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Abstract. Every nontrivial action of the braid group Bn on R by orientation-
preserving homeomorphisms yields, up to conjugation by a homeomorphism of
R, a representation ρ : Bn → Hõmeo+(S1) and therefore determines a trans-
lation number for every element of Bn. In this manuscript we offer a simple
characterisation of which actions of Bn on R produce translation numbers that
agree with those arising from the standard Nielsen-Thurston action on R. Our
approach is to prove an analogous statement concerning left orderings of Bn

via a technique that uses the space of left orderings of Bn, the isolated points
in this space, and the natural conjugacy action of Bn. We use this result
to extend recent rigidity results of Mann and Wolff concerning mapping class
group actions on S1 to the case of low-genus surfaces with marked points.

1. Introduction

We use Σb
g,n to denote a surface of genus g with n marked points and b boundary

components, and Mod(Σb
g,n) its mapping class group. It is well known that if b > 0,

then Mod(Σb
g,n) is a left-orderable group [SW]. The second and third authors

showed in [CG] that when b = 1, the mapping class Td of a Dehn twist about a
curve d parallel to the boundary component is cofinal in every left ordering < of
Mod(Σb

g,n), meaning that

Mod(Σb
g,n) = {γ | ∃k ∈ Z such that T−k

d < γ < T k
d }.

This fact allows for a type of correspondence when g > 0 between left orderings
of Mod(Σ1

g,0) and circular orderings of Mod(Σ0
g,1) by taking the quotient by the

central subgroup ⟨Td⟩. Allowing marked points in the g = 0 case establishes a
similar correspondence between left orderings of the braid group Bn

∼= Mod(Σ1
0,n)

where n ≥ 2 and circular orderings of Bn/⟨∆2
n⟩, which corresponds to the subgroup

of Mod(Σ0
0,n+1) whose elements fix a chosen marked point (here, ∆2

n is the square
of the Garside element and is a generator of the center of Bn when n ≥ 3).

Put another way, there is a correspondence between orientation-preserving ac-
tions of Mod(Σ1

g,0) on R and orientation-preserving actions of Mod(Σ0
g,1) on S1,

via the “capping homomorphism” when g > 0. A similar correspondence occurs
when g = 0 upon restriction to an appropriate subgroup of Mod(Σ0

0,n+1). This
correspondence was key in [CG], which showed that (up to sign) the translation
number of an element in Mod(Σ1

g,0) is independent of the underlying action on R
when g ≥ 2. This allows one to conclude, for instance, that one of the standard
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definitions of the fractional Dehn twist coefficient is independent of the underlying
action (See Section 5 for this definition).

The genus restriction in that result arises naturally in the course of the proof,
from an application of Mann and Wolff’s [MW] rigidity result concerning actions
of Mod(Σ0

g,1) on S1. In their work, they completely characterise which actions
of Mod(Σ0

g,1) on S1 are semiconjugate to the standard action when g ≥ 2. The
essential step in [CG] is then translating their result into a corresponding fact about
actions of Mod(Σ1

g,0) on R where g ≥ 2. In the low-genus cases, that is when g = 0
or g = 1, it is easy to see from examples that the translation number of an element in
Mod(Σ1

1,0) or Mod(Σ1
0,n) in not independent of the underlying action [CG, Section

6].
Nonetheless, in the present paper we are able to complete the picture with an

analysis of the genus 0 and 1 cases. Whereas the technique described above involved
applying an established rigidity result concerning actions on S1 in order to arrive
at an analogous statement about actions of a certain central extension on R, in this
manuscript our arguments work in the reverse manner. Specifically, we introduce
a new technique for establishing a type of rigidity of circle actions that begins with
an analysis of the central extension and its space of left orderings. To be more
explicit, we introduce some notation.

Denote the space of left orderings of Bn by LO(Bn), which we think of as the
collection of all positive cones P ⊂ Bn. Owing to the fact that the central element
∆2

n is cofinal in every left ordering of Bn, for every β ∈ Bn we can define the
translation number τβ : LO(Bn) → R, which turns out to be a continuous map
(Proposition 3.2). Let PD ∈ LO(Bn) denote the positive cone of the Dehornoy
ordering. By combining continuity of τβ with properties of the positive cone PD

and its associated isolated point PDD, the positive cone of the Dubrovina-Dubrovin
ordering, we prove the following. In Theorem 1.1 below, we implicitly identify Bn−1

with a subgroup of Bn in the usual way, so that we can think of the generator ∆2
n−1

of the centre of Bn−1 as an element of Bn.

Theorem 1.1. Suppose that P ∈ LO(Bn) and ∆2
n ∈ P , and that ∆2

n−1 is not
cofinal in the left ordering of Bn determined by P . Then τβ(P ) = τβ(PD) for all
β ∈ Bn.

As an immediate consequence, we can determine exactly which left orderings of
Bn = Mod(Σ1

0,n) can be used to compute the fractional Dehn twist coefficient of
an element h ∈ Mod(Σ1

0,n) in terms of the translation number of h determined by
the left ordering. We can state our result as follows. We use c(h) to denote the
fractional Dehn twist coefficient of h ∈ Mod(Σ1

g,n) and Tα the mapping class of a
Dehn twist about a simple closed curve α in Σb

g,n.

Theorem 1.2. Suppose that P ⊂ Mod(Σ1
0,n) is the positive cone of a left ordering

< and that Td > id. If there exists a simple closed curve α ⊂ Σ1
0,n such that:

(1) Σ1
0,n \ {α} ∼= Σ1

0,n−1 ∪ Σ2
0,1, and

(2) Tα is not cofinal in the ordering < of Mod(Σ1
0,n),

then c(h) = τh(P ) for all h ∈ Mod(Σ1
0,n).

This builds upon the results of [Mal], which shows that the Dehornoy ordering
can be used to compute fractional Dehn twist coefficients of elements of Mod(Σ1

0,n),
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and provides a uniqueness result for pseudocharacters Bn → R provided the char-
acter takes on nonnegative values for all braids in PD [Mal, Theorem 8.1]. This
also contrasts with the results of [CG], which show that for surfaces of genus g ≥ 2
any left ordering will serve to compute fractional Dehn twist coefficients. There is
an analogous statement in the case of Mod(Σ1

1,0), owing to the fact that this group
is isomorphic to B3, see Theorem 5.2.

We can also pass to the quotient Mod(Σ0
0,n+1) using the capping homomorphism,

and recover a rigidity result akin to that of Mann and Wolff [MW]. They determined
exactly which orientation-preserving actions of Mod(Σ0

g,1) on S1 are semiconjugate
to the standard action when g ≥ 2, up to reversing orientation of the circle. We
answer that same question when g = 0 or g = 1, by considering Mod(Σ0

1,1), and
the subgroup H ⊂ Mod(Σ0

0,n+1) of mapping classes that fix a prescribed marked
point (i.e., H is the image of Mod(Σ1

0,n) under the capping homomorphism).

Theorem 1.3. Let H ⊂ Mod(Σ0
0,n+1) denote the image of Mod(Σ1

0,n) under the
capping homomorphism, and ∗ the special marked point arising from the capping
homomorphism. Let α denote a simple closed curve on Σ0,n+1 that surrounds n−1
marked points, none of which are ∗. If the rotation number of the Dehn twist about
α is zero with respect to both f1 and f2, then [f1] = ±[f2] ∈ H2

b (H;Z).

Stated more informally, this says that if rotation number of some curve sur-
rounding n− 1 marked points is zero, then this completely determines the circular
ordering (equivalently, its corresponding action on S1) up to semiconjugacy and
reversing orientation. Again, we can also resolve the genus-1 case by using the
isomorphism between Mod(Σ1

1,0) and B3, see Corollary 6.11.
Note also that the rotation number assumption in Theorem 1.3 is necessary,

in the sense that there exist circular orderings (equivalently, actions on S1) for
which curves encircling n−1 marked points do not have rotation number zero, and
consequently these circular orderings/actions are not semiconjugate to the standard
one. Such examples can be realised easily from the examples of left orderings given
in [CG, Section 6].

Results of this flavour are not entirely surprising, as there is a known connection
between isolated orderings and rigidity of their associated dynamical realisations
[MR, Theorems 1.2 and 3.11]. To our knowledge, however, this manuscript is the
first to explicitly compute and exploit such a connection. Our work also raises the
following natural question.

Question 1.4. When b > 0, does LO(Mod(Σb
g,n)) admit isolated points? If yes,

can one recover the rigidity results of Mann and Wolff using a technique that exploits
the isolated points in LO(Mod(Σ1

g,0))?

1.1. Organisation of the paper. Section 2 contains background on orderable
groups, including spaces of orderings, dynamic realisations and translation numbers.
In Section 3 we show that the translation number is a continuous map on the space
of orderings. Section 4 introduces the Dehornoy ordering, the Dubrovina-Dubrovin
ordering, and contains the proof of Theorem 1.1. In Section 5 we apply this result
to fractional Dehn twist coefficients, and in Section 6 we prove a rigidity result for
actions of low-genus mapping class groups on S1.
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2. Background

2.1. Left-orderable groups and spaces of orderings. Recall that a group G
is left orderable if there exists a strict total ordering < of the elements of G such
that g < h implies fg < fh for all f, g, h ∈ G. Equivalently, G is left orderable if
there exists a positive cone P ⊂ G, satisfying P · P ⊂ P , G \ {id} = P ∪ P−1 and
P ∩ P−1 = ∅. The equivalence of these two definitions follows from observing that
if < is a given ordering of a group G, then P< = {g ∈ G | g > 1} is a positive cone;
conversely if we are given a positive cone P then g < h ⇐⇒ g−1h ∈ P defines a
strict total ordering of G that is left-invariant.

A subgroup C of a group G is <-convex (or convex with respect to <) if for all
c, d ∈ C and g ∈ G, c < g < d implies g ∈ C. A subgroup C of G is relatively
convex if there exists an ordering < of G such that C is <-convex. We introduce
the following definition for ease of discussion later in the manuscript.

