
Groups Geom. Dyn. 13 (2019), 1373–1399

DOI 10.4171/GGD/526

Groups, Geometry, and Dynamics

© European Mathematical Society

Big Torelli groups: generation and commensuration

Javier Aramayona, Tyrone Ghaswala, Autumn E. Kent,

Alan McLeay, Jing Tao, and Rebecca R. Winarski

Abstract. For any surface † of infinite topological type, we study the Torelli subgroup

I.†/ of the mapping class group MCG.†/, whose elements are those mapping classes

that act trivially on the homology of †. Our first result asserts that I.†/ is topologically

generated by the subgroup of MCG.†/ consisting of those elements in the Torelli group

which have compact support. Next, we prove the abstract commensurator group of I.†/

coincides with MCG.†/. This extends the results for finite-type surfaces [9, 6, 7, 16] to the

setting of infinite-type surfaces.
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1. Introduction

Let † be a connected oriented surface of infinite topological type – that is, a

surface with fundamental group that is not finitely generated. We will also assume

the boundary components of† are compact. The mapping class group of† is the

group:

MCG.†/ D Homeo.†; @†/=Homeo0.†; @†/;

where Homeo.†; @†/ is the group of self-homeomorphisms of † which fix @†

pointwise, equipped with the compact-open topology, and Homeo0.†; @†/ is the

connected component of the identity in Homeo.†; @†/. We equip MCG.†/ with

the quotient topology.

There is a natural homomorphism MCG.†/ ! Aut.H1.†;Z//, whose ker-

nel is commonly referred to as the Torelli group I.†/ < MCG.†/. While Torelli

groups of finite-type surfaces have been the object of intense study (see for exam-

ple [3, 4, 12, 15, 17, 20, 22, 24, 26]) not much is known about them in the case of

surfaces of infinite type. The present article aims to be a first step in this direction.
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Generation. In a recent article, Patel and Vlamis [23] give a topological generat-

ing set for the pure mapping class group PMCG.†/ (i.e. the subgroup of MCG.†/

consisting of those mapping classes which fix every end of †; see Section 2).

More concretely, they show that PMCG.†/ is topologically generated by the sub-

group of elements with compact support if† has at most one end accumulated by

genus; otherwise, PMCG.†/ is topologically generated by the union of the set of

compactly-supported elements and the set of handle shifts; see Section 2.

Observe that I.†/ < PMCG.†/. Denote by Ic.†/ the subgroup of I.†/

consisting of those elements with compact support, and let Ic.†/ be the closure

of Ic.†/ in PMCG.†/. Our first result asserts that, for any infinite-type surface

†, the set of compactly-supported mapping classes contained in the Torelli group

topologically generates the Torelli group:

Theorem 1.1. For any connected oriented surface † of infinite type, we have

I.†/ D Ic.†/.

Birman [4] and Powell [24] showed that the Torelli group of a finite-type sur-

face with at most one boundary or puncture is generated by separating twists (i.e.

Dehn twists about separating curves), plus bounding pair maps (that is, products

of twists of the form T
T
�1
ı

, where 
 and ı are disjoint non-separating curves but

their union separates and 
 and ı are homologous). We will show the same is true

for finite-type surfaces with arbitrary number of boundary components and punc-

tures. By exhausting† by an appropriate sequence of finite-type subsurfaces, we

obtain:

Theorem 1.2. Let † be a connected oriented surface of infinite topological type.

Then I.†/ is topologically generated by separating twists and bounding-pair

maps.

Theorem 1.1 implies I.†/ is a closed subgroup of MCG.†/. Since MCG.†/ is

a Polish group [1] and closed subgroups of Polish groups are Polish, we have the

following corollary.

Corollary 1.3. Let† be a connected oriented surface of infinite topological type.

Then I.†/ is a Polish group.

Commensurations. Recall that, given a group G, its abstract commensurator

Comm.G/ is the group of equivalence classes of isomorphisms between finite-

index subgroups of G; here, two isomorphisms are equivalent if they agree on a

finite-index subgroup. Observe that there is a natural homomorphism

Aut.G/ �! Comm.G/:

We will prove the following result.
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Theorem 1.4. For any connected oriented surface † of infinite topological type

and without boundary we have

Comm I.†/ Š Aut I.†/ Š MCG.†/:

Before continuing we stress that to the best of our knowledge, it is not known

whether the Torelli group of an infinite-type surface has any finite-index sub-

groups, and so in particular it is possible that Comm I.†/ may in fact coincide

a priori with Aut I.†/.

Historical context and idea of proof. Theorem 1.4 was previously known to

hold for finite-type surfaces. Indeed, Farb and Ivanov [9] proved it for closed

surfaces of genus at least five, which was then extended (and generalized to the

Johnson Kernel) by Brendle and Margalit to all closed surfaces of genus at least

three [6, 7]. Kida extended the result of Brendle and Margalit to all finite-type

surfaces of genus at least four [16]. Finally, recent work of Brendle and Margalit

and McLeay has further generalized the result to apply to a large class of normal

subgroups of finite-type surfaces [5, 21].

In order to prove the theorem, we closely follow Brendle and Margalit’s strat-

egy. First, we adapt ideas of Bavard, Dowdall, and Rafi [2] to show that every

commensuration of the Torelli group respects the property of being a separating

twist or a bounding pair map. From this we deduce that every commensuration

induces an automorphism of a combinatorial object called the Torelli complex.

This complex was originally introduced, for closed surfaces, by Brendle and Mar-

galit [6], who proved that its automorphism group coincides with the mapping

class group; this was later extended by Kida [16] to finite-type surfaces with punc-

tures. Using this, plus an inductive argument due to Ivanov [14], we will show that

every automorphism of the Torelli complex of an infinite-type surface is induced

by a surface homeomorphism. At this point, Theorem 1.4 will follow easily using

a well-known argument of Ivanov [14].
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2. Definitions

In this section we introduce the main objects needed for the proofs of our results.

2.1. Surfaces. Throughout, by a surface we mean a connected, oriented, second-

countable topological surface with (possibly empty) compact boundary. We say

that † has finite type if its fundamental group is finitely generated; otherwise, we

say that † has infinite type. In the finite type case, we will sometimes use the

notation † D †bg;p, where g, p, and b are, respectively, the genus, the number of

punctures, and the number of boundary components of †. In this case, we define

the complexity of † to be the integer �.†/ D 3g � 3C p C b.

The space of ends of † is the set

Ends.†/ D lim
 �

�0.† nK/;

where the inverse limit is taken over the set of compact subsets K � †, di-

rected with respect to inclusion. Here, the topology on Ends.†/ is given by the

limit topology obtained by equipping each �0.† nK/ with the discrete topology.

See [27] for further details.

We say that e in Ends.†/ is accumulated by genus if every neighborhood of e

has infinite genus; otherwise, we say that e is planar. In particular, observe that

every puncture of† is a planar end. We denote by Endsg.†/ the subset of Ends.†/

consisting of ends accumulated by genus. It is a classical theorem (see [27] for

a discussion and proof ) that the homeomorphism type of † is determined by the

tuple

.g.†/; b.†/;Ends.†/;Endsg.†//;

where g.†/ and b.†/ denote the genus and the number of boundary components

of †.
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2.2. Curves and domains. By a curve on † we mean the free homotopy class

of a simple closed curve that does not bound a disk or a disk containing a single

planar end of †. Abusing notation, we will not make any distinction between a

curve and any of its representatives.

We say that a curve 
 is separating if † n 
 has two connected components;

otherwise, we say that 
 is non-separating. We say that two curves are disjoint

if they have disjoint representatives in †. A multicurve is a set of pairwise

disjoint curves. Given two curves ˛ and ˇ, we denote by i.˛; ˇ/ their geometric

intersection number. The intersection number between two multicurves is defined

additively.

A domain Y in † is a closed subset which is itself a surface and the inclusion

map is a proper, �1-injective embedding. Note that domains are only defined up to

isotopy. A subsurface of† is a disjoint union of domains. The following definition

appears in [2].

Definition 2.1. A domain Y of† is called principal if Y has finite-type and every

component of † n Y has infinite-type.

The following lemma was communicated to us by the referee. The statement

and the proof are due to Federica Fanoni.

