (the pullback of
<j along φj for any j) such that φi : (H,<) → (Hi, <i) is an order isomorphism for all i. The
ordering < determines a line in Q2. All elements to one side of the line positive, the elements
to the other side negative. Depending on whether this line has irrational slope, there are two
cases:

First, if the line has irrational slope, then every non-identity element of Hi is <i-cofinal for
every i ∈ I. The result then follows from [3, Corollary 5.8], since the sign of a cofinal element
is preserved under conjugation — as in the proof of Lemma 5.4.

On the other hand, a line of rational slope can be dealt with as in the proof of
[4, Proposition 11.5]. Suppose that in the restriction of <i to Hi, the rank one subgroup
Ki is convex. For each i, define Ni to be the collection of all left orderings of Gi which restrict
to Hi in such a way that Ki is convex. Note that <i∈ Ni by definition. Because all elements
of Hi which are not in Ki are <i-cofinal, the family Ni of orderings is normal (c.f. the proof
of Lemma 5.4). We show compatibility with {φi}i∈I as follows.

Having fixed Ki ⊂ Hi as above, there are exactly four left orderings of Hi which realize Ki as
a convex subgroup. They are those that arise lexicographically from the short exact sequence

1 → Ki → Hi → Hi/Ki → 1,

where the kernel and image are both rank one abelian. Call this collection Oi ⊂ LO(Hi). There
is a restriction map ri : LO(Gi) → LO(Hi), and if the condition ri(Ni) = Oi holds, then the
families Ni will be compatible {φi}i∈I , as in [4, Proposition 11.5].

To see that this condition holds, for each i, the family of sets

Xi = {S ⊂ Gi | x ∈ S and y < x ⇒ y ∈ S}
is ordered by inclusion, and the natural left-action of Gi on Xi preserves this order. Let Si denote
the stabilizer of the set Xi = {x ∈ Gi | x < g for some g ∈ Ki}, and note that Si ∩Hi = Ki.

Via the usual method of constructing a left ordering on Gi from an order-preserving action
on a linearly ordered set Xi, we can construct a left ordering of Gi relative to which Si is convex.
Using the convex subgroup Si, we can order Gi in four distinct ways, such that each of the
four orderings lies in Ni and the restriction of each to Hi is distinct. We conclude ri(Ni) = Oi,
and compatibility holds. �

Proposition 1.2. Suppose that (Gi, ci) are circularly ordered groups for i ∈ I, each
equipped with a subgroup Hi ⊂ Gi and an order-preserving isomorphism φi : (H, d) → (Hi, ci)
from a circularly ordered group (H, d).

If H is either:

(i) a subgroup of the rational points of S1 equipped with the standard ordering, or
(ii) Q or Z equipped with the ordering d(q1, q2, q3) = 1 if and only if q1 < q2 < q3 (up to

cyclic permutation),

then ∗i∈IGi(Hi

φi∼= H) admits a circular ordering that extends each of the ci.
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Proof. In either case, {<ci}i∈I are compatible with {φ̃i}i∈I . With this in hand, we consider
the cases separately.

If (H, d) is a subgroup of the rational points of S1, then the lift H̃ is a subgroup of Q.

Consequently, ∗i∈IG̃i(H̃i

˜φi∼= H̃) is a free product of left-ordered groups with amalgamation
along rank one abelian subgroups, and thus admits a left ordering extending the ordering of

each of the factors [3, Corollary 5.3]. By Theorem 1, ∗i∈IGi(Hi

φi∼= H) admits a circular ordering
that extends each of the ci.

Now suppose (H, d) is Q or Z with the ordering above, then the lifts H̃i are isomorphic to
Hi × Z, each left ordered so that the Z factor is <ci -cofinal. By Proposition 5.7,

∗i∈IG̃i(H̃i

˜φi∼= H̃)

is left-orderable by an ordering extending each of the lifted orderings <ci . By Theorem 1,

∗i∈IGi(Hi

φi∼= H) admits a circular ordering that extends each of the ci. �

Example 5.9. Note that Proposition 1.2 does not imply that amalgamating circularly
orderable groups along cyclic subgroups yields a circularly orderable result, unlike the case
of left-orderable groups. The primary difference is that if Hi are subgroups of left-orderable
groups Gi for i ∈ I, and φi : H → Hi are isomorphisms, then there is always a choice of left
orderings on H and the groups Gi such that every map φi : H → Hi is order preserving.

