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We show that for a surface S with positive genus and one boundary component, the

mapping class of a Dehn twist along a curve parallel to the boundary is cofinal in every

left ordering of the mapping class group Mod(S). We apply this result to show that one of

the usual definitions of the fractional Dehn twist coefficient—via translation numbers of

a particular action of Mod(S) on R—is in fact independent of the underlying action when

S has genus larger than one. As an algebraic counterpart to this, we provide a formula

that recovers the fractional Dehn twist coefficient of a homeomorphism of S from an

arbitrary left ordering of Mod(S).

1 Introduction

Braid groups, and more generally mapping class groups of hyperbolic surfaces with

nonempty boundary, are left-orderable. There are many techniques for producing

explicit examples of such orderings, ranging from combinatorial conditions on

representative words relative to a certain generating set, to conditions on arc diagrams

in the surface, to hyperbolic geometry (see e.g., [8, 22]). In fact, there are uncountably

many ways to left order any left-orderable mapping class group, aside from B2
∼= Z,

which only admits two left orderings. Despite this flexibility in creating left orderings
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of mapping class groups, the left orderings all display a type of algebraic rigidity that

is also reflected in the dynamics of their actions on R.

Given a left-ordered group (G, <), an element g ∈ G is called cofinal relative to

the ordering < of G if

G = {h ∈ G | ∃k ∈ Z such that g−k < h < gk}.

In terms of dynamics, this means that for every action of G on R by orientation-

preserving homeomorphisms and without global fixed points, the element g will act

without fixed points.

Using Mod(�1
g) to denote the mapping class group of a surface of genus g having

one boundary component and Td to denote the Dehn twist about a curve isotopic to the

boundary of �1
g , we prove the following:

Theorem 1. For all g > 0, the element Td ∈ Mod(�1
g) is cofinal in every left ordering of

Mod(�1
g).

For the case of g = 0, the braid groups, the above result also holds and is

well-known [8, Proposition 3.6]. Aside from the dynamical consequences explored in

this paper, it is also worth noting that Theorem 1 implies that every positive cone of

Mod(�1
g) is a coarsely connected subset of the Cayley graph of Mod(�1

g) [1, Lemma

4.14]. In the language of [1], this means that Mod(�1
g) for g > 0 is an example of

a Prieto group.

There is a classical correspondence between elements of H2(G;Z) and equiva-

lence classes of central extensions of G by Z (see [4, Chapter 4]). In the setting of ordered

groups, this plays out as a correspondence between circularly-ordered groups (or groups

admitting an action on S1 by orientation-preserving homeomorphisms) and left-ordered

central extensions with cofinal central elements (or central extensions admitting an

action on R by orientation-preserving homeomorphisms, for which the central element

acts as translation by one).

We can apply this to mapping class groups via the well-known central extension

given by the “capping homomorphism,” using Theorem 1 to establish a correspondence

between left orderings of Mod(�1
g) and circular orderings of Mod(�g,1), the mapping

class group of a surface with one marked point. By combining this correspondence with

a rigidity result of Mann and Wolff [20], we are able to conclude that all left orderings

of Mod(�1
g) have certain dynamical properties in common, and apply this to fractional

Dehn twist coefficients as follows.
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We denote the fractional Dehn twist coefficient of h ∈ Mod(�1
g) by c(h), and first

remark that although this quantity is often defined in terms of singular foliations, it

can equivalently be defined as the translation number of h under a particular action of

Mod(�1
g) on R (e.g., see [15] or [19]). By an application of Theorem 1 and the result of

Mann and Wolff, we show that this definition is independent of the choice of action.

Theorem 2. Suppose that g ≥ 2 and let ρ : Mod(�1
g) → Homeo+(R) be an injective

homomorphism such that the action of Mod(�1
g) on R is without global fixed points.

Then, up to reversing orientation, ρ is conjugate to a representation ρ′ : Mod(�1
g) →

Hõmeo+(S1) such that ρ′(Td)(x) = x + 1 for all x ∈ R, and for every h ∈ Mod(�1
g) the

fractional Dehn twist coefficient c(h) is given by the translation number of h as computed

from the ρ′-action on R.

Morally, Theorem 2 tells us that the translation number of an element of Mod(�1
g)

is intrinsic to the element itself, and does not depend on any particular choice of action.

We also see that since the fractional Dehn twist coefficient is a rational number [14,

Section 3], it follows that for every action of Mod(�1
g) on R with Td acting as translation

by one, all translation numbers are rational.

One weakness of Theorem 2, however, is that in order to compute the frac-

tional Dehn twist coefficient from a representation ρ : Mod(�1
g) → Homeo+(R), one

must first normalise so that the Dehn twist Td is sent to translation by one. This

normalisation issue disappears when we re-cast the previous theorem in terms of

left orderings.

Given a left ordering < of Mod(�1
g) for which Td > id and h ∈ Mod(�1

g), we use

[h]< to denote the unique power of Td ∈ Mod(�1
g) such that T [h]<

d ≤ h < T [h]<+1
d . Such a

power exists by Theorem 1.

Theorem 3. Suppose that g ≥ 2 and h ∈ Mod(�1
g). Denote the fractional Dehn twist

coefficient of h by c(h). For every left ordering < of Mod(�1
g) for which Td > id, we have

c(h) = lim
n→∞

[hn]<
n

.

This theorem allows one to easily find bounds on fractional Dehn twist coef-

ficients using left-orderings (Proposition 17), and in some cases allows one to compute

the precise value of the fractional Dehn twist coefficient of a particular homeomorphism

from only two inequalities (Corollary 18).
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1.1 Outline of the paper

In Section 2, we review left orderings of groups, their relationship to circular orderings,

as well as translation number, rotation number, and semiconjugacy. In Section 3, we

introduce mapping class groups, and prepare several lemmas. Theorem 1 is proved in

Section 4. In Section 5, we define the fractional Dehn twist coefficient, prove Theorems 2

and Theorem 3, and provide some basic tools for estimating fractional Dehn twist coef-

ficients from these results. In Section 6, we provide examples that show the limitations

of these theorems.