Lemma 2.2. Let � be multicurve. Then there are curves realizing the homotopy

classes in � which do not accumulate in any compact set of † if and only if for

every ˛ … � , the set ¹ˇ 2 � j i.˛; ˇ/ ¤ 0º is finite.

Proof. The forward direction is clear so we will focus on the other direction.

Choose a complete hyperbolic metric on † without half planes and realize all

curves as geodesics. The assumption on the metric implies that we can decompose

† into pairs of pants with geodesic boundary, funnels and/or cusps (as shown

in [13]). If the geodesic representative of � has an accumulation point, then we

can find a pair of pants P of † containing such a point. However, by assumption,

there are only finitely many curves of � that intersect the boundary of P . Thus,

only finitely many curves of � intersect P . In particular, they cannot accumulate

in P , a contradiction. �

Given an element f 2 MCG.†/, there is a canonical (possibly empty) multi-

curve @f in † for which f .@f / D @f , defined as follows. Let O.f / be the set of

curves ˛ such that ¹f k.˛/jk 2 Zº is finite. Then @f is the set of curves in O.f /

that are disjoint from all other elements of O.f /. See [11, Section 2] and also [2]

for further details.

Given f 2 MCG.†/ and a subsurface Y , we say Y supports f or f is

supported on Y if f can be realized by a homeomorphism which is the identity

outside of Y . An element f 2 MCG.†/ is said to have compact support if there

is a compact subsurface that supports f . Similarly, f has finite support if there is
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a subsurface of finite-type that supports f . If f is a product of Dehn twists about

a multicurve ˛, then we will also say ˛ supports f .

The following statement follows from [2]. The first assertion is Lemma 2.6,

while the second follows from its proof.

Lemma 2.3. If f 2 MCG.†/ is nontrivial and has finite support, then f has

infinite order and @f is a nonempty multicurve in †. Furthermore, let Y be the

( finite) union of all finite-type domains in † n @f , then Y supports f .

2.3. Pure mapping classes. The pure mapping class group PMCG.†/ is the

normal subgroup of MCG.†/ whose elements fix every end of †.

The set of compactly-supported mapping classes PMCGc.†/ forms a

subgroup of PMCG.†/ which is normal in MCG.†/. Note that if f lies in

PMCG.†/ and f has finite support, then it necessarily has compact support. Since

PMCGc.†/ is a direct limit of pure mapping class groups of compact surfaces, a

classical result due to Dehn and Lickorish (see [10, Section 4], for instance) im-

plies that PMCGc.†/ is generated by Dehn twists.

2.4. Handle Shifts. For any subgroup � < MCG.†/, we denote by x� its

topological closure in MCG.†/.

Patel and Vlamis introduced handle shifts and showed that handle shifts and

Dehn twists topologically generate PMCG.†/, see [23]. Subsequently, in [1] it

was shown that PMCG.†/ D PMCGc.†/ÌH , whereH is a particular subgroup

isomorphic to a direct product of pairwise commuting handle shifts. We now

recall the definition of a handle shift.

Let ƒ be the surface obtained from R � Œ�1; 1� by removing disks of radius 1
4

centered at .t; 0/ for t in Z and gluing in a torus with one boundary component,

identifying the boundary of the torus with the boundary of the removed disk. Let

� Wƒ ! ƒ be the homeomorphism that shifts the handle at .t; 0/ to the handle at

.t C 1; 0/, and is the identity on R � ¹�1; 1º (see [1] or [23] for an image of such

a homeomorphism). The isotopy class of � is called a handle shift of ƒ.

An element h in MCG.†/ is a handle shift if there exists a proper embedding

�Wƒ! † which induces an injective map on ends, and such that Œh� D Œı� where

ı j�.ƒ/D � and ı is the identity outside �.ƒ/. As a consequence of our definition,

we must have
ˇ

ˇEndsg.†/
ˇ

ˇ � 2; also, for each handle shift there is an attracting

end �C and a repelling end �� in Endsg .†/, and they are distinct.

We say a handle shift h with attracting end �C and repelling end �� is dual to a

separating curve 
 if each component of† n 
 contains exactly one of �C and ��.

2.5. Principal exhaustions. We now introduce a minor modification of the

notion of principal exhaustion from [1, 2].
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Definition 2.4. A principal exhaustion of † is an infinite sequence of principal

domains ¹P1; P2; : : : º such that, for every i � 1,

(1) Pi � PiC1;

(2) every component of @Pi ; is separating

(3) no component of @Pi is isotopic to a component of @PiC1;

(4) † D
S

Pi .

Lemma 2.5. Let† be a connected infinite-type surface and let ¹Piº be a principal

exhaustion of †. Then for all i ,

� for all j > i , H1.Pj / Š H1.Pi /˚M for someM < H1.Pj n Pi /;

� H1.†/ Š H1.Pi /˚M
0 for some M 0 < H1.† n Pi/.

Proof of Lemma 2.5. We will let W be either Pj or † to prove both cases simul-

taneously.

Let @1Pi ; : : : @mPi be the boundary components of Pi .

Since every component of † � Pi is of infinite type, every component of

W � Pi either contains an end of † or a boundary component of W . So there

is a collection of pairwise disjoint rays and arcs 
1; : : : ; 
m properly embedded in

W � Pi such that 
k \ @kPi is a single point for all k.

By the Regular Neighborhood Theorem, we may deformation retractW along

the 
k , fixing Pi throughout, to obtain a subsurface� homotopy equivalent to W

that contains Pi and such that Pi \� � Pi is a disjoint union of arcs ˛1; : : : ; ˛m,

as pictured in Figure 1.


1
Pi


2

˛1 ˛2

Figure 1. Pictured at the top is the surface W , the subsurface Pi , and the arcs 
1; : : : ; 
m.

Below is the surface�, obtained by deleting open neighborhoods of the interiors of the 
k .

The ˛k are the dotted arcs.
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Consideration of the Mayer–Vietoris sequence gives us an exact sequence

0 �! H1.Pi /˚H1.� � Pi/ �! H1.W /
@
�!H0.˛1 t � � � t ˛m/:

This gives us the direct sum decomposition ofH1.W /. Since @`Pi are separating,

then so are the ˛`. This implies that the boundary map @ is zero, and since

H1.� � Pi / is naturally a subgroup of H1.W � Pi /, the proof is complete. �

3. Compactly generating the Torelli group

Let† be an infinite-type surface. We define the compactly supported Torelli group

Ic.†/ WD ¹f 2 I.†/ j f has compact supportº:

The aim of this section is to prove the first main result of the introduction,

whose statement we now recall:

Theorem 3.1. For any connected oriented surface † of infinite type, we have

I.†/ D Ic.†/.

Remark 3.2. The referee suggested an alternate way of proving that every element

of I.†/ is a limit of mapping classes with compact support; we give this argument

at the end of this section. However, we have decided to keep our original argument,

phrased in terms of a new type of mapping class (pseudo handle shifts, see below),

which may be of independent interest.

We will need to know that certain, possibly infinite, products of handle shifts

are inaccessible by compactly supported mapping classes. For a general product

of handle shifts, this is too much to hope for. For example, in a surface with two

ends, the product of two commuting handle shifts with opposite dynamics is a

limit of compactly supported classes.

More generally, there are products of infinitely many commuting handle shift

that are limits of compactly supported classes. For example, there is the “boundary

leaf shift,” which we now explain.

Example 3.3 (boundary leaf shift). Start with an infinite regular tree T properly

embedded in the hyperbolic plane H
2 with boundary a Cantor set in @H2. Orient

@H2 counterclockwise. Build a surface by taking the boundary of a regular

neighborhood of T in H
2 � R and attach handles periodically (in the hyperbolic

metric) along each side of T, see Figure 2. The orientation on @H2 defines a

product H of handle shifts by shifting the handles in each region of H2 � T in the

clockwise direction.
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To see the boundary leaf shift is in PMCGc.†/, pick a basepoint � in T and

consider the n-neighborhood B.n/ of � in T. Then we may move the handles in-

cident to B.n/ around in a counterclockwise fashion to get a compactly supported

class fn in PMCGc.†/. The sequence ¹fnº converges to the boundary leaf shift.

Figure 2. The boundary leaf shift.

Let 
 be a separating curve in † whose complementary components are both

noncompact. Let †� and †C be the closures of the two components of † � 
 .

