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Mapping class groups of covers with boundary
and braid group embeddings

TYRONE GHASWALA

ALAN MCLEAY

We consider finite-sheeted, regular, possibly branched covering spaces of compact
surfaces with boundary and the associated liftable and symmetric mapping class
groups. In particular, we classify when either of these subgroups coincides with the
entire mapping class group of the surface. As a consequence, we construct infinite
families of nongeometric embeddings of the braid group into mapping class groups
in the sense of Wajnryb. Indeed, our embeddings map standard braid generators to
products of Dehn twists about curves forming chains of arbitrary length. As key tools,
we use the Birman–Hilden theorem and the action of the mapping class group on a
particular fundamental groupoid of the surface.

57M12; 20F36, 20L05

1 Introduction

The mapping class group Mod.†;B/ of a compact orientable surface † with finitely
many marked points B is the group of orientation-preserving homeomorphisms of †
preserving B setwise, up to isotopies that preserve B . If † has nonempty boundary, then
homeomorphisms and isotopies must fix the boundary pointwise. We may sometimes
denote a genus g surface with m boundary components by †mg .

Leveraging covering spaces to study mapping class groups has been a fruitful endeavour.
See the work of Aramayona, Leininger and Souto [2], Bigelow and Budney [3], Brendle
and Margalit [6], Brendle, Margalit and Putman [7], Endo [10], Morifuji [22] and
Stukow [25; 26] to name only a few.

Let pW z†!† be a finite-sheeted, regular covering space of surfaces with deck group D,
possibly branched at B �†. Recall that a homeomorphism f W z†! z† is called fibre-
preserving if p.x/D p.y/ implies pf .x/D pf .y/. Let SMod.z†/ <Mod.z†/ be the
subgroup consisting of isotopy classes of fibre-preserving homeomorphisms, called
the symmetric mapping class group. Let LMod.†;B/ <Mod.†;B/ be the subgroup
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consisting of isotopy classes of homeomorphisms that lift to boundary-preserving
homeomorphisms of z†, called the liftable mapping class group.

Surveying the landscape of results, one notices that the fertile ground often occurs
when at least one of the liftable or symmetric mapping class groups coincides with the
mapping class groups Mod.†;B/ or Mod.z†/, respectively. This leads to the following
natural questions:

� When does LMod.†;B/DMod.†;B/?

� When does SMod.z†/DMod.z†/?

� If equality does not hold, when are these subgroups finite-index?

These questions are answered in Theorems 1.1 and 1.2 of this paper in the case where
the surfaces have nonempty boundary.

The first author and Winarski classified all cyclic branched covers of the sphere with
the property that LMod.†0;B/DMod.†0;B/ [12, Theorem 1.1]. Birman and Hilden
proved that if g � 3, where g is the genus of z†, there are no finite cyclic covers
pW z† ! †0 of the sphere such that SMod.z†/ D Mod.z†/ [4, Theorem 6]. After
completing the proof, they make the following remark:

The possibility remains that if we relax the requirements on .p;†0; z†/
to admit coverings of other Riemann surfaces, or to admit all regular
coverings, or to admit nonregular coverings that we will have better luck.
(However we conjecture that all such efforts will fail).

As we will see, our results agree with their sentiment.

1.1 Main results

From now on, let pW z†!† be a nontrivial, finite-sheeted, regular cover of a surface †.
We will take both z† and † to be compact with nonempty boundary, possibly branched
at B �†.

The Burau covers

Let Dn be a disk with n points removed, and enumerate the punctures. Pick a point
x 2 @Dn and let 
i 2 �1.Dn; x/ be the homotopy class of a loop surrounding only the
i th puncture anticlockwise. Then f
1; : : : ; 
ng generates �1.Dn; x/. For each k � 2,
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define a homomorphism qk W �1.Dn; x/!Z=kZ by qk.
i /D 1 for all i . The kernel
of qk determines a k–sheeted cyclic branched cover pk W †mg ! †10 branched at n
points. Here m D gcd.n; k/ and g D 1� 1

2
.k C nCm� nk/. We will call such a

cover a k–sheeted Burau cover. The 2–sheeted Burau covers are usually referred to as
hyperelliptic covers of a disk as in each case the nontrivial element of the deck group
is a hyperelliptic involution.