Definition 2.1. Let G be a group and C a proper subgroup. A relative left ordering
of G with respect to C is a strict total ordering < of the set of left cosets G/C such
that gC < hC implies fgC < fhC for all f, g, h ∈ G. When such an ordering
exists, we say that G is relatively left orderable with respect to C.

It is a straightforward exercise to verify that if G is left orderable, then G admits
a relative left ordering with respect to C if and only if C is a left-relatively convex
subgroup.

Equivalently, G is relatively left orderable with respect to a proper subgroup C
if there exists a positive cone relative to C, that is, a subset P ⊂ G satisfying:

(i) P ̸= {id},
(ii) CPC ⊂ P ,
(iii) G = C ⊔ P ⊔ P−1, where ⊔ indicates a disjoint union.
There is a correspondence between relative left orderings as in Definition 2.1 and

nonempty subsets P ⊂ G satisfying (i)–(iii) above. The correspondence appears in
[AR, Lemma 2.1].

We define the space of relative left orderings, denoted LOrel(G), as follows. Set

LOrel(G) = {P ⊂ G | ∃ C ≤ G, C ̸= G, s.t. P is a positive cone relative to C},

note that this is a subset of the power set P(G). We equip the power set P(G) =
{0, 1}G with the product topology arising from the discrete topology on {0, 1}, and
LOrel(G) with the subspace topology. The subbasic open sets are therefore:

Ug = {P ∈ LOrel(G) | g ∈ P}, and Ug−1 = {P ∈ LOrel(G) | g−1 ∈ P}.

Equipped with the subspace topology, LOrel(G) is not necessarily compact, how-
ever LOrel(G) is compact as long as G is finitely generated [AR, Theorem 1.4]. We
similarly define the space of left orderings

LO(G) = {P ⊂ G | P is a positive cone}

and topologise it again using the subspace topology inherited from P(G) = {0, 1}G.
Note that there is a natural embedding i : LO(G) → LOrel(G), since every positive
cone P ⊂ G is a positive cone relative to the subgroup {id}. Moreover, each
of the spaces LOrel(G) and LO(G) comes equipped with a natural G-action by
conjugation, g · P = gPg−1 for all g ∈ G, which one can check is an action by
homeomorphisms.
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2.2. Dynamic realisations and translation numbers. Given a left-ordered
group (G,<), a gap in G is a pair of elements g, h ∈ G with g < h such that
there is no f ∈ G with g < f < h. We will call an order-preserving embedding
t : (G,<) → (R, <) tight if for every interval (a, b) ⊂ R \ t(G) there exists a gap
g, h ∈ G with (a, b) ⊂ (t(g), t(h)). Whenever G is countable there exists a tight
embedding t : (G,<) → (R, <) via the usual ‘midpoint construction’, see e.g. [CR,
Chapter 2].

If G is a countable left-ordered group, a dynamic realisation of an ordering <
with positive cone P is a homomorphism ρP : G → Homeo+(R) defined as follows.
First, fix a choice of tight embedding t, and then define ρP (g)(t(h)) = t(gh) for all
g, h ∈ G, extend this action to t(G) by taking limits, and then affinely to R \ t(G).
One can check that all this works out, and that any two dynamic realisations of
the same order (arising from different choices of tight embedding) are conjugate to
one another via a orientation-preserving homeomorphism R → R.

Given ρ : G → Hõmeo+(S
1), we can define the translation number of g ∈ G

determined by ρ as the limit

τg(ρ) = lim
n→∞

ρ(g)(0)

n
.

When ρ = ρP for some ordering with positive cone P , we can (provided the group
G satisfies a certain algebraic condition) define this same quantity algebraically.

Recall that an element g in a left-ordered group (G,<) is cofinal relative to the
ordering < if

G = {h ∈ G | ∃k ∈ Z such that g−k < h < gk}.
When z ∈ G is central, positive and cofinal relative to the ordering < of G with
positive cone P , we can define the floor of g ∈ G with respect to < to be the unique
integer [g]P such that

z[g]P ≤ g < z[g]P+1.

Then we set

τg(P ) = lim
n→∞

[gn]P
n

.

While these quantities depend on the choice of z ∈ G, we suppress z from our
notation as the positive cofinal element under consideration will be fixed in our
applications that follow.

It is straightforward to work out the following proposition from the definitions;
we use sh(1) to denote the function sh(1)(x) = x+ 1 for all x ∈ R.

Proposition 2.2. Suppose that < is a left ordering of G with positive cone P and
that z ∈ G is positive, central and <-cofinal. If ρP is a dynamic realisation of <
with ρP (z) = sh(1), then τg(P ) = τg(ρP ).

We can therefore tackle questions about translation numbers algebraically, using
left orderings of G and cofinal, central elements. We observe that conjugation
invariance of the translation number (a classical result) implies the following in our
algebraic setting.

Proposition 2.3. Suppose that < is a left ordering of G with positive cone P
and that z ∈ G is positive, central and <-cofinal. For all g, h ∈ G, we have
τh(P ) = τh(gPg−1).
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Proof. Let P ∈ LO(G) and g, h ∈ G. For ease of notation, set gPg−1 = Q. For any
k ∈ N we have

z[h
k]P ≤P hk <P z[h

k]P+1

which, by definition of Q, yields

z[h
k]P ≤Q ghkg−1 <Q z[h

k]P+1

and therefore [(ghg−1)k]Q = [hk]P . It follows that τh(Q) = τghg−1(Q) = τh(P ),
where the equality τh(Q) = τghg−1(Q) is precisely the classical fact that translation
number is invariant under conjugation. □

3. Continuity of translation number and its behaviour with respect
to relative orderings

For a left-orderable group G, we say an element z ∈ G is absolutely cofinal if z is
cofinal with respect to every left ordering of G. Our interest in such elements stems
from the fact that ∆2

n ∈ Bn, which is a generator of the center of Bn for n ≥ 3, is
absolutely cofinal [DDRW, Chapter II, Proposition 3.6].

Let G be a left-orderable group with a central, absolutely cofinal element z.
Observe that LO(G) = Uz ∪ Uz−1 is a disjoint union, where Uz contains precisely
the orderings relative to which z is positive. In this section we study the map
τg : Uz → R, defined by the translation number for each g ∈ G, and show that it is
continuous. We first require a lemma.

Lemma 3.1. Let G be a countable left-orderable group with a central, absolutely
cofinal element z. Let P,Q ∈ Uz ⊂ LO(G) and let m > 0 be an arbitrary positive
integer. If g ∈ G satisfies [gk]P = [gk]Q for all 1 ≤ k ≤ m, then for all ℓ > m we
have

∣∣[gℓ]P − [gℓ]Q
∣∣ < ℓ

m + 1.

Proof. Write ℓ = sm+ t, where s > 0 and 0 ≤ t < m. Set r = [gm]P = [gm]Q, and
v = [gt]P = [gt]Q. From the inequalities

zr ≤P gm <P zr+1 and zv ≤P gt <P zv+1

we compute
zrs+v ≤P gsm+t <P zrs+s+v+1.

It follows that rs+ v ≤ [gℓ]P ≤ rs+ s+ v. A similar computation yields rs+ v ≤
[gℓ]Q ≤ rs+ s+ v, so that |[gℓ]P − [gℓ]Q| ≤ s < ℓ

m + 1. □

Proposition 3.2. Let G be a countable left-orderable group with absolutely cofinal
central element z. Given g ∈ G, the map τg : Uz → R is continuous.

Proof. Suppose that {Pq}∞q=1 is a sequence of positive cones converging to P in Uz,
and fix g ∈ G. We first consider the double limit

lim
(q,k)→∞

[gk]Pq − [gk]P

k

and show that this limit tends to zero. To this end, let ϵ > 0 and choose m such
that 1

m < ϵ
2 . Observe that we can choose Nm so that [gk]Pq = [gk]P for all q > Nm

and 1 ≤ k ≤ m. Here we use that the sequence Pq converges to P in order to ensure
that the orders determined by Pq and P agree on the finite set of inequalities that
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determine [gk]Pq
and [gk]P . Then by Lemma 3.2, |[gℓ]Pq

− [gℓ]P | < ℓ
m + 1 for all

ℓ > m and q > Nm. Thus for ℓ, q > max{m,Nm} we compute

|[gℓ]Pq
− [gℓ]P |
ℓ

< (
ℓ

m
+ 1) · 1

ℓ
<

2

m
< ϵ.

This shows that

lim
(q,k)→∞

[gk]Pq

k
− [gk]P

k
= 0.

Now considering the limit

lim
q→∞

τg(Pq)− τg(P ) = lim
q→∞

lim
k→∞

(
[gk]Pq

− [gk]P

k

)

we observe that for each fixed q the limit limk→∞

(
[gk]Pq−[gk]P

k

)
exists and is equal

to τg(Pq) − τg(P ). It follows (e.g. [Bar, Corollary 19.6]) that limq→∞ τg(Pq) −
τg(P ) = 0, proving the claim. □

We remark that some generalisations of this proposition are possible, though are
not required for this manuscript:

Remark 3.3. (1) It is possible to extend the map τg to have LO(G) as its do-
main. To do this, we observe that if P does not contain z, i.e. if z−1 ∈ P ,
then we can set

τg(P ) = − lim
k→∞

[gk]P−1

k
.

Continuity of the map τg : LO(G) → R defined in this way follows from
Proposition 3.2 and the fact that Uz ∪ Uz−1 is a separation of LO(G).

(2) For a central element z in a left-orderable group G, we can let

Uz = {P ∈ LO(G) | z ∈ P and z is cofinal with respect to P}

(note that Uz may be empty). The proof of Proposition 3.2 shows that for
g ∈ G, the map τg : Uz → R is continuous.