By the same argument as in Lemma 2.5, † deformation retracts to a subspace

homeomorphic to X _ 
 _ Y , where X and Y are subspaces of †� and †C,

respectively. It follows that H1.†/ splits as A˚ h
i ˚B , where A D H1.X/ and

B D H1.Y /.

Similarly, if h is a handle shift dual to 
 , then

H1.†/ Š L˚ h
i ˚H1.supp.h//˚R;

where L and R are subgroups of A and B .
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Definition 3.4 (pseudo handle shift). We say that a mapping class H is a pseudo

handle shift dual to a separating curve 
 with associated handle shift h if the

following hold:

(1) h is a handle shift dual to 
 ;

(2) H� agrees with h� on H1.supp.h//;

(3) H�.Œ
�/ D Œ
�;

(4) H�.L/ < A;

(5) H�.R/ < B .

In what follows, we always assume that the repelling end of h is on the

“A-side.”

Examples 3.5. Let h be a handle shift dual to a separating curve 
 . Then h is

itself a pseudo handle shift dual to 
 (with associated handle shift h).

For a less trivial example, take a connected componentX of†n .
[supp.h//.

Then the composition h with any element g 2 MCG.†/ supported on X is a

pseudo handle shift associated to h. In particular, if h0 D
Q

hi is a product of

commuting handle shifts hi with dual curves 
i , such that h and h0 commute,

supp.h0/ is disjoint from 
 and supp.h/ is disjoint from all 
i , then the composition

k D h ı h0 is a pseudo handle shift associated to h.

Note that since pseudo handle shifts are defined by their action on homology,

if f� D H� for a pseudo handle shift H associated to h, then f is also a pseudo

handle shift associate to h.

Theorem 3.6 (pseudo handle shifts are unapproachable). A pseudo handle shift

H dual to a separating curve 
 is not a limit of compactly supported mapping

classes.

Proof. Let h be the associated handle shift dual to 
 . Let �� and �C be the

ends of † corresponding to the repelling and attracting ends of h, respectively,

and let †� and †C be the complementary components of † � 
 containing

�� and �C, respectively. Choose some principal exhaustion ¹Piº of †, and let

†i� D .† � Pi / \†� and †i
C
D .† � Pi/ \†C.

The curve 
 partitions the space of ends into two closed subspaces E� and

EC of which †� and †C are neighborhoods, respectively. The subsurfaces †i�
and †i

C
are also neighborhoods of E� and EC. Since H is pure, H.†i�/ and

H.†i
C
/ are also neighborhoods of E� and EC. Since E� and EC are disjoint, the

intersection of the closures of H.†i
˙
/ and †� is compact, and since the †i

˙
are

nested and have empty intersection, we may take i large enough so that the term

Pi in our principal exhaustion contains 
 and satisfies H.†i
˙
/ \†� is empty.
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The handle shift h is supported on a strip S with equally spaced handles and

standard basis ¹ p̨; p̌ºk2Z of H1.S/ so that h�. p̨/ D p̨C1 and h�. p̌/ D p̌C1.

We choose once and for all curves in S representing these classes. After reindexing

the p̨ and p̌ by translating p, we assume that ˛1 and ˇ1 lie in †i�. Since p̨ and

p̌ tend to �C, there is some j > 1 such that j̨ and ǰ lie in †i
C

.

Suppose that H is a limit of compactly supported Hn. Pick n large enough

so that Hn agrees with H on Pi and so that Hn� agrees with h� on both H1.Pi/

and h˛1; ˇ1; : : : ; j̨ ; ǰ i. Let Pk be some term in the exhaustion with k � i that

contains the support of Hn.

We have a direct sum decomposition

H1.Pk/ Š Z
` ˚ Z

2j ˚ Z
r

where Z
` is a subgroup ofH1.†�/˚h
i, Z

2j D h˛1; ˇ1; : : : ; j̨ ; ǰ i, and Z
r is a

subgroup of H1.†C/. Picking a basis hx1; : : : ; x`; ˛1; ˇ1; : : : ; j̨ ; ǰ ; y1; : : : ; yri

for H1.Pk/ compatible with this decomposition, we see that Hn� has a block

decomposition:

Hn� D

` 2j � 2 2 r
0

B

@

1

C

A

` � 0 0 Y

2 � 0 0 Z

2j � 2 � I 0 �

r X 0 A B

By properties (4) and (5) of a pseudo handle shift, and our choice of i , the blocks

X , Y , and Z are all zero. So the matrix is

Hn� D

` 2j � 2 2 r
0

B

@

1

C

A

` � 0 0 0

2 � 0 0 0

2j � 2 � I 0 �

r 0 0 A B

This matrix is column equivalent to

Hn� D

` 2j � 2 2 r
0

B

@

1

C

A

` � 0 0 0

2 � 0 0 0

2j � 2 � I 0 0

r 0 0 A B
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But the matrix ŒA B� is an r � .r C 2/ matrix, and so its Jordan form cannot have

a pivot in every column. So the matrix for Hn� is equivalent to a matrix with a

zero column. But Hn� is an isomorphism, and this contradiction completes the

proof. �

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. We will first show that I.†/ < PMCGc.†/. By [23,

Theorem 1], we only need to consider the case when † has at least two ends

accumulated by genus. We observe that I.†/ < PMCG.†/. Let g be in PMCG.†/

so that g is not a limit of compactly supported mapping classes. We show that g

is not in I.†/.

By Theorem 3 and Corollary 4 from [1], g can be written g D f k�1 where f is

a limit of compactly supported classes and k is a product of pairwise commuting

handle shifts hi . The handle shift hi has the property that the support of hi is

disjoint from the dual curve 
j for hj whenever i ¤ j . Thus, for any i , k is a

pseudo-handle shift dual to 
i associated to hi (see Examples after the definition

of pseudo handle shifts). If gwere in Torelli, then f� D g�k� D k�, which implies

f is a pseudo handle shift, but this violates Theorem 3.6. This shows

I.†/ < PMCGc.†/:

If �n is a sequence in Ic.†/ that converges to �, then � lies in I.†/, since �n.˛/

eventually agrees with �.˛/ for any given simple closed curve ˛. So

Ic.†/ < I.†/:

For the other containment, let � be an element of I.†/ and let ¹ nº be a

sequence in PMCGc.†/ converging to �. We would like to convert  n into a

sequence of compactly supported �n in I.†/ converging to �. The idea is that the

homology classes affected by n must move further and further away from a given

basepoint, and so we can precompose the  n with a mapping class supported far

from the basepoint to produce the desired �n.

Fix a principal exhaustion ¹Piº of †. For each i , pick a j > i such that Pj
contains ��1.Pi/. Pick an N large enough so that, for all n � N , the map  n has

a representative that agrees with a fixed representative of � on Pj . Note that  n�

agrees with �� on H1.Pj /. Pick a k > j such that Pk contains the support of  n.

By Lemma 2.5, we haveH1.Pk/ Š H1.Pi /˚Q˚R for some Q a subgroup

of H1.Pj � Pi / and R a subgroup of H1.Pk � Pj /. Let ˛ be element of H1.Pk/

and write ˛ D 
C�C� where 
 , �, and � are inH1.Pi /,Q, andR, respectively.

So  n�.˛/ D 
 C �C  n�.�/.
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The class � is represented by a 1-manifold N in Pk � Pj . By our choice of j

and n, the 1-manifold  n.N/ is disjoint fromPi . So n�.�/ is inQ˚R. Therefore

 n�WH1.Pk/! H1.Pk/ may be represented by a square matrix

A D

�

I 0

0 B

�

;

where I is the identity onH1.Pi/ andB is a square matrix. SinceA is the induced

map on homology associated to a homeomorphism of Pk , it is invertible and

respects the intersection form, and so the same is true of B .

We claim that the matrixB is represented by a homeomorphismF 0WPk � Pi !

Pk � Pi that is the identity on @Pi\Pk � Pi . To see this, note thatB preserves the

intersection form and the homology classes of the boundary components of each

component ofPk � Pi . LetX be the surface obtained fromPk � Pi by capping off

all the boundary components with disks. The homology of X is a quotient of that

of Pk � Pi , and B induces an automorphism of the homology of X that preserves

the intersection form. There is a homeomorphismX ! X inducing this automor-

phism that preserves each component of X , by Burkhardt’s theorem [8]. By an

isotopy, we may assume that Burkhardt’s homeomorphism ofX fixes, point-wise,

small disks around the centers of the disks we added to construct X . Restricting

this to Pk � Pi is the desired F 0.