In contrast, suppose that G1, G2 are both isomorphic to Q/Z, and thus each admits precisely
two circular orderings — the restriction of the standard circular ordering of S1, and its reverse
(the circular ordering obtained by multiplying the standard ordering by −1). Fix a prime
p � 5 and let φi : Z/pZ → Q/Z denote the map determined by the assignment φi(1) = i

p + Z

for i = 1, 2. Let H1, H2 denote the copies of Z/pZ contained in G1 and G2 that are generated by
the image of 1

p under the quotient Q → Q/Z, and consider the free product with amalgamation

G1 ∗G2(H
φi∼= Hi). This group is not circularly orderable, as there are no circular orderings on

H, G1 and G2 that make G1
φ1← H

φ2→ G2 into an amalgamation diagram in Circ.
At first blush, this may appear at odds with our main theorem, as G̃i

∼= Q, H̃i
∼= Z and so

for any choice of isomorphisms φ̃i : Z → Hi, the group G̃1 ∗ G̃2(Z
˜φi∼= H̃i) will be left-orderable

by [3, Corollary 5.2]. The key observation, however, is that any identification of Q with
G̃i implicitly involves making a choice qi ∈ Q of cofinal central element, and the diagram

G̃1

˜φ1← Z
˜φ2→ G̃2 will only pass to an amalgamation diagram in Circ if φ̃2φ̃

−1
1 (q1) = q2. Imposing

this condition on the maps φ̃i means precisely that upon passing to quotients, the standard
circular orderings of Hi ⊂ Gi will be compatible with φ2φ

−1
1 — in particular, the setup of the

previous paragraph can never arise as such a quotient.

6. Circ as a tensor category

This section explores ideas first put forward by Rolfsen [15]. We show how a certain explicit
construction of a circular ordering on the free product produces a tensor structure on Circ.

We begin by reviewing a construction from [1] which provides an explicit circular ordering of
the free product G ∗H. Let (G, cG) and (H,cH) be circularly ordered groups. First, we define
what it means for a triple (w1, w2, w3) ∈ (G ∗H)3 to be reduced. Consider the following three
reduction operations that one can perform on such a triple.
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(1) Suppose that x ∈ G ∪H is the leftmost letter of all three words w1, w2, w3. That is,
w1 = xw′

1 and w2 = xw′
2 and w3 = xw′

3, and all of the functions xw′
i are reduced words. In this

case, replace (w1, w2, w3) with (w′
1, w

′
2, w

′
3).

(2) Suppose that x ∈ G ∪H appears as the leftmost letter in exactly two of the words
{w1, w2, w3}. Then, left-multiply the triple by x−1. The word wi which does not have x as
its leftmost letter is thus replaced with x−1wi in the triple (w1, w2, w3), which may not be a
reduced word. Thus, to complete the operation, we reduce x−1wi.

(3) Suppose that x ∈ G ∪H is the leftmost letter of exactly one of {w1, w2, w3}, say wi.
Then, replace wi with x.

Call a triple (x, y, z) ∈ (G ∗H)3 a reduction of (w1, w2, w3) ∈ (G ∗H)3 if one can arrive at
(x, y, z) starting from (w1, w2, w3) by performing a series of the moves (1)–(3) above, and
if no further moves can be performed on the triple (x, y, z) we call it a minimal reduction.
By [1, Proof of Theorem 4.3], every triple (w1, w2, w3) ∈ (G ∗H)3 admits a unique minimal
reduction. Moreover, if (x, y, z) is a minimal reduction of (w1, w2, w3) ∈ (G ∗H)3, then either
exactly two of {x, y, z} lie in G while the other is in H, or exactly two of {x, y, z} lie in H while
the other is in G, or {x, y, z} ⊂ H, or {x, y, z} ⊂ G. That is, the minimal reduction always lies
in (G ∪H)3.

We are now ready to state the result of [1, Theorem 4.3], which defines a circular ordering
of the free product of two circularly ordered groups (G, cG) and (H, cH). Define

c : (G ∗H)3 → {±1, 0}
according to the rules.

(1) We insist that c is invariant under cyclic permutation of its arguments, and that
c(g, h, id) = +1 and c(h, g, id) = −1 for all g ∈ G \ {id} and h ∈ H \ {id}.

(2) On G3 and H3, define c by c|G3 = cG and c|H3 = cH .
(3) Define c(g1, g2, h) = cG(g1, g2, id) and c(g, h1, h2) = cH(id, h1, h2) for all g, g1, g2 ∈ G \

{id} and h, h1, h2 ∈ H \ {id}. Use (1) to extend this to all of (G ∪H)3.
(4) If (x, y, z) is the minimal reduction of (w1, w2, w3) ∈ (G ∗H)3, then

c(w1, w2, w3) = c(x, y, z).