(3) If the countability assumption on G is removed, LO(G) is no longer a
sequential space [BC21, Example 4.12]. However, proofs above can be recast
in the language of nets to remove the countability assumption. We will not
need this level of generality for the applications that follow.

For the next lemma, note that if P ∈ LOrel(G) is a positive cone relative to
the proper subgroup C, then for every Q ∈ LO(C) the set Q ∪ P is the positive
cone of a left ordering of G—that is, Q ∪ P ∈ LO(G). The corresponding ordering
is the standard lexicographic one, constructed as follows: assume that the proper
subgroup C of G admits a left order <Q corresponding to the positive cone Q, and
that the left cosets G/C admit a total ordering <P with corresponding relative
cone P .

We define the total ordering < on G as follows:

g1 < g2 ⇔

{
g1C <P g2C if g−1

1 g2 /∈ C,

id <Q g−1
1 g2 if g−1

1 g2 ∈ C.

We require this construction for the next lemma.
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Lemma 3.4. Suppose that G is a group admitting an absolutely cofinal, central
element z ∈ G. Further suppose that P ∈ LOrel(G) is a positive cone relative to
the proper subgroup C ⊂ G, that z ∈ P and that Q1, Q2 ∈ LO(C). Then for all
g ∈ G we have τg(Q1 ∪ P ) = τg(Q2 ∪ P ).

Proof. Set P1 = Q1 ∪ P , P2 = Q2 ∪ P , each with corresponding orderings <1 and
<2 of G constucted lexicographically from <Q1

, <Q2
and <P as in the preceding

paragraphs.
Fix g ∈ G, and suppose that

zm ≤1 g <1 zm+1,

so that [g]P1 = m.
First note that if z−mg /∈ C and z−m−1g /∈ C, then zmC <P gC <P zm+1C and

so zm <i g <i z
m+1 for i = 1, 2. It follows that [g]P1

= [g]P2
.

Next, suppose that z−mg ∈ C. Observe that this implies z−m−1g /∈ C and
z−m+1g /∈ C, because z−mg, z−m−1g ∈ C implies z = zm+1g−1gz−m ∈ C, a
contradiction–similarly for z−m+1g. Therefore from the inequality zzm ≤1 g <1

zm+1, which implies zm−1 <1 g <1 zm+1, we deduce that zm−1C <P gC <P

zm+1C and so zm−1 <2 g <2 zm+1. Therefore [g]P2
∈ {m− 1,m}.

Last, suppose z−m−1g ∈ C and observe that this implies z−mg /∈ C and z−m−2g /∈
C. Proceeding as in the previous paragraph we conclude that [g]P2

∈ {m,m+ 1}.
We conclude that |[g]P1 − [g]P2 | ≤ 1 for all g ∈ G, so that for any g ∈ G

lim
k→∞

[gk]P1
− [gk]P2

k
= 0,

so that τg(Q1 ∪ P ) = τg(P1) = τg(P2) = τg(Q2 ∪ P ). □

4. The Dehornoy ordering, isolated points and accumulation points

In this section we use the algebraic properties of the Dehornoy ordering, and
the closely associated Dubrovina-Dubrovin ordering, to prove our main theorem.
We frequently use, without mention, that ∆2

n ∈ Bn is absolutely cofinal [DDRW,
Chapter II, Proposition 3.6].

4.1. Generalities on ordered sets and group actions. Suppose that (Ω, <)
is a totally ordered set, and that G is a left-ordered group acting on Ω in an
order-preserving fashion. For each x ∈ Ω, and for each choice of positive cone
P ∈ LO(Stab(x)), one can create a positive cone QP,x ⊂ G according to the rule:

g ∈ QP,x ⇐⇒ g · x > x or g ∈ Stab(x) and g ∈ P.

For each x ∈ Ω, set
Ox = {QP,x | P ∈ LO(Stab(x))},

and for each subset S ⊂ Ω, set

OS =
⋃
x∈S

Ox.

Proposition 4.1. [BC, c.f. Lemmas 3.6 and 3.7] Let G be a countable left-ordered
group acting on a totally ordered set (Ω, <) by order-preserving bijections. Let
x ∈ Ω, and suppose that there exists a sequence of points {xi}∞i=1 ⊂ Ω converging
to x in the order topology on Ω. Let S ⊂ Ω. If {xi}∞i=1 ⊂ S then Ox ∩OS ̸= ∅.
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Proof. First, for each i ∈ N choose a positive cone Qi ∈ Oxi
, and set Pi = Qi ∩

Stab(x). Then {Pi}∞i=1 is a sequence of positive cones in LO(Stab(x)), choose a
convergent subsequence {Pij}∞j=1 with limit P ∈ LO(Stab(x))–this is possible since
G is countable and therefore LO(Stab(x)) is a compact metric space.1

We claim that QP,x ∈ OS since {Qij}∞j=1 converges to QP,x, which will complete
the proof. To see this, suppose

⋂n
i=1 Ugi is an arbitrary basic open neighbourhood

of QP,x in LO(G). Then for each i = 1, . . . , n, either gi · x > x or gi ∈ Stab(x)∩P ;
suppose without loss of generality that gi · x > x for i = 1, . . . , k and that gi ∈
Stab(x) ∩ P for i = k + 1, . . . , n.

Set y = mini=1,...,k{gi · x} and y′ = maxi=1,...,k{g−1
i · x}, so that (y′, y) is a

neighbourhood of x in the order topology on Ω. Now choose s, t ∈ N as follows:
Choose s large enough that for all j > s, xij ∈ (y′, y), and choose t large enough
that for all j > t we have Pij ∈

⋂n
i=k+1 Ugi ⊂ LO(Stab(x)). Set N = max{s, t}.

We finish by showing that Qij ∈
⋂n

i=1 Ugi for j > N . First, Qij ∈
⋂k

i=1 Ugi ,
which we can verify by considering cases. Fix gi with i ∈ {1, . . . , k}.
Case 1. x ≤ xij < y. Then gi · xij ≥ y > xij so that Qij ∈ Ugi .
Case 2. y′ < xij < x. Then g−1

i · xij ≤ y′ < xij so that xij < g · xij and again
Qij ∈ Ugi .

Next, Qij ∈
⋂n

i=k+1 Ugi because gi ∈ Pij ⊂ Qij for all i ∈ {k + 1, . . . , n} and for
all j > t. Overall, this yields Qij ∈

⋂n
i=1 Ugi and completes the claim.

□

4.2. The Dehornoy and Dubrovina-Dubrovin orderings. We recall the def-
inition of the Dehornoy ordering. Given a word w in the generators σ1, . . . , σn−1,
we call w an i-positive word (resp. i-negative word) if there exists i ∈ {1, . . . , n−1}
such that σi occurs in w with only positive exponents (resp. negative exponents),
and there are no occurrences of σ±1

j with j > i. We call a braid β ∈ Bn an i-positive
braid if β admits an i-positive representative word. Set

PD = {β ∈ Bn | β is i-positive for some 1 ≤ i ≤ n− 1}.

Theorem 4.2 ([Deh]). The set PD is the positive cone of a left ordering of Bn.

As a consequence,

P−1
D = {β ∈ Bn | β is i-negative for some 1 ≤ i ≤ n− 1}.

Note that this definition is slightly different than the typical definition of the
Dehornoy ordering, where one would ask that there are no occurrences of σ±1

j with
j < i [DDRW]. Our reason for doing this is as follows. Recall that for m,n ∈ N
and m < n, there is an embedding i : Bm → Bn given by i(σj) = σj for all
1 ≤ j ≤ m− 1. For ease of notation, we will write Bm in place of i(Bm).

Proposition 4.3. [DDRW, Chapter II, Proposition 3.16] Given n,m > 1 with
m < n, the subgroup Bm is convex relative to the Dehornoy ordering of Bn.

Proof. Let <D be the ordering corresponding to PD. Without loss of generality
assume that id <D α <D β for some α ∈ Bn and β ∈ Bm. Hence α is i-positive
and β is j-positive for some i ∈ {1, . . . , n− 1} and j ∈ {1, . . . ,m− 1}.

1Countability is necessary here to ensure that LO(G) is sequentially compact, which does not
hold in general.
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Assume i > m − 1, we will arrive at a contradiction. Let w be an i-positive
representative word for α, and v a j-positive representative word for β. Then
w−1v is a representative word for α−1β, which is i-negative since it contains only
occurrences of σ−1

i while containing no occurrences of σk for k > i. But then
α−1β ∈ P−1

D , a contradiction to α <D β. □

For ease of exposition, we single out a particular subset of the positive cone of
the Dehornoy ordering. We set

P rel
D = {β ∈ Bn | β is (n− 1)-positive} ⊂ Bn,

note that the definition of P rel
D depends on the index n, so we will always take care

to specify the index when we are working with this subset.

Proposition 4.4. The subset P rel
D ⊂ Bn and its inverse (P rel

D )−1 are positive cones
relative to Bn−1.

Proof. We verify the three conditions in the definition of a relative positive cone.
(i) Since σn−1 ∈ P rel

D we know P rel
D ̸= {id}.

(ii) Let α, β ∈ Bn−1 and γ ∈ P rel
D . Then γ is (n − 1)-positive and α, β are

represented by words which contain no occurrences of σn−1, which implies that
αγβ is also (n− 1)-positive.