We extend F 0 by the identity to all of † and call the result F .

Now consider the homeomorphism �n D  n ıF
�1. By the construction of F ,

this homeomorphism acts trivially on the homology of †, and agrees with  n
on Pi .

This completes the proof. �

We finish this section with the alternate proof of I.†/ < PMCGc.†/, as

suggested by the referee. Suppose, for contradiction, that there is f 2 I.†/ which

may not be expressed as the limit of a sequence of mapping classes with compact

support. A consequence of [1, Theorem 4.5] is that there is a separating curve


 � † such that 
 and f .
/ have different topological types in every compact

subsurface of † containing them. In particular, they induce different splittings of

H1.†;Z/, which contradicts the fact that f acts trivially on homology.

3.1. Generation by separating twists and bounding pairs. The proofs in this

section are due to Justin Malestein.

Proposition 3.7. For any finite-type surface † D †bg;p, I.†/ is generated by

separating twists and bounding pair maps.
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Proof. The Dehn twist about each boundary component of† is in I.†/ and counts

as a separating twist. By capping off each boundary component of† with a once-

punctured disk, we get an exact sequence

1 �!
Y

˛2@†

hT˛i �! I.†bg;p/ �! I.†g;pCb/ �! 1:

Since a separating twist (resp. bounding pair map) from I.†g;pCb/ can be lifted

to a separating twist (resp. bounding pair map) in I.†bg;p/ , we may assume b D 0.

Recall that I.†/ � PMCG.†/ and PMCG.†/ is generated by Dehn twists.

When g D 0, then all curves are separating, so PMCG.†/ D I.†/. When g D 1

and p � 1, I.†/ is the trivial group. When g � 2 and p � 1, then the statement

of the proposition holds by Birman [4] and Powell [24]. We now assume g � 1

and induct on p using the Birman exact sequence.

Set † D †g;p, g � 1 and p � 1. Pick a point x 2 † and let † � x denote the

surface obtained from puncturing † at x. The inclusion map † � x ,! † gives

rise to the Birman exact sequence:

1 �! �1.†; x/
�
�! PMCG.† � x/ �! PMCG.†/ �! 1;

where �1.†; x/
�
! PMCG.† � x/ is the point-pushing map. Let

� D ��1.I.†� x// \ �1.†; x/:

The Birman sequence induces the exact sequence

1 �! � �! I.† � x/ �! I.†/ �! 1:

By the induction hypothesis, I.†/ is generated by separating twists and bounding

pair maps. Every bounding pair (resp. separating curve) in † has a lift to † � x

which is also a bounding pair (resp. separating curve). Thus, separating twists and

bounding pair maps in I.†/ can be lifted to such maps in I.†�x/. We now claim

�.�/ is contained in the group generated by separating twists.

Given a simple curve ˛ 2 �1.†; x/, the point-pushing map �˛ along ˛ is

equal to a product of two Dehn twists; namely �˛ D T˛0T �1
˛00 , where ˛0 and ˛00

are freely homotopic to ˛ in † but not in † � x. Let �0 D Œ�1.†; x/; �1.†; x/�.

By [25, Lemma A.1], �.�0/ is generated by point-pushing maps along simple

(null-homologous) separating curves. In particular, if ˛ is separating, then �˛ is

a product of two separating twists. This shows �.�0/ is contained in the group

generated by separating twists. Now let ¹x1; : : : ; xpº be the set of punctures of †.

For each xi , let ˛i 2 �1.†; x/ be a simple curve which is freely homotopic to xi .

In this case, �˛i
is a single separating twist along a curve which is freely homotopic

to xi in † but not in † � x.
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We now claim � D h�0; ˛1; : : : ; p̨i. Let 
 2 �1.†; x/ � h�0; ˛1; : : : p̨i.

Then Œ
� 2 H1.†/=h˛1; : : : ; p̨i is nontrivial, so there is a simple non-separating

curve ˛ on † such that Œ
� D Œ˛k� in H1.†/=h˛1; : : : ; p̨i. But then �˛ is a prod-

uct of Dehn twists along two disjoint non-separating, non-homologous curves,

so cannot be in I.† � x/. This shows � D h�0; ˛1; : : : ; p̨i, and in particular

�.�/ is contained in the group generated by separating twists. This finishes the

proof that I.†�x/ is generated by separating twists and bounding pair maps. �

Lemma 3.8. Let † be a connected oriented surface of infinite type. If P is a

principal domain of † such that each boundary component of P is separating,

then the inclusion map P ,! † induces an embedding i�WMCG.P /!MCG.†/

and i�1�

�

I.†/
�

\MCG.P / D I.P /.

Proof. By our assumption, all boundary curves of P are essential and distinct

in †, hence Dehn twists along the boundary curves induce non-trivial mapping

classes in MCG.†/. This shows i� is injective. For the second statement, by

Lemma 2.5, we have a direct sum decompositionH1.†/ D H1.P /˚M for some

M < H1.† n P /, thus i�1� .I.†//\MCG.P / D I.P /. �

We now prove the second main result of the introduction; namely:

Theorem 3.9. Let † be a connected oriented surface of infinite type. Then I.†/

is topologically generated by separating twists and bounding-pair maps.

Proof. Let ¹P1; P2; : : :º be a principal exhaustion of †. By the previous lemma,

elements in I.†/ with support on Pi is I.Pi /. By Theorem 3.1, I.†/ D
S

i I.Pi /.

Finally, by Proposition 3.7, I.Pi/ is generated by separating twists and bounding

pair maps. �

4. Abstract commensurators of the Torelli group

In this section we prove Theorem 1.4. As in the statement of the theorem, through-

out this section we will assume that the surface † has empty boundary. As men-

tioned in the introduction, the first step of the argument consists of proving that

an element of Comm I.†/ induces a simplicial automorphism of a combinato-

rial object associated to †, called the Torelli complex, introduced by Brendle and

Margalit in [6].

4.1. Torelli complex. Recall that the curve complex of † is the (infinite-dimen-

sional) simplicial complex whose vertex set is the set of isotopy classes of curves

in †, and where a collection of vertices spans a simplex if and only if the corre-

sponding curves are pairwise disjoint. The curve complex was used by Ivanov [14],
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Korkmaz [18], and Luo [19] to prove that, for all but a few finite-type surfaces †,

Comm MCG.†/ Š Aut MCG.†/ Š MCG.†/:

Subsequently, Bavard, Dowdall, and Rafi [2] established the analogous result for

every infinite-type surface. In a similar fashion, Farb and Ivanov [9], Brendle and

Margalit [6, 7, 5], and Kida [16] proved that, for all but a few finite-type surfaces,

Comm I.†/ Š Aut I.†/ Š MCG.†/:

Here, we will adapt the ideas of Brendle and Margalit [6] to the infinite-type

setting. Given an infinite-type surface †, we define its Torelli complex to be the

(infinite-dimensional) simplicial complex whose vertex set is the set of isotopy

classes of separating curves and bounding pairs in †, and where a collection

of vertices spans a simplex if and only if the corresponding curves are pairwise

disjoint. In order to relax notation, we will blur the distinction between vertices

of T.†/ and the curves (or multicurves) they represent.

The Torelli complex of a finite-type surface is connected [9]. As a conse-

quence, the same holds for the Torelli complex of an infinite-type surface also.

We record the following observation as a separate lemma, as we will need to make

use of it later:

Lemma 4.1. The Torelli complex T.†/ has infinite diameter if and only if † has

finite type.

Proof. If † has finite type, a slick limiting argument due to Feng Luo (see the

comment after Proposition 4.6 of [20]) shows that the curve complex has infinite

diameter. The obvious adaptation of this method to the case of the Torelli complex

also implies that T.†/ has infinite diameter.

For the other direction, suppose† has infinite type. Since curves are compact,

given multicurves 
; ı � †, we can find a separating curve � � †which is disjoint

from both 
 and ı. In particular, T.†/ has diameter two. �

4.2. Automorphisms of the Torelli complex. Denote by AutT.†/ the group of

simplicial automorphisms of T.†/, and observe that there is a natural homomor-

phism MCG.†/! AutT.†/. We want to prove:

Theorem 4.2. Let † be an infinite-type surface without boundary. The natural

homomorphism MCG.†/! AutT.†/ is an isomorphism.