We note that the Burau covers have previously been considered by McMullen to study
certain unitary representations of the braid group [21].

Theorem 1.1 Let pW z†!† be a nontrivial, finite-sheeted, regular covering space of
compact surfaces with boundary, possibly branched at B �†. Then

(i) LMod.†;B/DMod.†;B/ if and only if p is a Burau cover, and

(ii) LMod.†;B/ is always finite-index in Mod.†;B/.

For a general covering space pW zX ! X, a homeomorphism f W X ! X lifts to
a homeomorphism zf W zX ! zX if and only if f�p��1. zX; zx/ D p��1. zX; zx/. It is
therefore tempting to characterise liftable mapping classes by their action on the
fundamental group of the base space. This approach ultimately falls short since it may
be the case that a homeomorphism of the base space † lifts to a homeomorphism of z†,
but none of its lifts fix the boundary of z† pointwise. Indeed, consider the 2–sheeted
unbranched cover of an annulus A by an annulus zA. Any representative Dehn twist
of T 2 Mod.A/ acts trivially on �1.A; x/, however neither of its lifts preserve the
boundary of zA pointwise (see Figure 1). Therefore T … LMod.A/. On the other hand,
T 2 2 LMod.A/.

zT

T

Figure 1: One of the lifts of a Dehn twist T 2 LHomeoC.A/ that does not
preserve the boundary of zA pointwise.
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In order to get around this issue, we study the action of Mod.†;B/ on a particular fun-
damental groupoid of †. A key piece of the proof of Theorem 1.1 is a characterisation
of elements of LMod.†;B/ in terms of their action on the fundamental groupoid in
Theorem 4.2. The corresponding result for the symmetric mapping class group is as
follows:

Theorem 1.2 Let pW z†!† be a nontrivial , finite-sheeted , regular , possibly branched
covering space of compact surfaces with boundary. Then:

(i) SMod.z†/DMod.z†/ if and only if z† is a disk or an annulus , or pW †11!†10
is the hyperelliptic cover.

(ii) Otherwise , SMod.z†/ is infinite-index in Mod.z†/.

As shown, the property that SMod.z†/DMod.z†/ is rare, echoing Birman and Hilden’s
sentiment in the case of surfaces with boundary.

The techniques used in this paper unfortunately do not naturally extend to surfaces
without boundary. What the precise analogous statements of Theorems 1.1 and 1.2
should be remains an intriguing open question.

1.2 Braid group embeddings

The braid group Bn on n strands is isomorphic to the mapping class group Mod.Dn/,
where Dn is a disk with n punctures. There is a standard embedding of the braid
group in the mapping class group, which sends each standard generator to a Dehn twist.
Such an embedding is called geometric.

A question of Wajnryb asks whether there are nongeometric embeddings of the braid
group in a mapping class group [28]. Nongeometric embeddings have since been
constructed in the works of Bödigheimer and Tillman [5], Kim and Song [16], Song [23],
Song and Tillman [24] and Szepietowski [27].

Using Theorem 1.1 and the Birman–Hilden theorem, we construct a family of non-
geometric embeddings of the braid group. Let �1; : : : ; �n�1 be the standard braid
generators for Bn .

A k–chain on a surface † is a sequence of simple closed curves fa1; : : : ; akg on †
such that i.ai ; aj /D 1 if ji � j j D 1 and i.ai ; aj /D 0 otherwise. Here i.ai ; aj / is
the geometric intersection number of the curves ai and aj . A k–chain twist is the
mapping class Ta1

� � �Tak
, where fa1; : : : ; akg is a k–chain. It is true that if k � 2,

then a k–chain twist is not equal to a single Dehn twist.
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a1

a2

a3
b1

b2

b3

Figure 2: The two 3–chains AD fa1; a2; a3g and B D fb1; b2; b3g define
chain twists TA WD Ta1

Ta2
Ta3

and TB WD Tb1
Tb2

Tb3
such that TATBTA D

TBTATB .

Theorem 1.3 Let n � 2. For each k � 2, there exists a surface † and an injective
homomorphism ˇk W Bn!Mod.†/ such that ˇk.�i / is a .k�1/–chain twist for all i .