(iii) Since PD is the positive cone of a left ordering and P rel
D ⊂ PD, we conclude

that P rel
D and (P rel

D )−1 are disjoint. Neither contains elements of Bn−1 ⊂ Bn, by
definition. This shows that Bn−1 ∪ P rel

D ∪ (P rel
D )−1 is a disjoint union; that it is

equal to Bn follows from the fact that every element of Bn is i-positive for some
i ∈ {1, . . . , n − 1}, and those that are i-positive for i ∈ {1, . . . , n − 2} are the
elements of Bn−1. □

In preparation for the next lemma, we introduce another canonical ordering
of Bn, known as the Dubrovina-Dubrovin ordering. We define its positive cone,
denoted Pn

DD ⊂ Bn, inductively.
For B2 = ⟨σ1⟩ ∼= Z, set P 2

DD = {σk
1 | k > 1}. Now, assuming that we have

defined Pn−1
DD ⊂ Bn−1, define Pn

DD according to the rule:

Pn
DD = Pn−1

DD ∪ (P rel
D )(−1)n ,

where P rel
D ⊂ Bn. Note that this defines a positive cone by Proposition 4.4. This

positive cone is of interest as it is an isolated point in LO(Bn), specifically:

Theorem 4.5 ([DD]). If Q ⊂ Bn is a positive cone containing the braids

σ1, (σ1σ2)
−1, (σ1σ2σ3), . . . , (σ1 . . . σn−1)

(−1)n

then Q = Pn
DD.

We remark that this definition of the positive cone differs from that in [DD]. In
the original source, the positive cone Pn

DD is defined to be the subsemigroup of Bn

generated by

(σ1σ2 . . . σn−1), (σ1σ2 . . . σn−2)
−1, . . . , (σn−1)

(−1)n ,

we have altered the definition here for ease of exposition, so that the convex sub-
groups agree with those arising from our definition of PD. One can see that our
definition of Pn

DD is equivalent to that of [DD] by noting that our Pn
DD is the image

of Dubrovina and Dubrovin’s positive cone under the automorphism ϕ : Bn → Bn

given by ϕ(σi) = (σn−i)
(−1)n .
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Lemma 4.6. Suppose that Q ⊂ Bn is a positive cone relative to Bn−1. Then
Q ∈ {P rel

D , (P rel
D )−1}.

Proof. Let Q ⊂ Bn be a positive cone relative to Bn−1. Note that σ1σ2 . . . σn−1 /∈
Bn−1, and so since Bn = Bn−1 ∪ Q ∪ Q−1, we can choose ϵ ∈ {±1} so that
(σ1σ2 . . . σn−1)

(−1)n ∈ Qϵ. Then Q′ = Pn−1
DD ∪ Qϵ is the positive cone of a left

ordering, and by our choice of ϵ, Q′ contains

σ1, (σ1σ2)
−1, (σ1σ2σ3), . . . , (σ1 . . . σn−1)

(−1)n .

This implies that Q′ = Pn
DD by Theorem 4.5. In particular, this means that

Qϵ = Q′ ∩ (Bn \Bn−1) = Pn
DD ∩ (Bn \Bn−1) = (P rel

D )(−1)n .

□

Corollary 4.7. Suppose that C is a relatively convex subgroup satisfying Bn−1 ⊆
C ⊆ Bn. Then C = Bn−1 or C = Bn.

Proof. Assume that Bn−1 ⊂ C ⊂ Bn, with both containments proper. Choose a
positive cone P ∈ LO(Bn) such that C is convex relative to the induced ordering
<P . Set Q = P ∩ (Bn \ C), so that Q is a positive cone relative to C. Since
Bn−1 ⊂ C and C ̸= Bn, we know that (σ1σ2 . . . σn−1)

(−1)n ∈ Q ∪ Q−1. Suppose
(σ1σ2 . . . σn−1)

(−1)n ∈ Q, the case of Q−1 being similar.
Next, set R = Pn

DD ∩ (C \Bn−1), which is a positive cone in C relative to Bn−1,
as is R−1. Now we observe that Pn−1

DD ∪ R ∪ Q and Pn−1
DD ∪ R−1 ∪ Q are distinct

positive cones in Bn, each containing the elements

σ1, (σ1σ2)
−1, (σ1σ2σ3), . . . , (σ1 . . . σn−1)

(−1)n

by construction. This violates Theorem 4.5, and so is a contradiction. □

Note that the embeddings Bm ⊂ Bn for m < n also allow us to think of ∆2
m as

an element of Bn for all m < n. We can apply the previous Corollary to analyse
actions of Bn by order-preserving automorphisms of an arbitrary totally-ordered
set.

Proposition 4.8. Suppose that Bn acts nontrivially (i.e. without global fixed
points) on a totally ordered set (Ω, <) by order-preserving bijections. If ∆2

n−1 ∈
Stab(x0) for some x0 ∈ Ω, then Stab(x0) = Bn−1.

Proof. Assuming ∆2
n−1 ∈ Stab(x0) for some x0 ∈ Ω, equip Bn with a left ordering ≺

relative to which Stab(x0) is convex as follows. Choose Q ∈ LO(Stab(x0)), without
loss of generality we may assume that ∆2

n−1 ∈ Q, then declare id ≺ β if and only
if β · x0 > x0 or β ∈ Stab(x0) and β ∈ Q.

Now observe that if α ∈ Bn−1 \ Stab(x0) and id ≺ α, then id ≺ ∆2k
n−1 ≺ α for

all k > 0 since ∆2
n−1 is contained in the ≺-convex subgroup Stab(x0), while α is

not. This contradicts the fact that ∆2
n−1 is cofinal in every left ordering of Bn−1,

so we conclude Bn−1 ⊂ Stab(x0).
Thus Bn−1 ⊂ Stab(x0) ⊂ Bn. Since we are assuming the second containment

is proper (the action is without global fixed points), Corollary 4.7 implies Bn−1 =
Stab(x0). □

Theorem 4.9. Suppose that P ∈ LO(Bn) and ∆2
n−1 is not cofinal in the left

ordering of Bn determined by P . Then:
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(1) If ∆2
n ∈ P , then there exists Q ∈ LO(Bn−1) such that

P rel
D ∪Q ∈ {βPβ−1 | β ∈ Bn},

(2) If ∆2
n ∈ P−1, then there exists Q ∈ LO(Bn−1) such that

(P rel
D )−1 ∪Q ∈ {βPβ−1 | β ∈ Bn}.

Proof. We show (1). Let < denote the left ordering determined by P relative to
which ∆2

n−1 is not cofinal, and note that ∆2
n is positive. Consider the totally

ordered set
S = {T ⊂ Bn | β ∈ T and α < β implies α ∈ T}.

This set is totally ordered by inclusion, and one can verify that left-multiplication
by elements of Bn defines an action of Bn on S by order-preserving bijections.

Consider the element s0 ∈ S defined by

s0 = {β ∈ Bn | β < ∆2k
n−1 for some k ∈ Z}.

Without loss of generality we assume that id < ∆2
n−1, and define a sequence

{si}∞i=1 ⊂ S by si = {β ∈ Bn | β ≤ ∆2i
n−1} for i ≥ 1 (if id > ∆2

n−1, define an
analogous sequence using negative powers). We show that {si}∞i=1 converges to s0
in the order topology on S.

To see this, let (t0, t1) be an open interval containing s0. Then the containment
t0 ⊂ s0 is proper, so there exists β ∈ s0 \ t0. Since β ∈ s0 there exists N > 0 such
that β < ∆2k

n−1 for all k > N , so that β ∈ sk. Since every element in t0 is less than
β, this shows t0 ⊂ sk ⊂ s0 and so sk ∈ (t0, t1) for all k > N .

Now we are in a position to apply Proposition 4.1. For each β ∈ Bn, define
the set tβ = {α ∈ Bn | α ≤ β}, and set T = {tβ | β ∈ Bn} ⊂ S and note
{si}∞i=1 ⊂ T ⊂ S. The stabiliser of each tβ ∈ S under the Bn-action is trivial,
and Otβ = {βPβ−1} for each β ∈ Bn. Thus OT = {βPβ−1 | β ∈ Bn} and by
Proposition 4.1, Os0 ∩ {βPβ−1 | β ∈ Bn} ≠ ∅.

It remains to show that every element of Os0 is of the form P rel
D ∪ Q where

Q ∈ LO(Bn−1). Every element of Os0 is of the form P ∪ Q where P is a positive
cone in Bn relative to Stab(s0), and Q ∈ LO(Stab(s0)). By Proposition 4.8 we have
Stab(s0) = Bn−1, so Q ∈ LO(Bn−1). Now by Lemma 4.6, P ∈ {P rel

D , (P rel
D )−1}.

Since we have assumed ∆2
n ∈ P , we also have ∆2

n ∈ βPβ−1 for all β ∈ Bn and
thus ∆2

n is contained in every limit point of {βPβ−1 | β ∈ Bn}. It follows that
P = P rel

D , finishing the proof.
The case where ∆2

n ∈ P−1 is nearly identical in its proof. □

The next theorem shows that whether or not ∆2
n−1 is cofinal in an ordering

completely determines the translation numbers of β ∈ Bn relative to that ordering.

Theorem 4.10. Suppose that P ∈ LO(Bn) and ∆2
n ∈ P , and that ∆2

n−1 is not
cofinal in the left ordering of Bn determined by P . Then τβ(P ) = τβ(PD) for all
β ∈ Bn.

Proof. By Theorem 4.9, there exists Q ∈ LO(Bn−1) such that

P rel
D ∪Q ∈ {αPα−1 | α ∈ Bn}.

Fix β ∈ Bn. By Lemma 2.3, τβ is constant on {αPα−1 | α ∈ Bn}, and by Lemma
3.2, it is therefore constant on {αPα−1 | α ∈ Bn}. In particular, we conclude that
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τβ(P ) = τβ(P
rel
D ∪Q). By Lemma 3.4, τβ(P rel

D ∪Q) = τβ(PD), which concludes the
proof.

□

From this, we arrive at the following corollary, which we can think of as meaning
that ∆2

n−1 serves as a “test element” for computations of the translation numbers
defined by a given left ordering of Bn.

Corollary 4.11. Suppose that P ∈ LO(Bn) and ∆2
n ∈ P . Then τβ(P ) = τβ(PD)

for all β ∈ Bn if and only if τ∆2
n−1

(P ) = τ∆2
n−1

(PD) = 0.