As noted above, the finite-type case is due to Brendle and Margalit [6, 7, 5]

and Kida [16]. Indeed, the notion of sides which is used in this section is adapted

from arguments that may be found in Brendle and Margalit [6], and which find

their way back to ideas of Ivanov [14].
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Sides. Recall that the link of a vertex v of a simplicial complex X is the set of

all vertices of X that span an edge with v. In particular, v is not an element of its

link. For any finite-dimensional simplex � let Link.�/ be the intersection of the

links of each of the vertices in � . We say that two vertices ˛; ˇ in Link.�/ lie on

the same side of � if there exists a vertex 
 in Link.�/ that fails to span an edge

with both ˛ and ˇ, that is, if there exists a curve in Link.�/ that intersects both ˛

and ˇ. Observe that “being on the same side” defines an equivalence relation ��
on Link.�/, that is, the sides of � are the equivalence classes of �� in Link.�/.

In particular, we may consider the sides of a vertex of T.†/. We say that 
 in

T.†/ is k-sided if there are k equivalence classes with respect to �
 . As we shall

see, k is in ¹1; 2º.

For any vertex 
 of T.†/ there exist two subsurfaces R;L � † obtained by

cutting † along 
 such that 
 is isotopic to the boundary components of both R

and L. Suppose R is of finite type. We call 
 a pants curve if 
 is a separating

curve and R Š †10;2, a sphere with two punctures and one boundary component.

We call 
 a genus curve if 
 is a separating curve and R Š †11;0, a torus with one

boundary component. If 
 is any other type of separating curve then we say it is

type X .

If 
 is a bounding pair and one of the associated subsurfaces of † is homeo-

morphic to †21;0 then we call it a genus bounding pair.

Lemma 4.3. A vertex 
 in T.†/ is 2-sided if and only if it is typeX or it is a genus

bounding pair. Otherwise, 
 is 1-sided.

Proof. We first prove that if 
 has type X then it has exactly two sides. Let R and

L be the two subsurfaces of † obtained by cutting along 
 . Let ˛; ˇ 2 Link.
/.

If ˛ � R and ˇ � L, then any vertex of T.†/ that intersects both ˛ and ˇ must

also intersect 
 . This implies that 
 has at least two sides. If ˛; ˇ � R then there

exists an element of the MCG.†/-orbit of ˛ that intersects both ˛ and ˇ and is

contained in R. An identical argument holds for two vertices contained in L and

so it follows that 
 has exactly two sides.

Now let 
 be a genus one separating curve or a pants curve. DefineL;R � † as

above. Observe that neither†10;2 nor†11;0 contains any non-peripheral separating

curves or bounding pairs. Therefore Link.
/ does not contain any curves inR. As

above, all vertices contained in L are on the same side and so 
 is 1-sided.

We now move on to the case where 
 is a bounding pair. We defineR and L as

above. Assume that neitherR norL is homeomorphic to†21;0. Let ˛; ˇ 2 Link.
/

be such that ˛ � R and ˇ � L. As shown in Figure 3, there exists a bounding pair


 0 D ¹ıR; ıLº such that

� any pair of curves in 
 or 
 0 forms a bounding pair,

� ıR � R and ıL � L, and

� ıR \ ˛ ¤ ; and ıL \ ˇ ¤ ;.
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ˇ ˛ıL ıR

Figure 3. A general bounding pair 
 is 1-sided. For any two vertices ˛; ˇ in T.†/ adjacent

to 
 , we can find a bounding pair not adjacent to ˛ and ˇ but adjacent to 
 . Informally,

bounding pairs can “pass through” each other.

That is, 
 0 is in Link.
/ and there is no edge between 
 0 and ˛ or between 
 0

and ˇ. It follows that 
 has exactly one side.

If 
 is a genus bounding pair then no such 
 0 exists. Indeed, every non-

separating curve in R that forms a bounding pair with a curve in 
 is also isotopic

to a curve in 
 . By the same argument as for type X vertices, we conclude that 


is 2-sided. �

Let � be a finite-dimensional simplex of T.†/ consisting entirely of curves of

type X . Using similar methods to the above proofs it is straightforward to show

that the set of sides of � is in bijective correspondence with the subsurfaces of †

obtained by cutting † along � .

The following lemma follows immediately from Lemma 2.2.

Lemma 4.4. Let � be a simplex in T.†/. Then there are curves realizing the

homotopy classes in � which do not accumulate in any compact set of † if and

only if for every vertex v … � , the set ¹w 2 � j i.v; w/ ¤ 0º is finite.

Proof of Theorem 4.2. Let

ˆWMCG.†/ �! Aut.T.†//

be the natural homomorphism; that is, for f in MCG.†/, ˆ.f / is the automor-

phism of T.†/ determined by the rule

ˆ.f /.
/ D f .
/

for every separating curve or bounding pair 
 .

First, we show that ˆ is injective. To this end, suppose ˆ.f / D Id. Then we

argue that f .
/ D 
 for every curve 
 . Indeed, if 
 is separating, then 
 is a vertex

of T.†/, so ˆ.f /.
/ D 
 and we are done. If 
 is non-separating, there is some

curve 
 0 such that 
 and 
 0 form a bounding pair. Because ˆ.f / fixes the vertex

corresponding to 
 [ 
 0, it must be the case that either f .
/ D 
 and f .
 0/ D 
 0

or f .
/ D 
 0 and f .
 0/ D 
 . But there exists a separating curve � that intersects


 but not 
 0. Because f .�/ D �, it cannot be the case that f .
/ D 
 0. Therefore

f .
/ D 
 as desired.
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By the Alexander method for infinite-type surfaces, due to Hernández, Mora-

lez, and Valdez [13], we deduce that f is the identity in MCG.†/.

We now show that ˆ is surjective. Let �WT.†/! T.†/ be an automorphism.

Fix a principal exhaustion ¹P1; P2; : : : º of † such that P1 has complexity at least

six. Define �i to be the simplex of T.†/ corresponding to the multicurve @Pi .

Denote by Pi the subcomplex of T.†/ spanned by the curves and bounding pairs

contained in Pi . Denote by P ı
i the surface obtained by gluing once-punctured

disks to each boundary component of Pi . By construction, �i contains only type

X vertices and therefore T.Pi / is isomorphic to T.P ı
i /. As the complexity of Pi

is at least six, Pi is connected for all i . By Lemma 4.1, we know that Pi is the

unique side of �i whose diameter is infinite.

Since � is a simplicial automorphism, it induces a bijection between the sides

of �i and the sides of �.�i /. Because all simplicial automorphisms of T.†/ are

isometries, �.�i / has a unique side of infinite diameter. From Lemma 4.3 we have

that every vertex of �.�i / is of type X or it is a genus bounding pair. However,

since each side of �.�i / is connected, it cannot contain a genus bounding pair by

Lemma 4.3.

We write Qi � Link.�.�i// for the unique side of �.�i / with infinite diameter,

and Qi � † for the finite-type subsurface which it defines. By Lemma 4.4,

we can realize the curves
S

Qi by non-accumulating curves in †. The Qi ’s

form a sequence of nested subsurfaces, thus their union is an open set. The

nonaccumulation property implies that
S

Qi is the full surface †.

Since each vertex of �.�i/ has typeX we have that Qi Š T.Qı
i /. Furthermore,

� restricts to an isomorphism

�i WPi �! Qi :

Since eachPi is assumed to have complexity at least six, the combination of results

of Kida [16] and Korkmaz [18] implies that �i is induced by a homeomorphism

fi WPi ! Qi . Moreover, the homeomorphism fiC1 may be chosen so that it

restricts to fi on the subsurface Pi . Hence their direct limit is a homeomorphism

of
S

Pi to
S

Qi inducing �. Since † D
S

Pi D
S

Qi , this completes the

proof. �

We now end this subsection with the following two observations which will be

useful later.

Lemma 4.5. For any simplex � in T.†/ and any compactly-supported f 2 I.†/,

if f preserves � then f fixes � pointwise.