When k D 2, this embedding coincides with the standard geometric embedding. The
embedding when k D 3 was independently arrived at by Kim and Song [16].

Using these embeddings as inspiration, we define a combinatorial condition on two
k–chains that imply their respective chain twists satisfy a braid relation. The condition
is defined in Section 5.4 and proven to be sufficient in Proposition 5.6. Figure 2 shows
two 3–chains satisfying the combinatorial condition, so their chain twists satisfy a
braid relation.

Outline of the paper

In Section 2 we review some facts about lifting and projecting homeomorphisms
and the Birman–Hilden theorem. In Section 3 we review some basic facts about
groupoids and prove some useful lemmas regarding fundamental groupoids and covering
spaces, including a version of the Birman–Hilden theorem for automorphisms of
groupoids (Lemma 3.6). The main classification theorems are proved in Section 4.
The nongeometric embeddings of the braid groups arising from the Burau covers are
investigated in Section 5. The paper concludes with a list of open questions relating to
the braid group embeddings.
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2 The Birman–Hilden theorem with boundary

Let † be an orientable compact surface, possibly with boundary @†, and finitely
many marked points B �† n @†. Denote by Homeo.†/ and HomeoC.†/ the group
of homeomorphisms of † and the group of orientation-preserving homeomorphisms
of †, respectively. If B appears in the argument of Homeo, then we require the
homeomorphisms to fix B setwise. If @† appears, we require the homeomorphisms
fix @† pointwise. Note that HomeoC.†; @†/D Homeo.†; @†/.

Let pW z†!† be a regular cover with finite deck group D � HomeoC.z†/, possibly
branched at B �† n @†. A homeomorphism f 2 HomeoC.z†/ is fibre-preserving if,
whenever p.x/D p.y/, pf .x/D pf .y/ for all x; y 2 z†. Let SHomeoC.z†/ be the
subgroup consisting of fibre-preserving homeomorphisms. There is a homomorphism
…W SHomeoC.z†/! Homeo.†;B/ given by …. zf /.x/D p zf .zx/ for any zx such that
p.zx/D x . It follows that ker.…/DD. If …. zf /D f , then the square

z† z†

† †

zf

p p

f

commutes. That is, p zf D fp . Furthermore, it is true that SHomeoC.z†/ is the
normaliser of D in HomeoC.z†/.

We say a homeomorphism f 2 HomeoC.†;B/ lifts if there exists a homeomorphism
zf 2 HomeoC.z†/ such that p zf D fp . Let LHomeoC.†;B/ be the subgroup of

HomeoC.†;B/ consisting of homeomorphisms that lift. Then the image of … is
LHomeoC.†;B/, so SHomeoC.z†/=D Š LHomeoC.†;B/.

Lifting and projecting with boundary

Suppose z† and † have nonempty boundary @z† and @†, respectively. We wish to
lift and project homeomorphisms that preserve the boundary pointwise, to homeo-
morphisms that preserve the boundary pointwise. To that end, let SHomeo.z†; @z†/D
SHomeoC.z†/\Homeo.z†; @z†/.
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Proposition 2.1 SHomeo.z†; @z†/D C \Homeo.z†; @z†/, where C is the centraliser
of the deck group D in Homeo.z†/.

Proof It suffices to show that any homeomorphism zf that fixes the boundary and
is in the normaliser of D is in the centraliser of D. Let zx 2 @z† and let d 2 D.
It is clear then that d.zx/ 2 @z†. Since zf fixes the boundary pointwise we have
zf �1d zf .zx/ D zf �1d.zx/ D d.zx/. Since zf is in the normaliser of D, zf �1d zf 2 D.

Since the deck group acts freely on @z†, we have zf �1d zf Dd , completing the proof.

Any fibre-preserving homeomorphism of z† that fixes @z† pointwise must project to
a homeomorphism of † that fixes @† pointwise. Since the only element of D that
fixes @z† pointwise is the identity, restricting the domain of … gives us an injective
homomorphism …W SHomeo.z†; @z†/! LHomeoC.†;B/\Homeo.†; @†/.