Proof. Observe that if τ∆2
n−1

(P ) = τ∆2
n−1

(PD), then τ∆2
n−1

(P ) = 0 as ∆2
n−1 is

bounded in the Dehornoy ordering (it is contained in the convex subgroup Bn−1).
On the other hand, if τ∆2

n−1
(P ) = 0 then we suppose that ∆2m

n−1 > ∆2
n for some

m > 0 and arrive at a contradiction (the case of m < 0 being identical). For in this
case, ∆2km

n−1 > ∆2k
n for all k > 0, so that [∆2km

n−1]P > k. We compute

τ∆2
n−1

(P ) = lim
k→∞

[∆2km
n−1]P

km
≥ lim

k→∞

k

km
=

1

m
,

this contradiction shows ∆2m
n−1 must be bounded above by ∆2

n. Now apply Theorem
4.10. □

4.3. Many orderings sharing the same translation numbers. At this point,
it is a natural question to ask how many left orderings of Bn satisfy the condition
that ∆2

n−1 is bounded. We answer this question with the following proposition:

Proposition 4.12. There are uncountably many left orderings of Bn relative to
which ∆2

n−1 is bounded.

Proof. Consider the subgroup H = ⟨∆2
n−1,∆

2
n⟩, which is isomorphic to Z⊕Z, and

the restriction map r : LO(Bn) → LO(H) given by r(P ) = P ∩ H. This map is
clearly continuous.

Considering the short exact sequence

0 → ⟨∆2
n−1⟩ → H → ⟨∆2

n⟩ → 0,

we let S ⊂ LO(H) denote the set consisting of the four lexicographic orderings
arising from this short exact sequence. Observe that P ∈ LO(Bn) corresponds to
an ordering where ∆2

n−1 is bounded if and only if r(P ) ∈ S.
Next, observe that βPDβ−1 ∈ r−1(S) for all β ∈ Bn. Moreover, the Dehornoy

ordering is an accumulation point of its own conjugates [DDRW, Chapter XIV,
Proposition 2.3]. Therefore the set {βPDβ−1 | β ∈ Bn} is a closed (hence compact)
subset of r−1(S) which contains no isolated points. Thus it is uncountable, meaning
r−1(S) is uncountable. □

5. Fractional Dehn twist coefficients of low-genus surfaces

Let Σb
g,n denote a surface of genus g with n marked points and b boundary

components. Given a curve α ∈ Σb
g,n we use Tα ∈ Mod(Σb

g,n) to denote the class
of a Dehn twist about α; given a boundary component d we use Td to denote the
class of a Dehn twist about a curve parallel to the boundary component d.
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Now, if Σb
g,n is a hyperbolic surface with boundary (i.e. b > 0, and g > 0 or

n > 1), then we can construct a particular action of Mod(Σb
g,n) on R as below, and

use it to define the fractional Dehn twist coefficient of an element h ∈ Mod(Σb
g,n).

Let p : Σ̃b
g,n → Σb

g,n denote the universal cover, and fix an isometric embedding
Σ̃b

g,n ⊂ H2. Choose x0 ∈ ∂Σb
g,n and let d denote the component of the boundary

fixing x0. Fix a choice of lift x̃0 ∈ d̃ ⊂ ∂Σ̃b
g,n, so that for each h ∈ Mod(Σb

g,n) there
is a unique lift of h : Σ̃b

g,n → Σ̃b
g,n satisfying h(x̃0) = x̃0, so that h also fixes d̃.

Thus we have an action of Mod(Σb
g,n) on Σ̃b

g,n fixing d̃, which extends to an action
on ∂Σ̃b

g,n by orientation-preserving homeomorphisms.
Let ℓ ⊂ H2 denote the closure of d̃, and identify ∂Σ̃b

g,n \ℓ with the interval (0, π),
and thus with R, by identifying each point y on the boundary with the unique
geodesic from x0 to y. Now the action on the boundary of Mod(Σb

g,n) yields and
orientation-preserving action on R. We orient the boundary and parameterise it so
that the action of the boundary Dehn twist Td satisfies Td(x) = x+1 for all x ∈ R.
This gives

ρs,d : Mod(Σb
g,n) → Hõmeo+(S

1)

which we call the standard representation with respect to d, or the Nielsen-Thurston
action on R with respect to d. The fractional Dehn twist coefficient of h ∈ Mod(Σb

g,n)
can be defined as

c(h, d) = τh(ρs,d).

That this is equivalent to the usual definition of the fractional Dehn twist coefficient
can be found in [IK, Theorem 4.16], and for the special case of the braid groups
(which is our case of interest) the result appears in [Mal]. When there is a single
boundary component (as in our case of interest), we do not need to keep track of
the component d used in this construction, so we simply use the notation ρs and
c(h).

Theorem 5.1. Suppose that ρ : Mod(Σ1
0,n) → Homeo+(R) is an injective homo-

morphism such that the induced action of Mod(Σ1
0,n) on R is without global fixed

points, and let d denote a simple closed curve parallel to the boundary component
of Σ1

0,n. If there exists a simple closed curve α ⊂ Σ1
0,n such that:

(1) Σ1
0,n \ {α} ∼= Σ1

0,n−1 ∪ Σ2
0,1, and

(2) ρ(Tα) has a fixed point in R,
then ρ is conjugate by a (possibly orientation-reversing) homeomorphism of R to a
representation ρ′ : Mod(Σ1

0,n) → Hõmeo+(S1) such that:
(1) ρ′(Td)(x) = x+ 1 for all x ∈ R, and
(2) c(h) = τh(ρ

′) for all h ∈ Mod(Σ1
0,n).

Proof. Let ϕ : Bn → Mod(Σ1
0,n) denote the standard isomorphism. First note that

as ρ provides an action without global fixed points, the element ρ(ϕ(∆2
n)) = ρ(Td)

must act without fixed points. Thus, by using an orientation-reversing homeomor-
phism if necessary, we may conjugate ρ to produce ρ′ with image in Hõmeo+(S1).

Note also that ϕ(∆n−1) is represented by a Dehn twist about a curve γ such
that Σ1

0,n \ {γ} ∼= Σ1
0,n−1 ∪ Σ2

0,1. Moreover, if α is any other curve such that
Σ1

0,n \ {α} ∼= Σ1
0,n−1 ∪ Σ2

0,1, then there exists a homeomorphism of Σ1
0,n carrying

γ to α [FM, Section 1.3]. Thus ρ′(ϕ(∆n−1)) is conjugate to an element having a
fixed point, so itself has a fixed point.
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Now fix an enumeration {r0, r1, . . . } of the rationals, and define a positive cone
P ⊂ Bn in the usual way: β ∈ Bn satisfies β ∈ P if and only if ρ′(ϕ(β))(ri) > ri,
where i is the smallest index such that ρ′(ϕ(β))(ri) ̸= ri. One can verify that
τβ(P ) = τβ(ρ

′ ◦ ϕ) for all β ∈ Bn and that τβ(∆
2
n−1)(P ) = 0. By Corollary 4.11

this implies that τβ(P ) = τβ(PD) for all β ∈ Bn, which by [Mal, Theorem 7.5]
implies that τβ(P ) = c(ϕ(β)), completing the proof. □

We can also offer a restatement of this theorem in terms of left orderings of
Bn

∼= Mod(Σ1
0,n), which appears as Theorem 1.2 in the introduction.

Proof of Theorem 1.2. Let ρP denote the dynamic realisation of the given order-
ing. The restriction Td > id guarantees that ρP is conjugate via an orientation-
preserving homeomorphism of R to a representation ρ′ with image in Hõmeo+(S1).
Therefore τh(P ) = τh(ρ

′) = c(h) for all h ∈ Mod(Σ1
0,n) by Theorem 5.1 . □

We arrive at similar results for the surface Σ1
1,0. Recall that Mod(Σ1

1,0)
∼= B3,

where the square of generator of the centre ∆4
3 is carried to the Dehn twist Td

about the boundary curve d, and each generator is carried to a Dehn twist about
a non-separating simple closed curve (e.g. see [MWi]). Therefore we conclude:

Theorem 5.2. Suppose that ρ : Mod(Σ1
1,0) → Homeo+(R) is an injective homo-

morphism such that the induced action of Mod(Σ1
1,0) on R is without global fixed

points, and let d denote a simple closed curve parallel to the boundary component
of Σ1

1,0. Let α be a non-separating simple closed curve on Σ1
1,0. If τTα(ρ) = 0

then ρ is conjugate by a (possibly orientation-reversing) homeomorphism of R to a
representation ρ′ : Mod(Σ1

1,0) → Hõmeo+(S1) such that:
(1) ρ′(Td)(x) = x+ 1 for all x ∈ R, and
(2) c(h) = τh(ρ

′) for all h ∈ Mod(Σ1
1,0).

Proof. We need only observe that when n = 3, ∆2
n−1 = σ2

1 , and that if α, γ are
nonseparating curves in Σ1

1,0 then there exists a homeomorphism of Σ1
1,0 carrying

one to the other [FM, Section 1.3.1]. Now proceed as in the proof of Theorem
5.1. □

In analogy with Theorem 1.2, if so inclined, one can restate Theorem 5.2 purely
in terms of left orderings of the mapping class group Mod(Σ1

1,0).

6. Mapping class groups of low-genus surfaces acting on the circle

We use the results of the previous section to control the action of low-genus
mapping class groups on S1. First, we require a brief background on circular
orderings, their relationship with left orderings, and cohomology.

6.1. Circular orderings and cohomology. Given a group G, recall that an
inhomogeneous 2-cocyle f : G2 → {0, 1} is a function satisfying f(id, g) = f(g, id) =
0 for all g ∈ G and f(h, k)− f(gh, k) + f(g, hk)− f(g, h) = 0 for all g, h, k ∈ G. A
circular ordering of G is an inhomogeneous 2-cocycle that also satisfies f(g, h) ∈
{0, 1} for all g, h ∈ G and f(g, g−1) = 1 for all g ∈ G \ {id}.