Proof. Consider two vertices v; w 2 � , and assume f .v/ D w. Then v and w are

either both separating curves or they are both bounding pairs.
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Suppose v separates † into two infinite-type subsurfaces. Since v and w are

disjoint, we can find a compact domain Y � † such that v and w are of different

topological type. By choosing Y large enough, we can assume that Y supports f .

But then it is impossible for f jY .v/ D f .v/ D w.

Suppose now that v (and w) separates † into a finite-type subsurface and an

infinite-type subsurface. Call the finite-type subsurfaces V andW , corresponding

to v and w respectively. Since v 2 † nW and w 2 † n V , the subsurfaces V and

W are disjoint. By assumption f .v/ D w, therefore V andW must have the same

topological type and f .V / � W . But this is impossible if f 2 I.†/. �

Lemma 4.6. For any bounding pair v 2 T.†/ and any f 2 I.†/, if f preserves

v, then f must fix the curves in v.

Proof. Suppose v D ¹˛; ˇº and f .˛/ D ˇ. The complement of v in † has two

components. Since f is pure it preserves the components. Let Y be one of the

components. The orientation of Y induces an orientation on ˛ and ˇ. These

oriented curves (as homology classes) satisfy ˛ D �ˇ. The map f is orientation

preserving, so it must preserve the orientation of ˛ and ˇ. That is, f .˛/ D ˇ as

oriented curves. But then ˛ and f .˛/ cannot be homologous, contradicting that

f 2 I.†/. �

4.3. Algebraic characterization of twists and bounding pair maps. Before

proving Theorem 1.4 we will need one more ingredient. Notice that the vertices

of T.†/ define supports of elements in I.†/. We must now show that commen-

surations of I.†/ preserve such elements and therefore define a permutation of

the vertices of the complex. We will adapt the algebraic characterization of Dehn

twists of Bavard, Dowdall, and Rafi [2] to our setting.

We first introduce some terminology to facilitate the characterization of twists

and bounding pairs. Let G < MCG.†/. We denote by FG the set of elements of

G whose conjugacy class (in G) is countable. Bavard, Dowdall, and Rafi proved

that if G is finite-index in MCG.†/ then f is in FG if and only if it has compact

support [2, Proposition 4.2]. Using similar methods, we will show:

Proposition 4.7. Let G < I.†/ be a finite-index subgroup. An element f in G

has compact support if and only if f is in FG .

Proof. It is clear that compactly-supported mapping classes have countable con-

jugacy classes. For the opposite direction, the argument in [2, Proposition 4.2] ex-

hibits a infinite sequence of pairwise-disjoint curves ai such that the Dehn twists

about the ai give rise to uncountably many conjugates of f . Since † has infi-

nite type, the curves ai may be chosen to be separating, so that the corresponding

twists belong to I.†/. Hence the result follows. �
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We denote by Z.H/ the center of H . If h is in H , we write CH .h/ for the

centralizer of h in H . Given a finite-index subgroup G < I.†/ we write MG for

the set of elements f in G which satisfy the following three conditions:

(1) f 2 FG ,

(2) Z.FG \ CG.f // is an infinite cyclic group, and

(3) CG.f / D CG.f
k/ for every k > 0.

We now prove that, for any finite-index subgroup G of I.†/, powers of Dehn

twists and bounding pair maps belong to the set MG .

Lemma 4.8. Let G < I.†/ be a finite-index subgroup. If f 2 G is a power of a

Dehn twist about a separating curve or a bounding pair map then f belongs to

MG .

Proof. Since f has compact support, f 2 FG . Suppose first f is a power of a

Dehn twist about the separating curve 
 . We have that

CI.†/.T
k

 / D ¹g 2 I.†/ j g.
/ D 
º;

for k ¤ 0. It follows that all powers of T
 have the same centralizer in I.†/ and

hence, in any subgroup. A similar argument holds if f is a power of bounding

pair map. This implies the third condition in the definition of MG .

To see that f satisfies the second condition, once again assume first that f is a

power of the Dehn twist about a separating curve 
 . Let g be a nontrivial element

of FG\CG.f / and assume that g is not a power of T
 . Then there exists a curve ı

disjoint from 
 such that g.ı/ ¤ ı. If ı is a separating curve then T k
ı

is in CG.f /,

for some k > 0, but gT k
ı
¤ T k

ı
g, so g is not in Z.FG \ CG.f //. On the other

hand, suppose ı is a non-separating curve; since g acts trivially on homology we

have that ı and g.ı/ are homologous curves. Because T
g.ı/ D gT
 .ı/ D g.ı/,

we have that g.ı/ is disjoint from 
 . It follows that some power of TıT
�1
g.ı/

belongs

to CG.f /, but does not commute with g. We have therefore shown that g is not

central in FG \ CG.f / as desired.

A similar argument also shows that, if f is a power of a bounding pair map,

then g belongs toZ.FG\CG.f // if and only if it is a power of the same bounding

pair map. �

WhenG is a finite-index subgroup of MCG.†/, all elements ofMG are powers

of multi Dehn twists, see [2, Lemma 4.5]. In stark contrast, this is no longer true

in our setting. When G is a finite-index subgroup of I.†/, then MG may contain

elements which are not supported on a disjoint union of annuli: for example, we

may take a pure braid on a nonseparating planar subsurface with at least three

boundary components. The following proposition characterizes those elements

that lie in MG , when G is a finite-index subgroup of I.†/. Recall the definition of

@f for a mapping class f , which is non-empty when f is compactly-supported.

We have the following statements.
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Lemma 4.9. Let G < I.†/ be a finite-index subgroup. Given a nontrival

f 2 MG , let � � @f be the set of all separating curves or bounding pairs. The

following statements hold.

(1) For all g 2 FG \ CG.f /, g fixes every component of † n @f .

(2) If � is empty, then for each finite-type domain Y of † n @f , f jY is either the

identity map or pseudo-Anosov. Furthermore, there is at least one pseudo-

Anosov component of f .

(3) If � is non-empty then � D @f is either a separating or a bounding pair,

and f D T
j
� for some non-zero j , where T� is either a separating twist or a

bounding pair map.

Proof. For any g 2 FG \ CG.f /, g.@f / D @.gfg
�1/ D @f . To show that g fixes

every component of † n @f , it is enough to show g fixes each component of @f .

To see this, suppose there exists a domain Y of † n @f such that g.Y / is not Y .

Since g fixes the components of @f , Y and g.Y / share the same boundary. This

means † D Y [ g.Y / [ @Y , so Y must have infinite type. But then g cannot be

a pure mapping class, contradicting the fact that g 2 I.†/. In the following, we

will consider the two cases that � is empty or � is not empty. For each case, we

show g fixes the components of @f along with the statements of (2) and (3).

First suppose that � is empty. In this case, every curve of @f is non-separating

and no two form a bounding pair. In particular, no two curves of @f are homolo-

gous, so every element of FG \CG.f /must fix the components of @f . Now let Y

be a component of † n @f of finite-type. The map f jY is irreducible (otherwise

the reducing curves would also be in @f ), so it is either of finite order or pseudo-

Anosov. We now show it is not possible for f jY to be non-trivial and have finite

order. Since @f does not contain any separating curves or bounding pairs, it has

cardinality at least 3. This means �.Y / < 0, in which case MCG.Y / is torsion-

free ([10, Corollary 7.3]). Hence, if f jY is not pseudo-Anosov, then f jY is the

identity. Finally, if there is no pseudo-Anosov component of the support of f ,

then there exists a power k � 1 such that f k jY is the identity for any component

Y in † n @f . But f has infinite order by Lemma 2.3, so f k must be a product

of powers of Dehn twists about curves in @f . This is impossible as f 2 I.†/,

see [28].

Now suppose � is non-empty. Regard � as a simplex in T.†/. Every element

g 2 FG \ CG.f / preserves @f , and hence also � . By Lemma 4.5, g fixes each

vertex of � . Then, by Lemma 4.6, we can further conclude that g also fixes each

curve in � . Let v by a vertex of � , and let Tv be the twist about v, which belongs

to I.†/.

We now show f D T
j
v for some non-zero j . In particular, v D � D @f .

Since every g 2 FG \ CG.f / preserves v, g commutes with Tv, showing T kv 2

Z.FG \ CG.f // for some k � 1. Since f also lies in Z.FG \ CG.f // which is

infinite cyclic by assumption, we must have f m D T nv for some non-zero integers
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m and n. Letw a vertex of T.†/ disjoint from v and choose k � 1 so that T kw 2 G.