2 Orders, Dynamics, and Semiconjugacy

2.1 Left-orderable and circularly orderable groups

A left ordering of a group G is a strict total ordering < of the elements of G such that

g < h implies fg < fh for all f , g, h ∈ G. A positive cone P ⊂ G is a semigroup satisfying

G \ {id} = P ∪ P−1. We can pass from an ordering < to a positive cone P< by setting

P< = {g ∈ G | g > id}, and from a positive cone P to an ordering <P by declaring g <

h ⇐⇒ g−1h ∈ P. It is straightforward to check that this correspondence is a bijection.

When G admits a left ordering it will be called a left-orderable group. When G comes

equipped with a prescribed left ordering, we will refer to it as a left-ordered group and

we denote such objects as a pair (G, <).

Given a left-ordered group (G, <), a <-cofinal set S ⊂ G (or simply “cofinal” if the

ordering of G is understood) is a subset of G satisfying

G = {g ∈ G | ∃s, t ∈ S such that s < g < t}.

An element g ∈ G is called <-cofinal if the cyclic subgroup 〈g〉 is <-cofinal.

A circular ordering of a group G is a function f : G2 → {0, 1} satisfying:

(i) f (g, g−1) = 1 for all g ∈ G \ {id};
(ii) f (id, g) = f (g, id) = 0 for all g ∈ G;

(iii) f is an inhomogeneous cocycle, that is

f (g2, g3) − f (g1g2, g3) + f (g1, g2g3) − f (g1, g2) = 0

for all g1, g2, g3 ∈ G.

With this definition of circular ordering in hand, we define circularly-orderable

groups and circularly-ordered groups in the obvious way.
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Cofinal Elements and FDTCs 7405

Remark. A circular ordering on a group is more commonly defined as a homogeneous

cocycle c : G3 → {0, ±1} satisfying c(g1, g2, g3) = 0 if and only if gi = gj for some

i �= j. However, for ease of exposition in cohomological arguments, it is often more

straightforward to define circular orderings in terms of inhomogeneous cocycles as we

have done above. That these definitions are equivalent can be found in [6, Proposition

2.3].

We now construct a left-ordered central extension (G̃f , <f ) of any circularly

ordered group (G, f ). Let G̃f = G × Z as a set, and equip it with the operation

(g, n)(h, m) = (gh, n + m + f (g, h)).

This group comes equipped with a left ordering <f whose positive cone is {(g, n) | n ≥ 0},
and a canonical positive, central cofinal element zf = (id, 1). To our knowledge, this

construction first appears in [23]. However, the underlying group construction is nothing

more than the usual correspondence between elements of H2(G;Z) and equivalence

classes of central extensions

0 → Z → G̃ → G → {id}.

For details of this correspondence, see [4, Chapter 4].

It is similarly possible to begin with a left-ordered group G admitting a left

ordering < and a positive, cofinal, central element z ∈ G, and to construct a circular

ordering f< on G/〈z〉 according to the following rule. Given g ∈ G, define {g} to be the

unique coset representative of g〈z〉 satisfying id ≤ {g} < z, and define f< according to

{g}{h} = {gh}zf<(g〈z〉,h〈z〉). That this defines a circular ordering of G/〈z〉 can be checked

from the definition.

These two constructions are not inverse to one another, though applying the lift

and quotient operations successively does yield a group that is naturally isomorphic

to the original for categorical reasons (similarly when one applies the quotient and lift

operations successively). See [5, Proposition 2.9] for details.

2.2 Dynamic realisations and tight embeddings

For a countable, left-ordered group (G, <), we recall the notion of dynamic realisation as

in [3], see also [9].

A gap in (G, <) is a pair of elements g, h ∈ G with g < h such that no element

f ∈ G satisfies g < f < h. An order-preserving embedding t : G → R is called a tight
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7406 A. Clay and T. Ghaswala

embedding of (G, <) if whenever (a, b) ⊂ R \ t(G), there exists a gap g, h ∈ G such that

(a, b) ⊂ (t(g), t(h)). We further require, for ease of exposition, that our tight embeddings

satisfy t(id) = 0. One can check that the usual construction of t : G → R in the definition

of the dynamic realisation, using countability of G to inductively construct an embedding

by choosing midpoints of previously defined intervals as in [7, Section 2.4] or [9, Chapter

1], provides an example of a tight embedding.

Define a dynamic realisation ρ< : G → Homeo+(R) of (G, <) by setting

ρ<(g)(t(h)) = t(gh) for all points in the image of t, using continuity to extend to points

in t(G), and then extending affinely to R \ t(G). This construction is also independent

of choice of tight embedding, in the sense that different choices of tight embedding

will yield conjugate dynamic realisations [3, Proposition 3.1]. The essential property of

dynamic realisations is that they allow one to recover the ordering < of G by examining

the orbit of t(id) = 0:

(∀g, h ∈ G)[g < h ⇐⇒ t(g) < t(h) ⇐⇒ ρ<(g)(0) < ρ<(h)(0)].

We now extend this to the realm of circular orderings. Given a circular ordering f

of a countable group G, define the dynamic realisation ρf : G → Homeo+(S1) as follows.