Given a group G with a circular ordering f , we can construct a left-ordered
central extension G̃f of G as follows. Take the set Z × G, and equip it with a
multiplication according to the rule (n, g)(m,h) = (n +m + f(g, h), gh). One can
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check that Pf = {(n, g) | n ≥ 0} \ {(0, id)} defines a positive cone in G̃f , so that
G̃f is left ordered. There is a central extension

0 −→ Z ι−→ G̃f
q−→ G −→ 1

where ι(n) = (n, id) and q(n, g) = g. The element (1, id) is positive cofinal and
central, and the floor of (n, g) ∈ G̃f is given by [(n, g)] = n.

This construction is nothing more than a special instance of the usual correspon-
dence between elements of H2(G;Z) and equivalence classes of central extensions
0 −→ Z ι1−→ H

q−→ G −→ 1. Recall that two central extensions

0 −→ Z ι1−→ H1
ρ1−→ G −→ 1 and 0 −→ Z ι2−→ H2

ρ2−→ G −→ 1

are equivalent whenever there exists a homomorphism ϕ : H1 → H2 such that
ϕι1 = ι2 and ρ2ϕ = ρ1, which in fact makes ϕ into an isomorphism.

With these lifts in hand, we can also define the rotation number of an element
g ∈ G relative to a circular ordering f of G. It is

rotg(f) = τg̃(Pf ) mod Z,

where g̃ ∈ G̃f is any element satisfying q(g̃) = g. It is straightforward to check
that this definition is independent of our choice of lift g̃, and that for all k ∈ Z,
rotgk(f) = k(rotg(f)).

Since a circular ordering on a group G takes values in {0, 1}, it is bounded. Thus
it defines an element [f ] in bounded cohomology H2

b (G;Z). We say two circular
orderings f1, f2 on G are semiconjugate if [f1] = [f2] ∈ H2

b (G;Z).

Remark 6.1. Given a circular ordering f on a countable group G, one can define
a dynamic realisation ρf : G → S1. There is a dynamical notion of two actions
of G on S1 being semiconjugate. The two uses of the word semiconjugacy are
compatible. More precisely, f1 and f2 are semiconjugate circular orderings on a
group G if and only if ρf1 and ρf2 are semiconjugate (see [CG] for an exposition of
this well-known fact).

The next result gives a characterisation of semiconjugate circular orderings on a
group G in terms of translation numbers of their left-ordered central extension. The
result is well-known from a dynamical perspective (see e.g. [BFH] for an expository
discussion in terms of bounded Euler classes and translation number, or [Ghy]).

Proposition 6.2. Let f1 and f2 be circular orderings on a group G. Let Pf1 and
Pf2 be the positive cones of the left-ordered central extensions G̃f1 and G̃f2 . Then
[f1] = [f2] ∈ H2

b (G;Z) if and only if there exists an equivalence of central extensions
θ : G̃f1 → G̃f2 satisfying τg̃(Pf1) = τθ(g̃)(Pf2) for all g̃ ∈ G̃f1 .

Proof. Throughout this proof we will write Pi in place of Pfi and G̃i in place of
G̃fi in order to simplify notation.

Suppose f1(g, h) − f2(g, h) = d(g) + d(h) − d(gh) for some bounded function
d : G → Z (so [f1] = [f2] ∈ H2

b (G;Z)). Then θ : G̃1 → G̃2 given by θ(n, g) =

(n+ d(g), g) is an equivalence of central extensions. Let (n, g) ∈ G̃1. For k ∈ Z>0,
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let (n, g)k = (mk, g
k). Then

τθ(n,g)(P2)− τ(n,g)(P1) = lim
k→∞

1

k
([θ(n, g)k]P2

− [(n, g)k]P1
)

= lim
k→∞

1

k
([(mk + d(gk), gk)]P2

− [(mk, g
k)]P1

)

= lim
k→∞

1

k
(mk + d(gk)−mk)

= lim
k→∞

d(gk)

k
= 0

since d is bounded. Therefore τθ(n,g)(P2) = τ(n,g)(P1).
Conversely, suppose θ : G̃1 → G̃2 is an equivalence of central extensions satisfying

τ(n,g)(P1) = τθ(g,n)(P2) for all (n, g) ∈ G̃1. Then θ takes the form θ(n, g) = (n +
d(g), g) for a function d : G → Z satisfying f1(g, h)− f2(g, h) = d(g)+ d(h)− d(gh)
for all g, h ∈ G. We will show d is bounded, and in particular, that −1 ≤ d(g) ≤ 1
for all g ∈ G.

Let (n, g) ∈ G̃1 and k ∈ Z>0. Then

(n, g)k =

(
kn+

k−1∑
i=1

f1(g
i, g), gk

)

and

θ((n, g))k =

(
kn+ kd(g) +

k−1∑
i=1

f2(g
i, g), gk

)
.

The assumption τ(n,g)(P1) = τθ(n,g)(P2) implies

0 = lim
k→∞

1

k

(
kn+

k−1∑
i=1

f1(g
i, g)

)
− lim

k→∞

1

k

(
kn+ kd(g) +

k−1∑
i=1

f2(g
i, g)

)

= lim
k→∞

1

k

(
−kd(g) +

k−1∑
i=1

(f1(g
i, g)− f2(g

i, g))

)

= −d(g) + lim
k→∞

1

k

k−1∑
i=1

(f1(g
i, g)− f2(g

i, g)).

Since f1(g
i, g), f2(g

i, g) ∈ {0, 1}, we have

−(k − 1) ≤
k−1∑
i=1

(f1(g
i, g)− f2(g

i, g)) ≤ k − 1

so

−1 ≤ lim
k→∞

1

k

k−1∑
i=1

(f1(g
i, g)− f2(g

i, g)) ≤ 1.

Therefore −1 ≤ d(g) ≤ 1 for all g ∈ G, as desired. □
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6.2. Quotients of the braid group, circular orderings and lifts. For n ≥ 2 set
δn = σ1σ2 · · ·σn−1. Recall that the Garside element ∆n, whose square generates the
centre of Bn, can be expressed as ∆n = δnδn−1 · · · δ2. Moreover, we have δnn = ∆2

n

[DDRW, Lemma 4.4]. The following lemmas allow us to bound the translation
number of ∆n−1 ∈ Bn.

Lemma 6.3. Suppose that n ≥ 3 is an integer. Then the following hold for all
k ∈ Z:

(1) ∆
−2(k+1)
n−1 ∆2k

n = ∆−2
n−1(∆nδn∆

−1
n δn)

k, and
(2) ∆

2(k+1)
n−1 ∆2k

n = ∆2
n−1(δ

−1
n ∆nδ

n−1
n ∆n)

k.

Proof. To show (1), we first compute

∆−2
n−1∆

2
n = ∆2

n∆
−2
n−1

= (δn · · · δ2)(δn · · · δ2)(δ−1
2 · · · δ−1

n−1)(δ
−1
2 · · · δ−1

n−1)

= (δn · · · δ2)δn(δ−1
2 · · · δ−1

n−1)

= ∆nδn∆
−1
n δn.

Now we observe that

∆
−2(k+1)
n−1 ∆2k

n = ∆−2
n−1(∆

−2
n−1∆

2
n)

k

= ∆−2
n−1(∆

2
n∆

−2
n−1)

k

= ∆−2
n−1(∆nδn∆

−1
n δn)

k.

To show (2), we begin with

∆2
n−1∆

2
n = ∆2

n∆
2
n−1

= δnn(δn−1 · · · δ2)(δn−1 · · · δ2)
= δn−1

n ∆n(δn−1 · · · δ2)
= δ−1

n ∆nδ
n
n(δn−1 · · · δ2)

= δ−1
n ∆nδ

n−1
n ∆n.

Now we write

∆
2(k+1)
n−1 ∆2k

n = ∆2
n−1(∆

2
n−1∆

2
n)

k

= ∆2
n−1(∆

2
n∆

2
n−1)

k

= ∆2
n−1(δ

−1
n ∆nδ

n−1
n ∆n)

k.

□

Proposition 6.4. If (G,<) is a countable left-orderable group and x, y ∈ G are
positive and <-cofinal, then the product xy is positive and <-cofinal.

Proof. Suppose that P is the positive cone of <, and note that g ∈ G is <-cofinal
if and only if ρP (g) is without fixed points. Therefore if x, y ∈ G are positive and
<-cofinal then ρP (x)(a) > a and ρP (y)(a) > a for any a ∈ R. Thus

ρP (xy)(a) = ρP (x)(ρP (y)(a)) > ρP (y)(a) > a

for all a ∈ R. Therefore xy is <-cofinal. □
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Proposition 6.5. If < is a left ordering of Bn, n ≥ 3 such that ∆2
n > 1, then

there exist positive integers k, ℓ such that ∆2(k+1)
n−1 < ∆2k

n and ∆−2ℓ
n < ∆

2(ℓ+1)
n−1 .

Proof. By Lemma 6.3(1), we have that

∆
−2(m+1)
n−1 ∆2m

n = ∆−2
n−1(∆nδn∆

−1
n δn)

m

for all integers m. So to show that there exists a positive k such that ∆−2(k+1)
n−1 ∆2k

n >

id, it suffices to show that the product ∆nδn∆
−1
n δn is positive and cofinal, for then

there exists an integer k > 0 such that ∆−2
n−1(∆nδn∆

−1
n δn)

k is positive.
Note that (∆nδn∆

−1
n )n = ∆2

n and δnn = ∆2
n. Since ∆2

n is positive and con-
final, both ∆nδn∆

−1
n and δn are positive and cofinal. Therefore, their product

(∆nδn∆
−1
n )δn is positive and cofinal by Proposition 6.4. This proves the existence

of the required k.
Now by Lemma 6.3(2), we have

∆
2(m+1)
n−1 ∆2m

n = ∆2
n−1(δ

−1
n ∆nδ

n−1
n ∆n)

m

for all integers m. As above, in order to show the existence of the required ℓ > 0 it
suffices to prove that δ−1

n ∆nδ
n−1
n ∆n is positive and cofinal. Recall that n ≥ 3, so

by writing δ−1
n ∆nδ

n−1
n ∆n = (δ−1

n ∆nδ)δ
n−2
n ∆n, we can observe that δ−1

n ∆nδ
n−1
n ∆n

is a product of the positive, cofinal elements δ−1
n ∆nδ, δn−2

n and ∆n, so is itself
positive and cofinal as well. □

Corollary 6.6. Suppose that P ∈ Bn is the positive cone of a left ordering with
∆2

n ∈ P . Then −1 < τ∆n−1
(P ) < 1.