Since v and w are disjoint, we have

T kw 2 CG.T
n
v / D CG.f

m/ D CG.f /:

This is only possible if f .w/ D w. Thus, f fixes every separating curve and

bounding pair disjoint from v. Applying Lemma 4.6, we obtain that f fixes

every curve disjoint from v. This shows f D T
j
v for some non-zero integer j ,

concluding the proof. �

Definition 4.10 (essential support). For each element f 2 MG , we define the

essential support supp.f / of f as follows. Let � � @f be the set of all separating

curves or bounding pairs.

� If � is nonempty, then supp.f / D � .

� If � is empty, then supp.f / is the union over all domains Y in † n @.f / such

that f jY is a pseudo-Anosov. Note that by Lemma 4.9, supp.f / is nonempty.

Let

CMG
.f / D ¹g 2MG j fg D gf º:

We also define a further subset:

.PG/f D ¹g 2 CMG
.f / j g is supported in † n supp.f /º:

The next lemma tells us that the elements supported in supp.f / are precisely those

that are central.

Lemma 4.11. LetG < I.†/ be a finite-index subgroup. For any element f in MG

we have that

CMG
.f / D Z.CMG

.f //˚ .PG/f :

Proof. Let � � @f be the set of all separating curves or bounding pairs. If �

is nonempty, then by Lemma 4.9, � D @f is a separating curve or a bounding

pair, and f D T
j
� , where T� is a separating twist or a bounding pair map. In this

case, any element g 2 CMG
.f / fixes every curve of � . Thus, if g has support in

supp.f /, then g is itself a power of T� . This shows g 2 Z.CMG
.f //.

Now suppose � is empty. By Lemma 4.9, supp.f / is non-empty. Let g 2

CMG
.f / � F\CG.f / be an element with support in supp.f /. We want to show

g lies in the center ofCMG
.f /. If h 2 CMG

.f / has support disjoint from supp.f /,

then h and g clearly commute. Henceforth, we may assume this is not the case.

By Lemma 4.9, f , g, and h all preserve every component of supp.f /. Thus,

we can assume without a loss of generality that h is also supported in supp.f /.
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Let Y1; : : : ; Yn be the components of supp.f /. For each i , let fi , (resp. gi and hi )

denote the restriction of f (resp. g and h) to Yi . Since the components of @f are

non-separating and no two form a bounding pair, we can write

f D f1f2 � � �fn g D g1g2 � � �gn; h D h1h2 � � �hn;

where each fi is pseudo-Anosov on Yi . Since MCG.Yi/ is torsion-free and

f 2 MG , the centralizer of fi in MCG.Yi/ is cyclic. As f commutes with g

and h, each fi commutes with gi and hi . Thus, each gi or hi is contained in

the centralizer of fi , yielding gi and hi commute for all i . This shows g and h

commute as required. �

Finally, we can prove the characterization of Dehn twists and bounding pair

maps.

Proposition 4.12. Let G < I.†/ be a finite-index subgroup, and let f lie in G.

Then f is a power of a Dehn twist or of a bounding pair map if and only f is

in MG , and for all g in MG such that .PG/g D .PG/f we have that there exist

integers i; j ¤ 0 such that f i D gj .

Proof. The forward direction is Lemma 4.8 and the definition of .PG/f .

For the other direction, we prove the contrapositive. Assume that f is not

a power of a Dehn twist or bounding pair map. Our goal is to find an element

g 2 MG with supp.g/ D supp.f / such that no powers of f and g are equal, but

.PG/f D .PG/g .

By Lemma 4.9, there exists a domain Y in † n @f on which f jY is a pseudo-

Anosov. Since Y supports a pseudo-Anosov, we may choose an element h 2

MCG.†/ such that h preserves the components of † n @f , is identity outside of

Y , and the restriction to Y of f and g D hf h�1 are two independent pseudo-

Anosovs. Since I.†/ is normal in MCG.†/, g 2 I.†/, and by construction,

supp.g/ D supp.f /. Thus .PG/g D .PG/f , but f and g do not have a common

power. �

4.4. Abstract commensurators of the Torelli group. We can now finally prove

Theorem 1.4. For a bounding pair 
 D ¹
1; 
2º we use the shorthand T
 for the

bounding pair map T
1
T �1

2

.

Proof of Theorem 1.4. Let Œ � be an element of Comm I.†/ representing the iso-

morphism of finite index subgroups

 WG1 �! G2:

Let 
 be a separating curve or a bounding pair and choose n in N so that T n
 is in

G1. By Proposition 4.12, T n
 is in MG1
and for all g in MG1

such that .PG1
/g D

.PG1
/T n



, there exist integers i; j so that .T n
 /

i D gj . Since these conditions
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are preserved by isomorphism, we have that  .T n
 / lies in MG2
, Proposition 4.12

implies there exists a separating curve or bounding pair ı and a nonzero integerm

such that  .T n
 / D T
m
ı
:

At this point, and again with respect to the above notation, we obtain that  

induces a map

 �WT.†/ �! T.†/;


 7�! ı:

We observe that � is a simplicial map, since powers of Dehn twists and bounding

pair maps commute if and only if the underlying curves are disjoint. Moreover,

the map is also bijective, with inverse the simplicial map associated to the inverse

of  �1.

By Theorem 4.2, there exists an f 2 MCG.†/ such that  �.
/ D f .
/ for

every separating curve or bounding pair 
 . Now, for any g in G1 we have

 .gT n
 g
�1/ D  .g/ .T n
 / .g

�1/ D  .g/T nf .
/ .g
�1/ D T n .g/f .
/;

and therefore

T n .g/f .
/ D  .gT
n

 g

�1/ D  .T ng.
// D T
n
fg.
/:

Therefore  .g/f .
/ D fg.
/. By use of the Alexander method [13] we conclude

that  .g/ D fgf �1. This shows that every abstract commensurator of I.†/ is

defined by conjugation by a mapping class of †, and in particular, so is every

automorphism of I.†/.

On the other hand, suppose there exists an f in MCG.†/ and a finite-index

subgroup H < I.†/ such that conjugation by f induces the identity map on H .

For any separating curve or bounding pair 
 , there exists some m � 1 such that

Tm
 lies in H . Thus

Tm
 D f T
m

 f

�1 D Tmf 
 :

By [2, Lemma 2.5], f 
 D 
 , and thus f is the identity by Theorem 4.2. This

completes the proof. �

References

[1] J. Aramayona, P. Patel, and N. G. Vlamis, The first integral cohomology of pure

mapping class groups. Preprint, 2017. arXiv:1711.03132 [math.GT]

[2] J. Bavard, S. Dowdall, and K. Rafi, Isomorphisms between big mapping class

groups. To appear in Internat. Math. Res. Notices. Preprint, 2017. arXiv:1708.08383

[math.GR]

[3] M. Bestvina, K.-U. Bux, and D. Margalit, The dimension of the Torelli group. J. Amer.

Math. Soc. 23 (2010), no. 1, 61–105. Zbl 1233.20033 MR 2552249

http://arxiv.org/abs/1711.03132
http://arxiv.org/abs/1708.08383
http://zbmath.org/?q=an:1233.20033
http://www.ams.org/mathscinet-getitem?mr=2552249


1398J. Aramayona, T. Ghaswala, A. E. Kent, A. McLeay, J. Tao, and R. R. Winarski

[4] J. S. Birman, On Siegel’s modular group. Math. Ann. 191 (1971), 59–68.

Zbl 0208.10601 MR 0280606

[5] T. E. Brendle and D. Margalit, Normal subgroups of mapping class groups and the

metaconjecture of ivanov. Preprint, 2017. arXiv:1710.08929 [math.GT]

[6] T. E. Brendle and D. Margalit, Commensurations of the Johnson kernel. Geom.