Choose a tight embedding t̃ : G̃f → R, with associated dynamic realisation

ρ̃f : G̃f → Homeo+(R). Note that since 〈zf 〉 is unbounded in G̃f , the image t̃(〈zf 〉) is

similarly unbounded in R. As such, the map ρ̃f (zf ) : R → R acts without fixed points,

since ρ̃f (zf )(t̃(z
k
f )) = t̃(zk+1

f ) for all k ∈ Z. Consequently, this map is conjugate to one of

sh(±1) : R → R, where sh(k)(x) = x + k for all x ∈ R and k ∈ Z. Since zf is positive in the

left ordering of G̃f , it follows that ρ̃f (zf ) is conjugate to sh(1). As such, we may assume

(by applying the appropriate conjugation) that the tight embedding t̃ : G̃f → R satisfies

t̃(zk
f ) = k and t̃(1) = 0, and consequently that ρ̃f (zf ) = sh(1). Therefore, we may assume

that ρ̃f : G̃f → Hõmeo+(S1), where

Hõmeo+(S1) = {f ∈ Homeo+(R) | f (x + 1) = f (x) + 1}.

Let q : Hõmeo+(S1) → Homeo+(S1) denote the quotient map whose kernel

consists of integral translations, and for arbitrary g ∈ G let g̃ = (g, 0) ∈ G̃f . Define

ρf : G → Homeo+(S1) by ρf (g)(x) = q(ρ̃f (̃g))(x). Note that

ρf (g) ◦ ρf (h)(x) = q(ρ̃f (̃gh̃))(x),

and that g̃h̃ = (g, 0)(h, 0) = (gh, f (g, h)) = (gh, 0)(1, f (g, h)). As such,

q(ρ̃f (̃gh̃))(x) = q(ρ̃f (g̃h) ◦ sh(f (g, h)))(x) = q(ρ̃f (g̃h))(x),
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meaning ρf : G → Homeo+(S1) is a homomorphism. As before, this construction is

defined up to conjugation.

Moreover, the map t := q ◦ t̃ provides an embedding t : G → S1; having fixed

t̃(id) = 0 ensures that ker(q) ∩ t̃(G̃f ) = 〈zf 〉. This allows us to make a similar observation

as in the case of dynamic realisations of left orderings: identify S1 with [0, 1) ∼= R/Z, and

let fS1 : (S1)2 → {0, 1} denote the standard circular ordering of S1. Then we have

(∀g, h ∈ G)[f (g, h) = fS1(t(g), t(h)) = fS1(ρf (g)(0), ρf (h)(0))].

2.3 Semi-conjugacy and bounded cohomology

Representations ρ : G → Homeo+(S1) are classified up to semiconjugacy according to

their Euler class eu(ρ) ∈ H2
b (G;Z) [12]. Given a representation ρ : G → Homeo+(S1), we

can explicitly describe a representative ω : G2 → Z of the bounded Euler class eu(ρ)

as follows. For each g ∈ G, all the choices of lifts ρ̃(g) : R → R differ by an integral

translation, so we can choose for each g ∈ G a lift satisfying ρ̃(g)(0) ∈ [0, 1). Then a

bounded representative of eu(ρ) is given by

ω(g, h) = ρ̃(g)(ρ̃(h)(0)) − ρ̃(gh)(0),

which is an element of Z (see, e.g., [12, Lemma 6.3]).

Proposition 4. If G is a countable group and f is a circular ordering of G, then [f ] =
eu(ρf ) ∈ H2

b (G;R).

Proof. Let t̃ : G̃f → R denote the tight embedding used in constructing the dynamic

realisation ρf : G → Homeo+(S1), recall that t̃ satisfies t̃(zk
f ) = k and is order-preserving

with respect to the orderings <f of G̃f and < of R.

For each g ∈ G our choice of lift ρ̃f (g) used to compute the bounded Euler class

will be ρ̃f (̃g), recall that g̃ = (g, 0). Note that it satisfies ρ̃f (̃g)(0) = t(g, 0), and since

(id, 0) ≤f (g, 0) <f zf we have 0 ≤ t(g, 0) < 1. Then with these choices we are able to

compute the following representative of eu(ρf ):

ω(g, h) = ρ̃f (̃g)(ρ̃f (̃h)(t̃(1))) − ρ̃f (g̃h)(t̃(1)) = t̃(̃gh̃) − t̃(g̃h).

Since g̃h̃ = (g, 0)(h, g) = (gh, f (g, h)), then t̃(̃gh̃) = t̃(g̃hzf (g,h)

f ) = t̃(g̃h) + f (g, h). This yields

ω(g, h) = f (g, h). �
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Proposition 5. Suppose f1 and f2 are two circular orderings on a countable group G

such that the dynamic realisations ρf1
, ρf2

are semiconjugate. Then [f1] = [f2] ∈ H2
b (G;Z).

Proof. This follows immediately from the fact that eu(ρf1
) = eu(ρf2

) whenever ρf1
and

ρf2
are semiconjugate ([12, Theorem 6.6], or [11]). �

2.4 Rotation and translation numbers, algebraically and dynamically

This section prepares the necessary notation to discuss fractional Dehn twist coef-

ficients from both dynamical and algebraic perspectives. Background on the classic

dynamical development of these ideas can be found in [12, 13], the algebraic ideas appear

also in [2].

If G ⊂ Hõmeo+(S1), we define the dynamical translation number (i.e., the classical

translation number due to Poincaré [21]) of an element g ∈ G as

τD(g) = lim
n→∞

gn(x) − x

n
,

where x ∈ R is arbitrary. The limit exists and is independent of x ∈ R [13, Proposition

2.3]. Using q : Hõmeo+(S1) → Homeo+(S1) to denote the quotient map, if G ⊂ Homeo+(S1)

then write g̃ ∈ q−1(g) to denote an arbitrary choice of preimage. Then we define the

dynamic rotation number of g to be

rotD(g) = τD(̃g) mod Z.

This definition is independent of the choice of g̃.