Define LHomeo.†; @†;B/ D ….SHomeo.z†; @z†//. That is, the set of homeomor-
phisms of † fixing @† pointwise that lift to a homeomorphism of z† fixing @z†

pointwise.

While it is tempting to define LHomeo.†;@†;B/ as LHomeoC.†;B/\Homeo.†;@†/,
in general there exist boundary-preserving homeomorphisms of † that lift to homeo-
morphisms of z† that do not fix the boundary.

Let �PW Homeo.z†; @z†/!Mod.z†/ and PW Homeo.†; @†;B/!Mod.†;B/ be the
natural quotient maps. Define the symmetric and liftable mapping class groups by
SMod.z†/ D �P.SHomeo.z†; @z†// and LMod.†;B/ D P.LHomeo.†; @†;B//, re-
spectively.

2.1 The Birman–Hilden theorem

Suppose z† is closed with genus at least 2. The Birman–Hilden theorem states that
projecting homeomorphisms induces an isomorphism SMod.z†/=D Š LMod.†;B/.
Furthermore, SMod.z†/ is the normaliser of D in Mod.z†/. The Birman–Hilden
theorem was first proved for solvable covers [4], and later proved for all finite-sheeted,
regular branched covers [18]. A version of the Birman–Hilden theorem was proved
by Winarski for possibly irregular, fully ramified covers [29], and by Aramayona,
Leininger and Souto for irregular unbranched covers [2]. We refer the reader to a survey
by Margalit and Winarski of the Birman–Hilden theorem [19].

When z† and † have nonempty boundary, the deck group D is no longer a subgroup
of Mod.z†/ since no nontrivial element of D fixes the boundary components pointwise.
In this case, the Birman–Hilden theorem takes the following form:
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Theorem 2.2 (Birman–Hilden with boundary) Let pW z†! † be a finite-sheeted,
regular covering space of compact surfaces with boundary, possibly branched at B �
† n @†. Then projecting homeomorphisms induces an isomorphism SMod.z†/ Š
LMod.†;B/.

This result is well known, and a proof can be found in the thesis of the second au-
thor [20]. Rephrased, Theorem 2.2 states that the isomorphism …W SHomeo.z†; @z†/!
LHomeo.†; @†;B/ induces an isomorphism …W SMod.z†/! LMod.†;B/.

3 The fundamental groupoid

In this section we review some facts about groupoids before studying the automorphism
groups of groupoids related to covering spaces.

3.1 Groupoids

Here we survey the relevant results about groupoids. See the books [13; 8] for more
details.

A groupoid is a small category where every morphism is an isomorphism. Equivalently,
a groupoid G is a disjoint collection of sets fGij gi;j2I together with an associative
partial operation �W Gij �Gjk!Gik such that

� for each i 2 I there is an identity ei 2Gi i such that eif D f and gei D g for
all f and g such that the products eif and gei are defined, and

� for each g 2 Gij there is an inverse g�1 2 Gj i such that gg�1 D ei and
g�1g D ej .

We will call I the object set of G. If jI j D 1 (equivalently if the category has one
object), then G is a group. Define the source and target maps, s; t W G! I, by s.g/D i
and t .g/D j for all g 2Gij .

A groupoid is connected if Gij ¤∅ for all i; j 2 I. Notice that Gi i is a group for all
i 2 I, and if G is connected then Gi i ŠGjj for all i; j 2 I. The groups Gi i will be
called vertex groups. From now on we will assume G is a connected groupoid.

Fix an i0 2 I. For each i 2 I choose an element �i 2 Gi0i with �i0 D ei0 . Then G
is generated by the vertex group Gi0i0 and f�igi2I . In fact, every element in Gij is
uniquely written as ��1i g�j for some g 2Gi0i0 . We call f�igi2I a star based at i0 .
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A subgroupoid H< G is a collection of subsets fHij �Gij gi;j2J for some nonempty
J � I such that H is a groupoid with the operation from G. A subgroupoid is wide
if J D I. A subgroupoid H < G is normal if f �1Hi if � Hjj for all f 2 Gij . It
follows that normal subgroupoids of connected groupoids are wide, and h 7! f �1hf

is an isomorphism of groups Hi i ŠHjj .