Proof. By Proposition 6.5 we can choose k > 0 such that ∆
2(k+1)
n−1 <P ∆2k

n . But
then ∆

2m(k+1)
n−1 <P ∆2mk

n for all m > 0, and so [∆
2m(k+1)
n−1 ]P < mk. Thus

τ∆2
n−1

(P ) = lim
m→∞

[∆
2m(k+1)
n−1 ]P

m(k + 1)
≤ k

k + 1
< 1.

Similarly by using Proposition 6.5 to choose ℓ > 0 such that ∆−2ℓ
n < ∆

2(ℓ+1)
n−1 we

can show that τ∆2
n−1

(P ) > −1. □

Proposition 6.7. Set Gn = Bn/⟨∆2
n⟩ and let f be an arbitrary circular ordering

of Gn. Then the central extension (̃Gn)f is isomorphic to Bn.

Proof. The braid group Bn has presentation

Bn =

〈
σ1, . . . , σn−1

σiσj = σjσi if |i− j| > 1
σiσjσi = σjσiσj if |i− j| = 1

〉
,

and upon setting a = δn = σ1 . . . σn−1 and b = δnσ1, noting that δnσi = σi+1δn for
1 ≤ i ≤ n− 2, we arrive at the presentation

Bn = ⟨a, b | an = bn−1, bai−1ba−i = aiba−i−1b for 2 ≤ i ≤ n/2⟩.

Therefore our group Gn has the presentation

Gn = ⟨a, b | an = bn−1 = id, bai−1ba−i = aiba−i−1b for 2 ≤ i ≤ n/2⟩.
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Now let f be an arbitrary circular ordering of Gn, and recall that (̃Gn)f is con-
structed as Z × Gn with multiplication (n, g)(m,h) = (n + m + f(g, h), gh), and
that there is a short exact sequence

0 −→ Z i−→ (̃Gn)f
q−→ Gn −→ 1.

We will denote the generator of the kernel of q by t, so that i(t) = (1, id), and recall
that the quotient map acts by q(n, g) = g.

Recall from [CG2, Definition 2.9] that one may choose a minimal generator
of any circularly ordered cyclic group. In this setting, this means we may choose
i ∈ {1, . . . , n−2} and j ∈ {1, . . . , n−3} such that ai and bj are generators of ⟨a⟩ and
⟨b⟩ respectively, satisfying f(ai, aki) = 0 for all k = 1, . . . , n− 1 and f(bj , amj) = 0
for m = 1, . . . , n− 2.

A presentation for (̃Gn)f is given by

⟨x, y, t | t central, xn = tu, yn−1 = tv, yxi−1yx−i = xiyx−i−1ytki for 2 ≤ i ≤ n/2⟩

where u, v, ki ∈ Z are integers that are chosen so that (0, ai)n = (u, id) and
(0, bj)n = (v, id) and

(0, bj)(0, ai)i−1(0, bj)(0, ai)−i = (0, ai)i(0, bj)(0, ai)−i−1(0, bj)(ki, id)

for 2 ≤ i ≤ n/2 [HEO, Proposition 2.5]. First we observe that by our choice of i, j,
we can compute the n-fold product:

(0, ai) · · · (0, ai) =

(
n−1∑
k=1

f(ai, aki), ani

)
= (1, id).

Here, the equality
∑n−1

k=1 f(a
i, aki) = 1 follows from the fact that our choice of i

yields f(ai, aki) = 0 for 1 ≤ k ≤ n− 2 since ai is a minimal generator of Z/nZ, and
f(ai, a(n−1)i) = 1. Thus u = 1. We similarly compute that v = 1. So eliminating
the variable t from our presentation for (̃Gn)f , we arrive at

⟨x, y | xn = yn−1, yxi−1yx−i = xiyx−i−1yxnki for 2 ≤ i ≤ n/2⟩.

We conclude the proof by showing that the group defined by this presentation is
not left orderable unless ki = 0 for all i.

Given a left ordering of (̃Gn)f , we can assume that x > id and therefore y > id
as well. Moreover, both of these generators are positive and cofinal since the group
(̃Gn)f is generated by roots of the central element xn = yn−1, and therefore by
Proposition 6.4 every element in the semigroup sg(x, y) is positive and cofinal as
well. In particular, for all w ∈ sg(x, y) and for all g ∈ (̃Gn)f , we have gwg−1 > id

(though perhaps this conjugate is no longer cofinal). We use these facts below.
First suppose that ki > 0 for some i with 2 ≤ i ≤ n/2. Then considering the

relator yxi−1yx−i = xiyx−i−1yxnki , we right-multiply by y−1x−i+1y−1 to arrive at

yxi−1yx−iy−1x−i+1y−1 = xiyx−2iy−1xnki ,

here we have used that xn is central. Now the left hand side is a conjugate of the
negative element x−i and is thus negative. On the other hand, using centrality of
xn the right hand side becomes xiyxnki−2iy−1. Recalling that i ≤ n/2, the quantity
xnki−2i is either positive or the identity whenever ki > 0. But then xiyxnki−2iy−1

is positive, a contradiction.
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Next suppose that ki < 0 some i with 2 ≤ i ≤ n/2. Again, we begin with
yxi−1yx−i = xiyx−i−1yxnki and rearrange the expression to arrive at

x−nki−iy−1x1−iyxi−1yx−i = yx−i−1y.

Observe that the left hand side can be written as

x−nki−2i(xiy−1x1−iyxi−1yx−i)

and since n > 2, ki < 0 and i ≤ n/2, −nki − 2i ≥ 0. Therefore this is a product
of conjugates of cofinal, positive elements, and thus, every conjugate of the left
hand side is positive. Consequently, every conjugate of the right hand side, which
is yx−i−1y, must also be positive.

This implies that x−i−1y2, y−2x−i−1y4, . . . , y2(n−2)x−i−1y2(n−1) are all positive
elements. Therefore their product

x−i−1y2·y−2x−i−1y4 . . . y2(n−2)x−i−1y2(n−1) = x(n−1)(−i−1)y2(n−1) = x(n−1)(−i−1)+2n

is also positive. However, (n − 1)(−i − 1) + 2n = (2 − i)n + (i − n) + 1, and
2 − i ≤ 0 and i − n < n/2 − n < 1, so overall this quantity is negative. But then
x(n−1)(−i−1)+2n < id is a contradiction, completing the proof. □

6.3. Semiconjugacy of mapping class group actions on the circle. We wish
to apply the rigidity result of Theorem 4.10 to mapping class groups of marked
spheres and once-marked surfaces of genus one.

Let Σ1
0,n be a disk with n marked points. Recall that there is an isomorphism

φ : Bn → Mod(Σ1
0,n), such that if d is a curve isotopic to ∂Σ1

0,n, then φ(∆2
n) = Td.

Here Td denotes the Dehn twist about d.
There is an inclusion ϵ : Σ1

0,n ↪→ Σ0,n+1, where the complement of ϵ(Σ1
0,n) is a

once-marked open disk. Let ∗ denote the marked point in Σ0,n+1 that is in the
complement of ϵ(Σ1

0,n). Let Gn ⊂ Mod(Σ0,n+1) be the stabiliser of ∗.
By extending homeomorphisms of ϵ(Σ1

0,n) to Σ0,n+1 by the identity, we get the so-
called capping homomorphism C : Mod(Σ1

0,n) → Gn. The capping homomorphism
gives rise to the central extension

0 −→ Z ι−→ Mod(Σ1
0,n)

C−→ Gn −→ 1

where ι(1) = Td [FM, Section 3.6.2].
Since there exists a left ordering < on Mod(Σ1

0,n) so that Td is <-cofinal, Gn

is circularly orderable (in fact, as observed earlier, Td is <-cofinal for every left
ordering < of Mod(Σ1

0,n)).
For the next theorem, we first recall a well-known fact about circular orderings

on a group G—namely that they come in pairs. Let f : G2 → Z be a circular
ordering on G. Define the opposite ordering fop : G2 → Z by

fop(g, h) =

{
1− f(g, h) if g ̸= id, h ̸= id, and gh ̸= id

f(g, h) otherwise.

It can be checked that fop is indeed a circular ordering on G. Furthermore, if we
let d : G → Z be the function d(id) = 0 and d(g) = 1 if g ̸= id, we have

f(g, h) + fop(g, h) = d(g) + d(h)− d(gh)

for all g, h ∈ G. Since d is bounded, we have [f ] = −[fop] ∈ H2
b (G;Z), and therefore

in H2(G;Z). Intuitively, we can think of fop as being obtained from f by reversing
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the orientation of the circle. The next theorem is a restatement, using the notation
developed in this section, of Theorem 1.3.

Theorem 6.8. Let α be a simple closed curve on Σ0,n+1 that surrounds n − 1
marked points, none of which are ∗. Let f1 and f2 be circular orderings on Gn

satisfying rotTα
(f1) = rotTα

(f2) = 0. Then [f1] = ±[f2] ∈ H2
b (Gn;Z).