On the other hand, these definitions can also be described algebraically. Given a

left-ordered group (G, <) and a positive, cofinal central element z ∈ G, we define the floor

of g relative to < to be the unique integer [g]< such that z[g]< ≤ g < z[g]<+1. Then for every

g ∈ G, we can define the algebraic translation number of g ∈ G relative to < to be

τA
<(g) = lim

n→∞
[gn]<

n
.

This limit always exists as the sequence {[gn]<}n≥0 satisfies [gn]< + [gm]< ≤ [gm+n]< and

is therefore superadditive, so we may apply Fekete’s lemma.

There is a special circumstance where we have already seen that left orderings

with cofinal central elements arise naturally. Given a circular ordering f of a group G,

recall that the left-ordered lift (G̃f , <f ) comes equipped with a positive, cofinal central
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element zf . To simplify notation, in this setting, we will write [g]f in place of [g]<f
and

τA
f (g) in place of τA

f<
(g) for all g ∈ G̃f . Then for every g ∈ G we define the algebraic rotation

number of g to be

rotA
f (g) = τA

f (g, k) mod Z

where (g, k) ∈ G̃f and k ∈ Z is arbitrary. We observe that this definition is independent of

k by noting that (g, k)n = (gn,
∑n−1

i=1 f (gi, g) + nk), so that [(g, k)n]f = ∑n−1
i=1 f (gi, g) + nk. It

follows that for k, k′ ∈ Z we have τA
f (g, k)−τA

f (g, k′) = k−k′, so that rotA
f (g) is well-defined.

Proposition 6. Let (G, <) be a countable left-ordered group with positive, cofinal central

element z, and ρ : G → Hõmeo+(S1) a dynamic realisation of < satisfying ρ(z)(x) = x + 1

for all x ∈ R. Then τA
<(g) = τD(ρ(g)) for all g ∈ G.

Proof. Let t : G → R denote the tight embedding used to construct ρ. Observe that for

all g ∈ G and for all n ∈ Z we have ρ(gn)(0) = ρ(gn)(t(id)) = t(gn).

Then as t(zk) = k, note that [g]< = �t(g)�. Consequently,

τA
<(g) = lim

n→∞
[gn]<

n
= lim

n→∞
�ρ(gn)(0)�

n
= lim

n→∞
ρ(gn)(0)

n
= τD(ρ(g)).

�

Proposition 6 begins with an ordered group and shows that the canonical

representation corresponding to the order allows one to recover the algebraic translation

numbers from the dynamics of the action. On the other hand, the next proposition starts

with a representation and builds an ordering of G whose algebraic translation numbers

agree with those arising from the given dynamics.

Proposition 7. Suppose that ρ : G → Hõmeo+(S1) is an injective homomorphism and

that z ∈ G satisfies ρ(z)(x) = x + 1 for all x ∈ R. Fix a left ordering ≺ of G, and define a

new left ordering < of G according to the rule g < h if and only if ρ(g)(0) < ρ(h)(0) or

ρ(g)(0) = ρ(h)(0) and g ≺ h. Then z is positive and cofinal relative to the ordering < of G,

and τD(ρ(g)) = τA
<(g) for all g ∈ G.

Proof. That z is positive and <-cofinal follows from the definition of <. Next, note that

�ρ(g)(0)� = [g]< for all g ∈ G. Therefore,

τD(ρ(g)) = lim
n→∞

ρ(gn)(0)

n
= lim

n→∞
�ρ(gn)(0)�

n
= lim

n→∞
[gn]<

n
= τA

<(g).

�
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Corollary 8. If (G, f ) is a countable circularly ordered group and ρf : G → Homeo+(S1)

the corresponding dynamic realisation, then for every g ∈ G, rotA
f (g) = rotD(ρf (g)).

Last, we observe that these quantities are conjugation-invariant, which is an easy

observation from the classical definitions. We highlight this fact here as it will be needed

in the proof of Theorem 15.

Proposition 9. If (G, f ) is a circularly ordered group, then τA
f (g) = τA

f (hgh−1) for all

g, h ∈ G̃f and rotA
f (g) = rotA

f (hgh−1) for all g, h ∈ G.

Proof. From z
[gn]f
f ≤ gn < z

[gn]f +1
f and z

[h]f
f ≤ h < z

[h]f +1
f , one finds z

[gn]f −1
f ≤ hgnh−1 <

z
[gn]f +2
f , so that [gn]f − 1 ≤ [(hgh−1)n]f ≤ [gn]f + 1. It follows that

τA
f (g) = lim

n→∞
[gn]f

n
= lim

n→∞
[(hgh−1)n]f

n
= τA

f (hgh−1).

It follows that rotation number is also conjugation-invariant. �

3 Mapping Class Groups

In this section, we will recall some useful facts about mapping class groups and prove

Lemma 11, a key step in the proof of Theorem 15. For an introduction to mapping class

groups, see [10].

Let �b
g,n be a compact orientable surface of genus g with b boundary components

and n marked points disjoint from ∂�b
g,n. Denote the set of marked points by P. If n or

b is 0, we will omit the subscript or superscript. Let Homeo+(�b
g,n,P, ∂�b

g,n) be the set

of orientation-preserving homeomorphisms f of �b
g,n so that f (P) = P and f |

∂�b
g,n

= Id.

Note that if ∂�b
g,n �= ∅, then all homeomorphisms fixing the boundary pointwise are

orientation-preserving.

The mapping class group is the quotient group

Mod(�b
g,n) = Homeo+(�b

g,n,P, ∂�b
g,n)/ Homeo0(�b

g,n,P, ∂�b
g,n),

where Homeo0(�b
g,n,P, ∂�b

g,n) is the subgroup of homeomorphisms isotopic to the iden-

tity. The isotopies must be via elements of Homeo+(�b
g,n,P, ∂�b

g,n). Elements of the

mapping class group are referred to as mapping classes.