Let H be a connected normal subgroupoid of G. Construct the quotient groupoid G=H
to be a groupoid with one object, or a group, as follows. Put an equivalence relation �
on G by a� b if there exists x; y 2H such that aD xby . The equivalence classes are
called the cosets of H in G, and these are the elements of G=H . Define an operation on
the cosets by Œa�Œb�D Œaxb� for any x 2H with s.x/D t .a/ and t .x/D s.b/. This is
a well-defined group operation on G=H .

Although we will not need it, the quotient groupoid can be defined for disconnected
normal subgroupoids of connected groupoids. The only difference is that there is one
object for each connected component of H (see [13, Chapter 12]).

3.2 Automorphisms of groupoids

Let G and H be groupoids with object sets I and J, respectively. A morphism
�W G!H is a functor from G to H . Explicitly, � is a function y�W I ! J together
with functions y�ij W Gij !Hy�.i/y�.j / for all i; j 2 I such that y�ij .a/y�jk.b/D y�ik.ab/
for all a 2Gij and b 2Gjk . It follows that y�i i .ei /D ey�.i/ and y�j i .g�1/D y�ij .g/�1

for all i; j 2 I and g 2Gij . Given a groupoid morphism � , we will abuse notation and
denote the maps y� and y�ij by � . Note that s.�.g//D�.s.g// and t .�.g//D�.t.g//
for all g 2 G.

An automorphism of G is a morphism �W G! G with a two-sided inverse. The set of
automorphisms of G forms a group under composition, denoted by Aut.G/.

We now restrict our attention to connected groupoids with finite object set. Let G be a
group and consider the semidirect product Gn Ì Aut.G/. To set notation, the group
operation on Gn Ì Aut.G/ is given by

..g1; : : : ; gn/;  /..h1; : : : ; hn/; '/D
�
. .h1/g1; : : :  .hn/gn/;  '

�
for all gi ; hi 2G and  ; ' 2 Aut.G/.

Define the pure automorphism group of G by

PAut.G/ WD f� 2 Aut.G/ W �.i/D i for all i 2 I g:
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Let G be a connected groupoid with object set I D f0; 1; : : : ; ng. Let G DG00 be the
vertex group at 0 2 I. Choose a star f�igi2I � G based at 0 2 I and let g0 D e0 2G.

Lemma 3.1 The map � W Gn Ì Aut.G/! PAut.G/ given by

�
�
..g1; : : : ; gn/;  /

�
.��1i a�j /D �

�1
i g�1i  .a/gj �j

is an isomorphism.

Lemma 3.1 is proved in [1, Section 3]. Note that the isomorphism � depends on the
choice of star.

Let H < G be a normal subgroupoid. If � 2 Aut.G/ is such that �.H/ �H , then �
induces an automorphism x� 2 Aut.G=H/ by x�.Œa�/ D Œ�.a/�. Define the subgroup
LAutH.G/ < PAut.G/ by

LAutH.G/D f� 2 PAut.G/ W �.H/DH and x� D id 2 Aut.G=H/g:

Our goal is to prove, with certain restrictions on G and H , that LAutH.G/ is finite-index
in PAut.G/.

As above, suppose that G is a connected groupoid with object set I Df0; 1; : : : ; ng and
let G DG00 be the vertex group at 0 2 I. Let H be a connected normal subgroupoid
with vertex group H DH00 , which is a normal subgroup of G.

Define the subgroup K <Gn Ì Aut.G/ by

K D f..g1; : : : ; gn/;  / 2G
n Ì Aut.G/ W  2 LAutH .G/ and gi 2H for all ig:

Here, LAutH .G/ is defined by considering a group as a groupoid with one object.

Lemma 3.2 Choose a star SDf�igi2I �H based at 02 I. Consider the isomorphism
� W Gn Ì Aut.G/! PAut.G/ from Lemma 3.1 defined by S. Then �.K/D LAutH.G/.

Proof Let kD ..h1; : : : ; hn/;  /2K , let h0D e0 2H and let ��1i g�j be an arbitrary
element in G. Then �.k/.��1i g�j / D �

�1
i h�1i  .g/hj �j . Since  .g/ 2H if and only

if g 2H, we have �.k/.��1i g�j / 2H if and only if g 2H. Therefore �.k/.H/DH .
In G=H , Œ��1i g�j �D Œg� for any g2G. Therefore �.k/.Œ��1i g�j �/D �.k/.Œg�/D Œ .g/�.
Since  2 LAutH .G/, Œ .g/�D Œg� implying �.k/ 2 LAutH.G/.