Proof. Consider the central extensions

0 −→ Z ι1−→ A1
ρ1−→ Gn −→ 1 and 0 −→ Z ι2−→ A2

ρ2−→ Gn −→ 1

corresponding to [f1], [f2] ∈ H2(G;Z) respectively. Let j ∈ {1, 2}. Recall from the
proof of Proposition 6.5 Gn and Aj admit group presentations

Gn = ⟨a, b | an = bn−1 = id, bai−1ba−i = aiba−i−1b for 2 ≤ i ≤ n/2⟩
Aj = ⟨xj , yj | xn

j = yn−1
j , yjx

i−1
j yjx

−i
j = xi

jyjx
−i−1
j yj for 2 ≤ i ≤ n/2⟩

respectively, with ρj(xj) = a, ρj(yj) = b, and ιj(1) = xn
j . Let θj : Bn → Aj be

the isomorphism given by θj(σ1 · · ·σn−1) = xj and θj(σ1 · · ·σn−1σ1) = yj as per
Proposition 6.7. Then ρ1θ1 = ρ2θ2 : Bn → Gn is the capping homomorphism. By
replacing fj by fop

j if necessary, we may assume θj(∆
2
n) = xn

j = ιj(1). With this
assumption, it suffices to show [f1] = [f2] ∈ H2

b (Gn;Z).
Let Qj be the positive cone of the left ordering on Aj coming from the lifting

construction of Subsection 6.1, applied to the circular ordering fj on Gn. Then
ιj(1) = xn

j ∈ Qj is the corresponding positive cofinal central element. Consider
the positive cone Pj = {g ∈ Bj : θj(g) ∈ Qj . Then ∆2

n ∈ Pj . Note that since
θj(∆

2
n) = ιj(1), τg(Pj) = τθj(g)(Qj) for all g ∈ Bn.

Consider now the element ∆2
n−1 ∈ Bn. As an element of Mod(Σ1

0,n), ∆2
n−1 is

a Dehn twist about a simple closed curve surrounding n− 1 marked points. Since
pjθj is the capping homomorphism, pjθj(∆2

n−1) = Tβ for some simple closed curve
β surrounding n − 1 marked points in Σ0,n+1. Observe that none of the n − 1
marked points are in the complement of ϵ(Σ1

0,n), where ϵ : Σ1
0,n ↪→ Σ0,n+1 is the

inclusion. Therefore, by the change of coordinates principle [FM, Section 1.3],
Tβ and Tα are conjugate in Gn. Since rotation number is a conjugacy invariant,
we have rotTβ

(fj) = rotTα
(fj) = 0. So we have τ∆2

n−1
(Pj) = τθj(∆2

n−1)
(Qj) ∈ Z,

which implies τ∆2
n−1

(Pj) = 0 by Corollary 6.6. By Corollary 4.11 we can conclude
τg(P1) = τg(P2) for all g ∈ Bn.

Finally, from the definition of θj , we have θ2θ
−1
1 : A1 → A2 satisfies θ2θ−1

1 ι1 = ι2
and ρ2θ2θ

−1
1 = ρ1. Therefore θ2θ

−1
1 is an isomorphism realising the equivalence of

central extensions of Gn. For an arbitrary x ∈ A1 we have

τx(Q1) = τθ−1
1 (x)(P1) = τθ−1

1 (x)(P2) = τθ2θ−1
1 (x)(Q2).

By Proposition 6.2 we may conclude [f1] = [f2] ∈ H2
b (Gn;Z). □

6.4. Genus 1 and the (projective) special linear group. In the case n = 3,
G3 is isomorphic to the modular group PSL2(Z). Identify PSL2(Z) as the set of
fractional linear transformations of the complex upper-half plane z 7→ qz+r

sz+t , with
qt − rs = 1 and q, r, s, t ∈ Z. An explicit isomorphism ϕ : G3 → PSL2(Z) is given
by

ϕ(a) =

(
z 7→ −1

z + 1

)
and ϕ(b) =

(
z 7→ −1

z

)
.
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The image of ∆2
2 = σ2

1 in G3 is given by (a−1b)2, and

ϕ((a−1b)2) = (z 7→ z − 2) .

Let F be the element (z 7→ z − 2) in PSL2(Z). We get the following corollary of
Theorem 6.8.

Corollary 6.9. Let f1 and f2 be circular orderings on PSL2(Z) with the property
that rotF (f1) = rotF (f2) = 0. Then [f1] = ±[f2] ∈ H2

b (PSL2(Z);Z). □

There is a surjective homomorphism φ : B3 → SL2(Z) with ker(φ) = ⟨∆4
3⟩ given

by φ(σ1) = [ 1 1
0 1 ] and φ(σ1) =

[
1 0
−1 1

]
.

Exploiting the fact that B3 is a central extension of SL2(Z), we can prove a
theorem for SL2(Z) analagous to Theorem 6.8.

Theorem 6.10. Let A = [ 1 1
0 1 ] and let f1 and f2 be circular orderings on SL2(Z)

so that rotA(f1) = rotA(f2) = 0. Then [f1] = ±[f2] ∈ H2
b (SL2(Z);Z).

The proof follows the same strategy as that of Theorem 6.8, with many of the
details being identical. However, there are a few key differences which we highlight
in the proof.

Proof. Let

0 −→ Z ι1−→ H1
ρ1−→ SL2(Z) −→ 1 and 0 −→ Z ι2−→ H2

ρ2−→ SL2(Z) −→ 1

be the left-ordered central extensions of SL2(Z) corresponding to f1 and f2 re-
spectively. For the remainder of this proof, let j ∈ {1, 2}. Any torsion-free
central extension of SL2(Z) is isomorphic to B3. By replacing fj by fop

j if nec-
essary, we can choose isomorphisms θj : B3 → Hj so that θj(∆

4
3) = ιj(1) and

ρjθj(σ
2
1) = [ 1 2

0 1 ] = A2. Note that rotfj (A
2) = 2rotfj (A) = 0.

Let Qj be the positive cone on Hj , and let Pj = {b ∈ B3 | θj(b) ∈ Qj}. Note that
Pj is a positive cone on B3 with ∆2

3 ∈ Pj . Let Tb(Pj) denote the translation number
of b ∈ B3 treating ∆4

3 as the cofinal central element, and τb(Pj) the translation
number treating ∆2

3 as the cofinal central element. Then 2Tb(Pj) = τb(Pj) for all
b ∈ B3. Since rotfj (A

2) = 0, Tσ2
1
(Pj) ∈ Z so τσ2

1
(Pj) ∈ 2Z. Therefore by Corollary

6.6, τσ2
1
(Pj) = 0. It follows from Corollary 4.11 that τb(P1) = τb(P2) for all b ∈ B3,

and so Tb(P1) = Tb(P2). Therefore for all g ∈ H1, τg(Q1) = τθ2θ−1
1 (g)(Q2). The

proof is completed by noting that θ2θ
−1
1 : H1 → H2 is an equivalence of central

extensions and applying Proposition 6.2. □

Let Σ be a genus-1 surface, or a genus-1 surface with one marked point. Then
Mod(Σ) ∼= SL2(Z) via an isomorphism mapping a positive Dehn twist Ta about a
non-separating simple closed curve to [ 1 1

0 1 ] [FM, §2.2.4]. Since positive Dehn twists
about non-separating simple closed curves are conjugate in Mod(Σ) [FM, §3.3], we
have the following corollary.

Corollary 6.11. Let Σ = Σ1 or Σ1,1, and let a be a non-separating simple closed
curve on Σ. Let f1 and f2 be circular orderings on Mod(Σ) so that rotTa

(f1) =
rotTa

(f2) = 0. Then [f1] = ±[f2] ∈ H2
b (Mod(Σ);Z). □

Remark 6.12. There is a natural action of Gn on S1 via the so-called conical cover
(see [BW]). Consider the n + 1-punctured sphere Σ0,n+1 with a distinguished
puncture ∗, so Gn is isomorphic to the subgroup of Mod(Σ0,n+1) that fixes ∗.
Assuming n ≥ 3, we can fix a hyperbolic metric on Σ0,n+1. Choose a parabolic
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element γ ∈ π1(Σ0,n+1) corresponding to the distinguished puncture ∗, and let
Σ̃0,n+1 be the cover corresponding to the cyclic subgroup ⟨γ⟩ ⊂ π1(Σ0,n+1). The
covering space Σ̃0,n+1 is called the conical cover at the puncture ∗. The conical
cover is homeomorphic to an open punctured disk and has a hyperbolic metric
obtained by pulling back the metric from Σ0,n+1. The Gromov boundary of Σ̃0,n+1

is the disjoint union of a point (corresponding to the puncture ∗) and a circle. The
boundary circle parametrises geodesic rays starting from ∗, and every ray out of ∗
has a unique preferred lift to Σ̃0,n+1. By lifting elements of Gn to Σ̃0,n+1, we get
an action of Gn on the boundary circle. Consider now a simple closed curve α on
Σ0,n+1 surrounding ∗ and another puncture as in Theorem 6.8. There is a ray δ
from ∗ to the other puncture that is disjoint from α. Therefore Tα fixes δ, and the
lift of Tα to Σ̃0,n+1 fixes the lift of δ. This gives a fixed point of the action of Tα

on S1, and so the rotation number of Tα is 0. By Theorem 6.8, every action of Gn

on S1 such that Tα acts with rotation number 0 is semiconjugate (up to reversing
the orientation of the circle) to the action coming from the conical cover.

Similarly, SL2(Z) acts on the set of half rays in R2, which is circularly ordered.
The element A = [ 1 1

0 1 ] fixes the half ray passing through the point (1, 0), and so
the rotation number of A corresponding to this action is 0. Theorem 6.10 implies
that any action of SL2(Z) on S1 such that A acts with rotation number 0 is semi-
conjugate, up to reversing the orientation of the circle, to the action on the set of
half rays.

The modular group PSL2(Z) acts on the upper half complex plane H2 by isome-
tries and therefore on its boundary ∂H2 ≃ S1. The element F = (z 7→ z − 2) fixes
∞ and therefore F acts with rotation number 0. We can conclude from Corollary
6.9 that up to reversing the orientation of the circle, any action on S1 with the
property that F acts with rotation number 0 is semiconjugate to the action on ∂H2

described above.
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