Let α be a simple closed curve disjoint from ∂�b
g,n and P. Choose a regular neigh-

bourhood of α that is homeomorphic, via an orientation-preserving homeomorphism, to

an annulus A � S1 × I disjoint from ∂�b
g,n and P. Define the Dehn twist about α, denoted

Tα, to be the homeomorphism of �b
g,n given by (s, t) �→ (se−2π it, t) on A, and the identity

outside of A.
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Once an orientation on �b
g,n has been fixed, the isotopy class of a Dehn twist

Tα depends only on the unoriented isotopy class of α. Therefore, if a is the unoriented

isotopy class of α, we may abuse notation and write the mapping class [Tα] ∈ Mod(�b
g,n)

as Tα or Ta. It is important to note that Dehn twists have infinite order [10, Proposition

3.2] and if a is isotopic to a boundary component, then Ta is central in Mod(�b
g,n) [10,

Fact 3.8].

3.1 Inner automorphisms and capping

By gluing on a disk with one marked point to the boundary of �1
g , we obtain �g,1. By

extending homeomorphisms of �1
g by the identity on the marked disk, we obtain the

central extension

1 −→ 〈Td〉 −→ Mod(�1
g) −→ Mod(�g,1) −→ 1,

where d is the isotopy class of the boundary curve. The process of obtaining �g,1 from �1
g

like this is commonly called capping the boundary, and the surjective map Mod(�1
g) →

Mod(�g,1) is the capping homomorphism. Note that a similar capping homomorphism

exists for any surface with at least 1 boundary component (see [10, Section 3.6.2]), but

we will not need the full generality.

Before we prove Lemma 11, we will need the following general lemma about

automorphisms of central extensions.

Lemma 10. Let 1 → A ↪→ G → H → 1 be a central extension of H by A. Let φ, ψ ∈ Aut(G)

be such that φ(A) = ψ(A) = A, and such that the induced automorphisms φ, ψ ∈ Aut(H)

satisfy φ = ψ . Then η : G → A given by η(g) = φ(g)ψ(g)−1 is a homomorphism.

Proof. Note that since φ = ψ , η(g) is indeed an element of A. For g, h ∈ G we have

η(gh) = φ(gh)ψ(gh)−1 = φ(g)φ(h)ψ(h)−1ψ(g)−1

= φ(g)η(h)ψ(g)−1 = φ(g)ψ(g)−1η(h) = η(g)η(h),

completing the proof. �

For two isotopy classes a, b of simple closed curves on a surface, denote the

geometric intersection number by i(a, b), that is, the minimum number of intersection

points between any representatives of a and b. It is a useful fact that TaTbTa = TbTaTb

if and only if i(a, b) = 1 [10, Propositions 3.11 and 3.13].
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7412 A. Clay and T. Ghaswala

A k-chain on a surface is a k-tuple (a1, . . . , ak) of isotopy classes of simple closed

curves such that i(aj, aj+1) = 1 for all j ∈ {1, . . . , k − 1}, and i(aj, al) = 0 otherwise.

Choose representatives αi of ai so that the αi are in minimal position. If k is even, a

regular neighbourhood of ∪k
i=1αi is homeomorphic to a genus k

2 surface with 1 boundary

component. Let e be the isotopy class of the boundary component. The relation

(Ta1
Ta2

· · · Tak
)2k+2 = Te

holds, and is known as the chain relation [10, Proposition 4.12]. It follows that if

(a1, . . . , a2g) is any 2g-chain on �1
g ,

(Ta1
Ta2

· · · Ta2g
)4g+2 = Td,

where d is the isotopy class of the boundary of �1
g .

Before embarking on the proof of Lemma 11, we must recall an important result

due to Ivanov ([17, Theorem 2], see also [16]). Let g ≥ 2, n ≥ 1, and let Mod±(�g,n) denote

the extended mapping class group of �g,n (i.e., the mapping class group where we allow

orientation-reversing homeomorphisms). Note that Mod(�g,n) is an index-2 subgroup of

Mod±(�g,n). Ivanov’s theorem states that the map Mod±(�g,n) → Aut(Mod(�g,n)) given

by γ �→ (f �→ γ f γ −1) is an isomorphism. It follows that for all isotopy classes of simple

closed curves a on �g,n, if γ ∈ Mod(�g,n), then γ Taγ −1 = Tγ (a), and if γ /∈ Mod(�g,n),

then γ Taγ −1 = T−1
γ (a). In particular, we can identify whether or not an automorphism of

Mod(�g,n) is inner by simply observing whether a Dehn twist is sent to a Dehn twist, or

the inverse of a Dehn twist.

In preparation for the next lemma, let C : Mod(�1
g) → Mod(�g,1) be the capping

homomorphism. For each isotopy class a of a simple closed curve on �1
g , let â be the

isotopy class that is the image of a under the inclusion �1
g ↪→ �g,1. Note that every

isotopy class of a simple closed curve on �g,1 is of the form â for some isotopy class a

on �1
g .

Lemma 11. Let g ≥ 2, and let ϕ ∈ Aut(Mod(�1
g)) be such that ϕ(Td) = Td, where d is the

isotopy class of the boundary curve. Then ϕ is an inner automorphism.

Proof. Since ϕ(Td) = Td, we have an induced automorphism ϕ ∈ Aut(Mod(�g,1)). Then

by [17, Theorem 2], there exists ε ∈ {±1} so that for all isotopy classes of simple closed

curves â on �g,1, ϕ(Tâ) = Tε

b̂
where b̂ is the image of â under an appropriately chosen

element of Mod±(�g,1). We will first show that ε = 1, with the aim of concluding that ϕ

is an inner automorphism.
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Let {â1, . . . , â2g} be a 2g-chain and suppose that for each i ∈ {1, . . . , 2g}, ϕ(Tâi
) =

Tε

b̂i
. Then ϕ(Tai

) = Tsi
d Tε

bi
for some si ∈ Z. Note {b1, . . . , b2g} is a 2g-chain. In particular, for

i < 2g, we have i(bi, bi+1) = 1 so

1 = ϕ(Tai
Tai+1

Tai
T−1

ai+1
T−1

ai
T−1

ai+1
)

= T
si−si+1
d Tε

bi
Tε

bi+1
Tε

bi
T−ε

bi+1
T−ε

bi
T−ε

bi+1

= T
si−si+1
d .