Conversely, suppose k D ..g1; : : : ; gn/;  / 2 G
n Ì Aut.G/ is such that �.k/ 2

LAutH.G/. We have �.k/.Œg�/ D Œ .g/� D Œg� for all g 2 G, so  2 LAutH .G/.
Let h�j be an arbitrary element of H0j . Then �.k/.h�j /D  .h/gj �j . For �.k/.h�j /
to be in H , we must have gj 2H. Therefore k 2K , completing the proof.
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Lemma 3.3 Let G be a connected groupoid with object set I D f0; 1; : : : ; ng and H
a connected normal subgroupoid. Let G D G00 and H D H00 as above. Suppose
G is finitely generated and H is finite-index in G. Then LAutH.G/ is finite-index in
PAut.G/.

Proof By Lemma 3.2, it suffices to show that K is finite-index in Gn Ì Aut.G/. It
is easily checked that ..g1; : : : ; gn/;  / and ..h1; : : : ; hn/; '/ are in the same right
coset of K if and only if Œhi �D Œgi � in G=H for all i , and  and ' are in the same
right coset of LAutH .G/ in Aut.G/. The result then follows from the fact that if G is
finitely generated and H is finite-index in G, LAutH .G/ is finite-index in Aut.G/.

3.3 The fundamental groupoid

The groupoids of interest in this paper will be fundamental groupoids of finite-type
surfaces (that is, surfaces with finitely generated fundamental group) with boundary.
We will briefly state the definition and some properties without proof that will be useful
later on. For a full treatment, see [8, Chapter 6] or [13, Chapter 6].

Let X be a topological space and A�X a subset. The fundamental groupoid �1.X;A/
is the set of homotopy classes of paths ıW .Œ0; 1�; f0; 1g/ ! .X;A/ relative to the
endpoints. Equipped with concatenation of paths as the partial operation, �1.X;A/ is
a groupoid with object set A. The source and target maps are given by s.Œı�/D ı.0/
and t .Œı�/D ı.1/. When AD fxg, we recover the fundamental group �1.X; x/. It is
helpful to think of the fundamental groupoid as a fundamental group with multiple
basepoints.

Like the fundamental group, the fundamental groupoid provides a functor from the
category of pairs of topological spaces to groupoids. In particular, if f W X ! X

is a homeomorphism such that f .A/ D A, then f�W �1.X;A/ ! �1.X;A/ is an
automorphism of the groupoid �1.X;A/. Furthermore, if f; gW .X;A/! .Y; B/ are
homotopic relative to A, then f� D g�W �1.X;A/! �1.Y; B/.

We now shift our focus to covering spaces. For a groupoid G with object set I, define
the sets S.i/ WD fg 2 G W s.g/D ig and T .i/ WD fg 2 G W t .g/D ig. The next lemma
will be useful throughout the rest of the paper.

Lemma 3.4 Let pW zX ! X be a covering space, A � X a subset. Consider the
induced groupoid morphism p�W �1. zX;p

�1.A//! �1.X;A/. The restricted maps
p�W S.x/! S.p.x// and p�W T .x/! T .p.x// are bijections for all x 2 p�1.A/.
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The lemma follows from the path and homotopy lifting properties for covering spaces,
and the details are left to the reader. It is worth noting that Lemma 3.4 says that p� is
a covering morphism (see [8, Section 10.2]).

Let pW zX ! X be a finite-sheeted, regular covering space with deck group D. Let
A D fx1; : : : ; xkg � X, and B D p�1.A/ � zX. For each i 2 f1; : : : ; kg, choose
zxi 2 p

�1.xi /. Let zAD fzx1; : : : ; zxkg.

Define the groupoids

G WD �1.X;A/; H WD p�.�1. zX; zA//; K WD �1. zX;B/:

Since p is a regular cover, H is a normal subgroupoid of G. Recall the definition of
LAutH.G/ from Section 3.2. It will be useful for us to identify when two elements
of G are in the same coset of H .