Such a c exists and is uniquely determined by these conditions.
We are now ready to state our result, which mirrors a result of Rolfsen [15, Theorem 1] in

the case of left- and bi-orderability of free products. It also further illustrates the necessity of
restricting our attention to injective homomorphisms in our definition of Circ.

For the next proposition, a faux order-preserving homomorphism φ : (G, c) → (H, d) is
a homomorphism such that |c(g1, g2, g3) − d(φ(g1), φ(g2), φ(g3))| � 1 for all g1, g2, g3 ∈ G.
Such a homomorphism has the property that c(g1, g2, g3) = d(φ(g1), φ(g2), φ(g3)) if
(φ(g1), φ(g2), φ(g3)) /∈ Δ(H), so it is the appropriate definition of order-preserving while
allowing for non-injective homomorphisms.

Proposition 6.1. Suppose that (Gi, ci) and (Hi, di) are circularly ordered groups for
i = 1, 2, and let (G1 ∗G2, c) and (H1 ∗H2, d) denote the free products with circular orderings
constructed as above.

(i) If φi : (Gi, ci) → (Hi, di) are order-preserving homomorphisms, then the homomorphism
φ1 ∗ φ2 : (G1 ∗G2, c) → (H1 ∗H2, d) is order preserving.

(ii) If one of φi : (Gi, ci) → (Hi, di) is a non-injective faux order-preserving homomorphism,
then the homomorphism φ1 ∗ φ2 : (G1 ∗G2, c) → (H1 ∗H2, d) is not a faux order-preserving
homomorphism.
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Proof. Set φ = φ1 ∗ φ2 and let (w1, w2, w3) ∈ (G1 ∗G2)3 be given, suppose both φ1

and φ2 are order preserving. First note that if (x, y, z) ∈ (G1 ∪G2)3 is the minimal
reduction of (w1, w2, w3) ∈ (G1 ∗G2)3, then (φ(x), φ(y), φ(z)) is the minimal reduction of
(φ(w1), φ(w2), φ(w3)). Indeed, this follows from the observation that since φ is injective,
the triple (w1, w2, w3) admits an operation of type (1), (2) or (3) if and only if the triple
(φ(w1), φ(w2), φ(w3)) admits an operation of the same type. Thus,

d(φ(w1), φ(w2), φ(w3)) = d(φ(x), φ(y), φ(z)),

and we consider cases.

Case 1. There exists i such that {φ(x), φ(y), φ(z)} ⊂ Hi. Then,

d(φ(x), φ(y), φ(z)) = di(φi(x), φi(y), φi(z)) = ci(x, y, z) = c(w1, w2, w3)

and so d(φ(w1), φ(w2), φ(w3)) = c(w1, w2, w3).

Case 2.1. Two of {φ(x), φ(y), φ(z)} are contained in H1 \ {id}, the other is contained in
H2 \ {id}. Without loss of generality, suppose φ(x), φ(y) ∈ H1 and φ(z) ∈ H2. Then,

d(φ(x), φ(y), φ(z)) = d1(φ1(x), φ1(y), id) = c1(x, y, id) = c(x, y, z).

Thus, d(φ(w1), φ(w2), φ(w3)) = c(w1, w2, w3).

Case 2.2. Two of {φ(x), φ(y), φ(z)} are contained in H2 \ {id}, the other is contained in
H1 \ {id}. Proceed as in the previous case.

Case 3. One of {φ(x), φ(y), φ(z)} is equal to the identity, one lies in H1, and the other
in H2. Without loss of generality, suppose φ(x) ∈ H1, φ(y) ∈ H2, and φ(z) = id, any other
combination can be dealt with via cyclic permutation or appropriate change of sign. As each
of φi is injective, we know z = id. Thus, we calculate

d(φ(x), φ(y), φ(z)) = d(φ(x), φ(y), id) = +1,

and

c(x, y, z) = c(x, y, id) = +1.

Thus, d(φ(w1), φ(w2), φ(w3)) = c(w1, w2, w3), proving (1).
To prove (2), suppose that φ2 is a non-injective faux order-preserving homomorphism (the

case of a non-injective φ1 being similar). Choose elements g2, g3 ∈ G2 \ {id} with φ2(g3) = id,
φ2(g2) �= id and c2(id, g2, g3) = −1. Such a choice of g2 and g3 is always possible: Suppose that
initially, one chooses g2 and g3 with φ2(g3) = id and φ2(g2) �= id yet they satisfy c2(id, g2, g3) =
+1. It is easy to check, using left invariance, that c2(id, g−1

3 g2, g
−1
3 ) = −1, so replacing g2 with

g−1
3 g2 and g3 with g−1

3 yields a choice of g2 and g3 which meets our requirements.
Let g1 ∈ G1 be any element which is not mapped to the identity by φ1. Then,

c(g1, g2, g3) = c2(id, g2, g3) = −1.