Therefore, si = si+1 for all i < 2g. Let s = si. The chain relation gives

Td = ϕ(Td) = ϕ((Ta1
· · · Ta2g

)4g+2)

= Ts(2g)(4g+2)

d (Tε
b1

· · · Tε
b2g

)4g+2

= Ts(2g)(4g+2)

d Tε
d.

Therefore, 1 = 2gs(4g + 2) + ε. Since g ≥ 2, we must have s = 0 and ε = 1. Therefore, ϕ is

an inner automorphism.

Let ν ∈ Mod(�g,1) be such that ϕ(f ) = νf ν−1 for all f ∈ Mod(�g,1), and choose

ν̃ ∈ C−1(ν). Let θ ∈ Aut(Mod(�1
g)) be the inner automorphism given by conjugation by

ν̃, that is θ(f ) = ν̃f ν̃−1 for all f ∈ Mod(�1
g). Then θ(Td) = Td and θ = ϕ. Now, every

homomorphism Mod(�1
g) → Z is trivial [10, Theorem 5.2]. Therefore by Lemma 10,

ϕ(f )θ(f )−1 = 1 for all f ∈ Mod(�1
g). We may now conclude ϕ(f ) = θ(f ), and so ϕ(f ) is an

inner automorphism. �

4 Cofinality of Boundary Dehn Twists

The goal of this section is to prove that in the mapping class group of �1
g , an orientable

surface of genus g with 1 boundary component, the Dehn twist about a curve isotopic

to the boundary component is <-cofinal for every left ordering on Mod(�1
g) (Theorem 1).

This result will imply that Theorem 15 applies to all the actions of Mod(�1
g) on R, up to

conjugation (Proposition 16).

We begin with a general lemma concerning left-orderable groups.

Lemma 12. Let G be a left-orderable group, and z ∈ G a central element. Suppose there

is a generating set {gi}i∈I such that for each i ∈ I, there exist ni, mi ∈ Z \ {0} such that

gni
i = zmi . Then z is <-cofinal for every left ordering < of G.

Proof. Consider the set H = {g ∈ G | ∃n ∈ Z such that z−n < g < zn}. It suffices to show

H = G. We first show that H is a subgroup. Note z �= 1 since some power of z is a power
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7414 A. Clay and T. Ghaswala

of every generator, and G is torsion free. Therefore, z < 1 < z−1 or z−1 < 1 < z, so 1 ∈ H.

Next, if z−n < g < zn for some g ∈ G, then zn < g−1 < z−n. Finally, if z−n < g < zn and

z−m < h < zm, then gh > gz−m = z−mg > z−mz−n = z−(m+n) and similarly gh < zm+n.

Thus, H is a subgroup of G.

By possibly replacing z and each gi with its inverse, we may assume z > 1 and

gi > 1 for all i ∈ I, and that ni, mi > 0. Then

z−mi−1 < 1 < gi < gni
i = zmi < zmi+1.

Therefore, H contains a generating set for G, so that H = G. �

Our goal now is to apply Lemma 12 to the mapping class group of a genus g > 0

surface with 1 boundary component, �1
g , proving Theorem 1.

Proof of Theorem 1. Let (a1, . . . , a2g) be a 2g-chain on �1
g . Let X = Ta1

Ta2
· · · Ta2g

and

Y = T2
a1

Ta2
· · · Ta2g

. Then X4g+2 = Y4g = Td [10, Section 4.4.1]. Since Td is central in

Mod(�1
g), all conjugates of X and Y are roots of Td. Note that YX−1 = Ta1

and a1 is a

non-separating simple closed curve. All Dehn twists about non-separating simple closed

curves are conjugate [10, Section 1.3.1 and Fact 3.8] and Mod(�1
g) is generated by Dehn

twists about non-separating simple closed curves [10, Chapter 4]. Therefore, Mod(�1
g) is

generated by conjugates of X and Y. The proof concludes by applying Lemma 12. �

By considering 2g + 1-chains on �2
g and applying the chain relations as in the

above proof, one obtains the result that for surfaces �2
g , the product of the Dehn twists

about curves isotopic to the boundary components is cofinal and central in every left

ordering of Mod(�2
g). We conjecture something stronger is true.

Conjecture 13. Let g ≥ 2 and let b1, . . . , bn be curves isotopic to the boundary

components of �n
g . Any element of the form �n

i=1Tki
bi

for any positive exponents k1, . . . , kn

is cofinal in every left ordering of Mod(�n
g ).

5 Fractional Dehn Twist Coefficients and Actions on R

5.1 Fractional Dehn twist coefficients

Recall that if �b
g,n is a hyperbolic surface with b > 0, there is a “standard action” of

Mod(�b
g,n) on R that is constructed as follows.

First, we construct the universal cover p : �̃b
g,n → �b

g,n, and note that we can

think of �̃b
g,n as a closed subset of H2. Fix a point x0 ∈ ∂�b

g,n, say in a component C of the
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boundary, and a point x̃0 ∈ C̃ ⊂ ∂�̃b
g,n with p(x̃0) = x0. Now for each h ∈ Mod(�b

g,n), there

is a unique lift of h satisfying h(x̃0) = x̃0 yielding an action of Mod(�b
g,n) on �̃b

g,n fixing

x̃0 and thus fixing C̃.