Lemma 3.5 Let g1; g2 2 G and let zg1; zg2 2 K be the unique elements such that
s.zg1/; s.zg2/ 2 zA. Then t .zg1/D d1.zxi / and t .zg2/D d2.zxj / for some zxi ; zxj 2 zA and
some d1; d2 2D. The elements g1 and g2 are in the same coset of H if and only if
d1 D d2 .

Proof Suppose d1 D d2 , and let d D d1 . Choose any z 2 �1. zX; zA/ such that
s.z/D s.zg1/ and t .z/D s.zg2/. Let y D d�1.zg�12 z�1zg1/. Note y 2 �1. zX; zA/. Then
zg1 D zzg2d.y/ and g1 D p�.z/g2p�.y/, so g1 and g2 are in the same coset of H .

Conversely, suppose g1Dzg2y for some z; y2H . Let zz and zy be such that p�.zz/Dz ,
p�.zy/ D y , and s.zz/; t.zz/; s.zy/; t.zy/ 2 zA. Then, by Lemma 3.4, zg1 D zzzg2d2.zy/.
Therefore t .zg1/D d2.t.zy//, completing the proof.

Since D acts freely on B, D injects into Aut.K/. Abusing notation, we will identify
D with its image in Aut.K/. Define the group

SAut.K/ WD f� 2 PAut.K/ W Œ�; d �D 1 for all d 2Dg;

that is, SAut.K/ is the intersection of PAut.K/ with the centraliser of D in Aut.K/.
Define a map …W SAut.K/! LAutH.G/ by ….�/.g/D p��.zg/, where zg 2 p�1� .g/

is any choice of lift of g . The next lemma is a kind of Birman–Hilden theorem for
groupoid automorphisms. It will be of particular importance in Sections 4 and 5.
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Lemma 3.6 The group homomorphism

…W SAut.K/! LAutH.G/
is an isomorphism.

Before embarking on the proof, we must set some notation. Let x 2B and g2S.p.x//.
Denote by Œgz�.x/ 2 K the unique element such that p�.Œgz�.x//D g and s.Œgz�.x//D x .
Such a lift exists by Lemma 3.4.

Proof of Lemma 3.6 Let � 2 SAut.K/ and g 2 G. To see ….�/ is a well-defined set
map, note that if zg1; zg2 2 p�1� .g/, then zg1 D d zg2 for some d 2D. Then p��.zg1/D
p��d.zg2/D p�d�.zg2/D p��.zg2/.

For g; h 2 G with s.h/ D t .g/, choose lifts zg and zh such that s.zh/ D t .zg/. Then
zgzh 2 p�1� .gh/ and p�.�/.zgzh/D p��.zg/p��.zh/. Therefore ….�/W G! G is a well-
defined groupoid morphism. It is easily checked that ….��1/ is a two-sided inverse
for ….�/, so ….�/ 2 Aut.G/. Since � 2 PAut.K/, we have

….�/.s.g//D s.p��.zg//D p��.s.zg//D p�.s.zg//D s.g/;

so ….�/ 2 PAut.G/.

To show ….�/ 2 LAutH.G/, it suffices to show g and p��.zg/ are in the same coset
of H in G. Set zgD Œgz�.xi /

for some i . Then t .zg/Dd.xj / for some j and some d 2D.
Since � 2 PAut.K/, s�.zg/D xi and t .�.zg//D d.xj /. Therefore, by Lemma 3.5, g
and p��.zg/ are in the same coset of H . We may now conclude … is a well-defined set
map. For �; ' 2 SAut.K/, ….�/….'/.g/D p��.Bp�'.zg//D p��'.zg/D….�'/.g/,
so …W SAut.K/! LAutH.G/ is a well-defined group homomorphism.

Define a map, which we optimistically label

…�1W LAutH.G/! SAut.K/;

by …�1. /.k/D Œ p�.k/z�.s.k// for all k 2 K .

For k; l2K with s.l/D t .k/, the product Œ p�.k/z�.s.k//Œ p�.l/z�.s.l// is, by Lemma 3.5,
defined in K since  preserves each coset of H in G. Furthermore, p�Œ p�.kl/z�.s.k//D
p�
�
Œ p�.k/z�.s.k//Œ p�.l/

z�.s.l//
�
, so …�1. /W K! K is a groupoid homomorphism

by Lemma 3.4.