On the other hand, applying φ = φ1 ∗ φ2 to the entries of the triple (g1, g2, g3), we arrive at
(φ1(g1), φ2(g2), id) and compute

d(φ1(g1), φ2(g2), id) = +1.

Thus, φ is not faux order preserving. �

In a more sophisticated language, Proposition 6.1 establishes that the map

⊗ : Circ × Circ → Circ
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defined by (G1, c1) ⊗ (G2, c2) = (G1 ∗G2, c) yields a bifunctor, while the same recipe for
constructing circular orderings of free products does not yield a bifunctor if we do not insist
on injectivity of the maps in Circ.

Theorem 6.2. Equipped with the bifunctor ⊗, the category Circ becomes a tensor category.

Proof. The trivial group with trivial ordering provides the necessary identity. Given
circularly ordered groups (G1, c1), (G2, c2), (G3, c3), there is a natural isomorphism of groups
(G1 ∗G2) ∗G3

∼= G1 ∗ (G2 ∗G3). We need to check that the above construction of a circular
ordering of these respective groups is associative. To see this, we introduce the notation
c1,2, c2,3, c(1,2),3 and c1,(2,3) to denote the orderings of G1 ∗G2, G2 ∗G3, (G1 ∗G2) ∗G3 and
G1 ∗ (G2 ∗G3) that arise from the construction given above. Let (w1, w2, w3) be any triple of
words in the alphabet G1 ∪G2 ∪G3. If the wi are not all distinct, then it is easy to confirm
that c(1,2),3(w1, w2, w3) = c1,(2,3)(w1, w2, w3), so assume they are all distinct.

By left-multiplying appropriately, we may replace (w1, w2, w3) with a new triple
(g1v1, g2v2, g3v3) where vi are words in the alphabet G1 ∪G2 ∪G3 and the gi are distinct.
Moreover, by left-invariance c(1,2),3(w1, w2, w3) = c(1,2),3(g1v1, g2v2, g3v3) and

c1,(2,3)(w1, w2, w3) = c1,(2,3)(g1v1, g2v2, g3v3).

Now since the gi are distinct, the only permissible operations which reduce (g1v1, g2v2, g3v3)
are of the third type (this is true whether we reduce in (G1 ∗G2) ∗G3 or G1 ∗ (G2 ∗G3)). In
the case that gi are all distinct (say gi ∈ Gi for all i), then we compute (via operations of type
(3), with reductions taking place in the groups indicated by the subscripts):

c(1,2),3(g1v1, g2v2, g3v3) = c(1,2),3(g1v
′
1, g2v

′
2, g3) = c1,2(g1v

′
1, g2v

′
2, id) = c1,2(g1, g2, id) = 1,

where v′1, v
′
2 ∈ G1 ∗G2. Similarly

c1,(2,3)(g1v1, g2v2, g3v3) = c1,(2,3)(g1, g2v
′
2, g3v

′
3) = c2,3(id, g2v

′
2, g3v

′
3) = c2,3(id, g2, g3) = 1,

where v′1, v
′
2 ∈ G2 ∗G3. Thus, in this case, c(1,2),3 and c1,(2,3) agree.

When the gi all lie in distinct groups Gi and the ordering of the triple (g1, g2, g3) differs from
the previous case by an odd permutation in S3, we find via similar computation that c(1,2),3
and c1,(2,3) agree.

Next, when all gi lie in the same group, say Gj , we find (after reductions in the appropriate
free products) that

c(1,2),3(g1v1, g2v2, g3v3) = cj(g1, g2, g3) = c1,(2,3)(g1v1, g2v2, g3v3).

The cases when exactly two gi lie in the same Gj are similar in that they reduce to the value
of cj on a particular triple, and we leave them to the reader. We conclude that c1,(2,3) = c(1,2),3.

Last, we check the coherence conditions. As in the case of [15, Theorem 8], this amounts to
observing that for circularly ordered groups (Gi, ci) with i = 1, 2, 3, 4, our constructed circular
orderings of the groups

((G1 ∗G2) ∗G3) ∗G4, (G1 ∗ (G2 ∗G3)) ∗G4, (G1 ∗G2) ∗ (G3 ∗G4),

G1 ∗ (G2 ∗ (G3 ∗G4)) and G1 ∗ ((G2 ∗G3) ∗G4)

are identical, by associativity of the construction. �

We finish with the following corollary, which is an immediate consequence of the equivalence
of the categories Circ and LO∗.

Corollary 6.3. The category LO∗ is a tensor category.
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