Now we can identify ∂�̃b
g,n \ �, where � ⊂ H2 is the closure of C̃, with the

interval (0, π), and thus with R, by identifying each point y on the boundary with

the unique geodesic from x0 to y. Then observe that the action of Mod(�b
g,n) extends

to an action on ∂�̃b
g,n by orientation-preserving homeomorphisms, which is home-

omorphic to R. We orient the boundary and parameterise it so that the action of

the boundary Dehn twist TC satisfies TC(x) = x + 1 for all x ∈ R. This defines

a representation

ρs,C : Mod(�b
g,n) → Hõmeo+(S1)

which we call the standard representation with respect to C. The fractional Dehn twist

coefficient of h ∈ Mod(�b
g,n) can be defined as

c(h, C) = τD(ρs,C(h)).

While this is not the usual definition of the fractional Dehn twist coefficient, that this

is equivalent to it appears in [15, Theorem 4.16], and for the special case of Mod(�1
0,n)

(i.e. for the braid groups) in [19]. When b = 1, we will simplify our notation and use

ρs to denote the standard representation, and c(h) to denote the fractional Dehn twist

coefficient.

5.2 Actions of Mod(�b
g,n) on R

In this section, we prove Theorem 16, which is Theorem 2 from the introduction, from

which Theorem 3 follows. We begin with a preparatory lemma.

Lemma 14. Suppose <1 and <2 are left orderings of a group G such that there exists

a central element z ∈ G that is <i-cofinal for both i = 1, 2. Suppose further that [f<1
] =

[f<2
] ∈ H2

b (G/〈z〉;Z). Then there exists an automorphism φ of G satisfying φ(z) = z and

τA
<1

(g) = τA
<2

(φ(g)) for all g ∈ G.

Proof. To ease notation, we will simply write fi = f<i
and [g]<i

= [g]i for i = 1, 2. Let {g}i

be the unique coset representative of g〈z〉 so that id ≤i {g}i <i z. Note that every g ∈ G is

uniquely written as {g}iz
ai , and in this case ai = [g]i. Recall that {g}i{h}i = {gh}iz

fi(g〈z〉,h〈z〉),
and so [gh]i = [g]i + [h]i + fi(g〈z〉, h〈z〉).
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Since [f1] = [f2] ∈ H2
b (G/〈z〉;Z), there is a bounded function d : G/〈z〉 → Z such

that for all g, h ∈ G,

f1(g〈z〉, h〈z〉) − f2(g〈z〉, h〈z〉) = d(g〈z〉) − d(gh〈z〉) + d(h〈z〉).

Define φ : G → G by φ(g) = {g}2z[g]1+d(g〈z〉). We have

φ(g)φ(h) = {g}2z[g]1+d(g〈z〉){h}2z[h]1+d(h〈z〉)

= {gh}2z[g]1+[h]1+d(g〈z〉)+d(h〈z〉)+f2(g〈z〉,h〈z〉)

= {gh}2z[g]1+[h]1+d(gh〈z〉)+f1(g〈z〉,h〈z〉)

= {gh}2z[gh]1+d(gh〈z〉)

= φ(gh).

so φ is a homomorphism. An inverse is given by φ−1(g) = {g}1z[g]2−d(g〈z〉) so φ is an

automorphism of G. We also check that

τA
<2

(φ(g)) − τA
<1

(g) = lim
n→∞

[φ(gn)]2 − [gn]1
n

= lim
n→∞

[gn]1 + d(gn〈z〉) − [gn]1
n

= lim
n→∞

d(gn〈z〉)
n

= 0,

where the last equality follows since d is bounded. Finally, observe that d(〈z〉) = 0, and

for i = 1, 2, {z}i = id and [z]i = 1. Thus, φ(z) = z. �

For the statement and proof of the next theorem, recall that Td denotes the Dehn

twist around a simple closed curve d that is parallel to ∂�1
g .

Theorem 15. Suppose that g ≥ 2 and that ρi : Mod(�1
g) → Hõmeo+(S1) is an injective

homomorphism satisfying ρi(Td)(x) = x+1 for i = 1, 2 and for all x ∈ R. Then τD(ρ1(h)) =
τD(ρ2(h)) for all h ∈ Mod(�1

g).

Proof. Fix a left ordering ≺ of Mod(�1
g). Then, associated to each homomorphism ρi,

there is an ordering <i defined as in Proposition 7 that satisfies τD(ρi(h)) = τA
<i

(h) for

i = 1, 2 and for all h ∈ Mod(�1
g). By Theorem 1, Td is <i-cofinal for i = 1, 2. Consider

the dynamic realisations of the circular orderings f<i
on Mod(�1

g)/〈Td〉 = Mod(�g,1). By
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[20], the dynamic realisations are semiconjugate, so [f<1
] = [f<2

] ∈ H2
b (Mod(�g,1;Z) by

Proposition 5. Therefore by Lemma 14, there is an automorphism φ of Mod(�1
g) so that

φ(Td) = Td and τA
<1

(h) = τA
<2

(φ(h)) for all h ∈ Mod(�1
g). By Lemma 11, φ is an inner

automorphism. Thus by Proposition 9, τA
<1

(h) = τA
<2

(h), and the proof is complete. �

For the next proof, recall that a subgroup C of a left-ordered group (G, <) is called

convex if, whenever c, d ∈ C and g ∈ G then c < g < d implies g ∈ C. The next theorem is

Theorem 2 from the introduction.

Theorem 16. Suppose that g ≥ 2 and let ρ : Mod(�1
g) → Homeo+(R) be an injective

homomorphism such that the action of Mod(�1
g) on R is without global fixed points.

Then, up to reversing orientation, ρ is conjugate to a representation ρ′ : Mod(�1
g) →

Hõmeo+(S1) such that ρ′(Td)(x) = x + 1 for all x ∈ R and c(h) = τD(ρ′(h)) for every

h ∈ Mod(�1
g).