Topol. 8 (2004), 1361–1384. Zbl 1079.57017 MR 2119299

[7] T. E. Brendle and D. Margalit, Addendum to: “Commensurations of the Johnson

kernel.” Geom. Topol. 12 (2008), no. 1, 97–101. Zbl 1128.57303 MR 2377246

[8] H. Burkhardt, Grundzüge einer allgemeinen Systematik der hyperelliptischen Func-

tionen I. Ordnung. Nach Vorlesungen von F. Klein. Math. Ann. 35 (1889), no. 1-2,

198–296. JFM 1510603 MR 1510603

[9] B. Farb and N. V. Ivanov, The Torelli geometry and its applications. research

announcement. Math. Res. Lett. 12 (2005), no. 2-3, 293–301. Zbl 1073.57012

MR 2150885

[10] B. Farb and D. Margalit, A primer on mapping class groups. Princeton Mathemat-

ical Series, 49. Princeton University Press, Princeton, N.J., 2012. Zbl 1245.57002

MR 2850125

[11] M. Handel and W. P. Thurston, New proofs of some results of Nielsen. Adv. in

Math. 56 (1985), no. 2, 173–191. Zbl 0584.57007 MR 0788938

[12] A. Hatcher and D. Margalit, Generating the Torelli group. Enseign. Math. (2) 58

(2012), no. 1-2, 165–188. Zbl 1273.57011 MR 2985015

[13] J. H. Hernández, I. Morales, and F. Valdez, The Alexander method for infinite-type

surfaces. Preprint, 2017. arXiv:1703.00407 [math.GT]

[14] N. V. Ivanov, Automorphisms of complexes of curves and of Teichmüller spaces.

Internat. Math. Res. Notices 1997, no. 14, 651–666. Zbl 0890.57018 MR 1460387

[15] D. L. Johnson, Homeomorphisms of a surface which act trivially on homology. Proc.

Amer. Math. Soc. 75 (1979), no. 1, 119–125. Zbl 0407.57003 MR 0529227

[16] Y. Kida, Automorphisms of the Torelli complex and the complex of separating curves.

J. Math. Soc. Japan 63 (2011), no. 2, 363–417. Zbl 1378.57027 MR 2793105

[17] Y. Kida, The co-Hopfian property of the Johnson kernel and the Torelli group. Osaka

J. Math. 50 (2013), no. 2, 309–337. Zbl 1282.20033 MR 3080802

[18] M. Korkmaz, Automorphisms of complexes of curves on punctured spheres and on

punctured tori. Topology Appl. 95 (1999), no. 2, 85–111. Zbl 0926.57012 MR 1696431

[19] F. Luo, Automorphisms of the complex of curves. Topology 39 (2000), no. 2,

283–298. Zbl 0951.32012 MR 1722024

[20] D. McCullough and A. Miller, The genus 2 Torelli group is not finitely generated.

Topology Appl. 22 (1986), no. 1, 43–49. Zbl 0579.57007 MR 0831180

[21] A. McLeay, Geometric normal subgroups in mapping class groups of punctured

surfaces. Preprint, 2018. arXiv:1810.00742 [math.GT]

[22] G. Mess, The Torelli groups for genus 2 and 3 surfaces. Topology 31 (1992), no. 4,

775–790. Zbl 0772.57025 MR 1191379

http://zbmath.org/?q=an:0208.10601
http://www.ams.org/mathscinet-getitem?mr=0280606
http://arxiv.org/abs/1710.08929
http://zbmath.org/?q=an:1079.57017
http://www.ams.org/mathscinet-getitem?mr=2119299
http://zbmath.org/?q=an:1128.57303
http://www.ams.org/mathscinet-getitem?mr=2377246
http://zbmath.org/?q=an:1510603
http://www.ams.org/mathscinet-getitem?mr=1510603
http://zbmath.org/?q=an:1073.57012
http://www.ams.org/mathscinet-getitem?mr=2150885
http://zbmath.org/?q=an:1245.57002
http://www.ams.org/mathscinet-getitem?mr=2850125
http://zbmath.org/?q=an:0584.57007
http://www.ams.org/mathscinet-getitem?mr=0788938
http://zbmath.org/?q=an:1273.57011
http://www.ams.org/mathscinet-getitem?mr=2985015
http://arxiv.org/abs/1703.00407
http://zbmath.org/?q=an:0890.57018
http://www.ams.org/mathscinet-getitem?mr=1460387
http://zbmath.org/?q=an:0407.57003
http://www.ams.org/mathscinet-getitem?mr=0529227
http://zbmath.org/?q=an:1378.57027
http://www.ams.org/mathscinet-getitem?mr=2793105
http://zbmath.org/?q=an:1282.20033
http://www.ams.org/mathscinet-getitem?mr=3080802
http://zbmath.org/?q=an:0926.57012
http://www.ams.org/mathscinet-getitem?mr=1696431
http://zbmath.org/?q=an:0951.32012
http://www.ams.org/mathscinet-getitem?mr=1722024
http://zbmath.org/?q=an:0579.57007
http://www.ams.org/mathscinet-getitem?mr=0831180
http://arxiv.org/abs/1810.00742
http://zbmath.org/?q=an:0772.57025
http://www.ams.org/mathscinet-getitem?mr=1191379


Big Torelli groups 1399

[23] P. Patel and N. G. Vlamis, Algebraic and topological properties of big mapping class

groups. Algebr. Geom. Topol. 18 (2018), no. 7, 4109–4142. Zbl 07006387 MR 3892241

[24] Jerome Powell. Two theorems on the mapping class group of a surface. Proc. Amer.

Math. Soc. 68 (1978), no. 3, 347–350. Zbl 0391.57009 MR 0494115

[25] A. Putman, Cutting and pasting in the Torelli group. Geom. Topol. 11 (2007),

829–865. Zbl 1157.57010 MR 2302503

[26] A. Putman, Small generating sets for the Torelli group. Geom. Topol. 16 (2012), no. 1,

111–125. Zbl 1296.57008 MR 2872579

[27] I. Richards, On the classification of noncompact surfaces. Trans. Amer. Math.

Soc. 106 (1963), 259–269. Zbl 0156.22203 MR 0143186

[28] W. R. Vautaw, Abelian subgroups of the Torelli group. Algebr. Geom. Topol. 2 (2002),

157–170. Zbl 0997.57035 MR 1917048

Received October 19, 2018

Javier Aramayona, Departamento de Matematicas,

Universidad Autónoma de Madrid & ICMAT, Ciudad Universitaria de Cantoblanco,

s/n, 28049 Madrid, Spain

e-mail: aramayona@gmail.com

Tyrone Ghaswala, Department of Mathematics, University of Manitoba, Machray Hall,

420, 186 Dysart Rd, Winnipeg, MB R3T 2M8, Canada

e-mail: ty.ghaswala@gmail.com

Autumn E. Kent, Department of Mathematics, University of Wisconsin, 480 Lincoln Dr,

Madison, WI 53706, USA

e-mail: kent@math.wisc.edu

Alan McLeay, Mathematics Research Unit, Université du Luxembourg, Esch-sur-Alzette,

Luxembourg, 2, avenue de l’Université, 4365 Esch-sur-Alzette, Luxembourg

e-mail: mcleay.math@gmail.com

Jing Tao, Department of Mathematics, University of Oklahoma, 73069, 601 Elm Ave,

Norman, OK 73019, USA

e-mail: jing@ou.edu

Rebecca R. Winarski, Department of Mathematics, University of Michigan,

530 Church St, Ann Arbor, MI 48109, USA

e-mail: rebecca.winarski@gmail.com

http://zbmath.org/?q=an:07006387
http://www.ams.org/mathscinet-getitem?mr=3892241
http://zbmath.org/?q=an:0391.57009
http://www.ams.org/mathscinet-getitem?mr=0494115
http://zbmath.org/?q=an:1157.57010
http://www.ams.org/mathscinet-getitem?mr=2302503
http://zbmath.org/?q=an:1296.57008
http://www.ams.org/mathscinet-getitem?mr=2872579
http://zbmath.org/?q=an:0156.22203
http://www.ams.org/mathscinet-getitem?mr=0143186
http://zbmath.org/?q=an:0997.57035
http://www.ams.org/mathscinet-getitem?mr=1917048
mailto:aramayona@gmail.com
mailto:ty.ghaswala@gmail.com
mailto:kent@math.wisc.edu
mailto:mcleay.math@gmail.com
mailto:jing@ou.edu
mailto:rebecca.winarski@gmail.com

	Introduction
	Definitions
	Compactly generating the Torelli group
	Abstract commensurators of the Torelli group
	References