Proof. Suppose that ρ : Mod(�1
g) → Homeo+(R) is a homomorphism for which the

corresponding action on R has no global fixed point and such that ρ(Td) is not conjugate

to shift by ±1. Then ρ(Td) must have a fixed point, say x0. By ordering the cosets of

the stabilizer Stabρ(x0) in Mod(�1
g) according to the orbit of x0, and ordering Stabρ(x0)

however we please, we obtain a contradiction to Theorem 1 since Td ∈ Stabρ(x0), which

is a convex subgroup in the resulting ordering. Therefore, after fixing an appropriate

orientation of R we may choose ρ′ : Mod(�1
g) → Hõmeo+(S1) satisfying ρ′(Td)(x) = x + 1

for all x ∈ R. Now by Theorem 15, for every h ∈ Mod(�1
g), we have τD(ρ′(h)) = τD(ρs(h)) =

c(h). �

In particular, this means that the fractional Dehn twist coefficient of any element

of Mod(�1
g) can be computed directly from an arbitrary left ordering of Mod(�1

g) (See also

[15], where this result appears for the special case of the braid groups equipped with the

Dehornoy ordering). In particular, the proof of Theorem 3 in the introduction now follows

immediately from Theorem 16 and Proposition 6.

5.3 Estimating fractional Dehn twist coefficients using left orderings

In light of Proposition 3, every left ordering of Mod(�1
g) gives rise to some easy

techniques for estimating fractional Dehn twists.

Proposition 17. Suppose that g ≥ 2 and fix a left ordering < of Mod(�1
g) for which

Td > id. If Tk
d ≤ hm < T�

d then k
m ≤ c(h) ≤ �

m .
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Proof. Because Td is central, the inequality Tk
d ≤ hn < T�

d implies that Tnk
d ≤ hnm < Tn�

d

for all n > 0. Therefore, nk ≤ [hnm]< < n�, and so

k

m
≤ lim

n→∞
[hnm]<

nm
≤ �

m
,

but the central term is clearly equal to c(h). �

Aside from yielding quick estimates of fractional Dehn twist coefficients, the fact

that the previous proposition holds for every left ordering of Mod(�1
g) allows for a new

methods of computing fractional Dehn twist coefficients.

Corollary 18. Suppose that g ≥ 2, and let <1, <2 be left orderings of Mod(�1
g) for which

Td >i id for i = 1, 2. If hn ≥1 Tk
d and there exists f such that fhnf −1 ≤2 Tk

d, then c(h) = k
n .

Proof. This is a direct consequence of Propositions 17 and 9. �

In particular, this corollary implies that if there exists a left ordering < of

Mod(�1
g) and g, h ∈ Mod(�1

g) and n ∈ Z, n > 0 such that [hn]< �= [ghng−1]<, then we

can quickly determine the fractional Dehn twist coefficient of h.

For if Tk
d ≤ hn < Tk+1

d , then it follows that Tk−1
d ≤ ghng−1 < Tk+2

d . So if [hn]< �=
[ghng−1]< then it must be that either Tk−1

d ≤ ghng−1 < Tk
d or Tk+1

d ≤ ghng−1 < Tk+2
d . In

the former case, c(h) = k
n , and in the latter, c(h) = k+1

n .

6 Surfaces With Many Boundary Components, Low Genus, and Marked Points

In this brief section, we provide examples that show Theorem 2 and its left-orderability

counterpart Theorem 3 cannot hold for any surface �b
g,n with b > 1, nor for surfaces �1

g

when g < 2. Whether or not our results hold for �1
g,n when n > 0 and g > 1 remains open.

Our primary tool for doing so is the following observation.

Proposition 19. Let b > 0, fix a boundary component C of �b
g,n, and recall ρs,C :

Mod(�b
g,n) → Hõmeo+(S1) denotes the standard action constructed as in Section 5.1.

If α is a simple closed curve in �b
g,n that is not isotopic into C, then Fix(ρs,C(Tα)) �= ∅.

Proof. The homeomorphism Tα can be supported in a small annular neighbourhood A

of α. Fix an infinite geodesic ray γ in �b
g,n beginning at x0 ∈ C and not entering A, for

instance by taking γ to wind around one side of the annulus A. Then the lift γ̃ in the

universal cover ends at a point in ∂�̃b
g,n, which is a fixed point of ρs,C(Tα). �
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Now suppose that b > 1 and choose distinct boundary components C, C′ ⊂ ∂�b
g,n.

By Proposition 19, we know that c(TC′ , C) is zero, while c(TC′ , C′) = 1. Therefore, Theorem 2

cannot hold for a surface with multiple boundary components.

We handle the cases of low-genus surfaces similarly. Considering Mod(�1
0,n) with

n > 2, choose α to be a simple closed curve encircling precisely two of the marked

points. Then c(Tα) = 0 by Proposition 19. On the other hand, if φ : Mod(�1
0,n) → Z is

the abelianisation map, then φ(Tα) is nonzero (it is a square of a generator of Z), and so

via the abelianisation we can construct an action of Mod(�1
0,n) on R such that Tα has no

fixed points.

Similarly, considering Mod(�1
1,n) where n ≥ 0, we let Tα ∈ Mod(�1

1,n) denote

the class of a Dehn twist along a nonseparating simple closed curve α in �1
1,n. Then

Proposition 19 shows that c(Tα) = 0. On the other hand, we can choose α so that the

abelianisation homomorphism provides a map Mod(�1
1,n) → Z such that Tα �→ 1 [18,

Section 5]. As in the previous paragraph, this results in an action of Mod(�1
1,n) on R

where Tα acts without fixed points.

We conclude that Theorem 2 does not hold for both Mod(�1
0,n) with n > 2 and

Mod(�1
1,n) where n ≥ 0.
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