It is easily checked that …�1. �1/ is a two-sided inverse for …�1. /. Furthermore, by
the definition of …�1. /, s.…�1. /.k//D s.k/ for all k 2K , so …�1. /2PAut.K/.
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We have p�Œ p�d.k/z�.s.dk// D p�d
�
Œ p�.k/z�.s.k//

�
for all d 2D and

s
�
Œ p�d.k/z�.s.dk//

�
D s

�
d
�
Œ p�.k/z�.s.k//

��
D ds.k/:

So, by Lemma 3.4, …�1. /d.k/D d…�1. /.k/, implying …�1. / 2 SAut.K/.

It remains to show, as the notation suggests, that …�1 is a two-sided inverse for ….
We have ……�1. /.g/D p�Œ p�.zg/z�.s.zg//D .g/ for all  2 LAutH.G/ and g 2 G.

On the other hand, first note that p�Œp��.k/z�.s.k//Dp��.k/ and s
�
Œp��.k/z�.s.k//

�
D

s.�.k// D s.k/. Therefore, by Lemma 3.4, Œp��.k/z�.s.k// D �.k/. We now have
…�1….�/.k/D Œp��.k/z�.s.k// D �.k/.

Since …�1 is a two-sided inverse for …, we may finally conclude that …W SAut.K/!
LAutH.G/ is an isomorphism.

4 Proof of classification results

Given a finite-sheeted covering space pW z†! † of a compact surface branched at
B � †, let z†ı D z† n p�1.B/ and †ı D † n B . Note that since the set of branch
points B is always finite, the resulting surfaces z†ı and †ı are always of finite type.
Abusing notation, denote the resulting unbranched cover pW z†ı!†ı . It is easy to see
that restricting homeomorphisms gives an isomorphism LMod.†;B/Š LMod.†ı/. It
follows from Theorem 2.2 that if two fibre-preserving homeomorphisms are isotopic,
then they are isotopic through fibre-preserving homeomorphisms. In particular, between
two isotopic fibre-preserving homeomorphisms, there is an isotopy that preserves
p�1.B/ pointwise. Therefore, restricting homeomorphisms induces an isomorphism
SMod.z†/Š SMod.z†ı/. With this in mind, we will move back and forth between the
branched and unbranched covers without much indication.

As hinted at above, to characterise when a homeomorphism lifts to a homeomorphism
that fixes boundary components, we must look at the action of a homeomorphism on
the fundamental groupoid �1.†ı; A/ for a specific choice of basepoints A�†ı .

4.1 Action on the fundamental groupoids

Suppose @†ı has m components. Let A D fx0; x1; : : : ; xm�1g � @†ı be such that
each component contains exactly one of the xi . For each xi , choose a point zxi 2
p�1.xi / and let zA D fzx0; zx1; : : : ; zxm�1g � @z†ı . Let B D p�1.A/ and denote the
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fundamental groupoids by G D �1.†ı; A/, H D p��1.z†ı; zA/ and K D �1.z†ı; B/
as in Section 3.3. Homeomorphisms that are isotopic relative to the basepoints of
the fundamental groupoid induce equal automorphisms of the fundamental groupoid.
Therefore there are homomorphisms Mod.†ı/! Aut.G/ and Mod.z†ı/! Aut.K/
given by the action of representative homeomorphisms on the respective groupoids.

Lemma 4.1 There is a commutative diagram

SMod.z†/ SAut.K/

LMod.†;B/ LAutH.G/

z‰

…Š …Š

‰

such that

� the vertical maps are the Birman–Hilden isomorphisms from Theorem 2.2 and
Lemma 3.6,

� the map z‰ is an injection given by composing the action of SMod.z†ı/ on K
with the isomorphism SMod.z†/Š SMod.z†ı/, and

� the map ‰ is an injection given by composing the action of LMod.†ı/ on G
with the isomorphism LMod.†;B/Š LMod.†ı/.

Proof Since representative homeomorphisms of SMod.z†ı/ fix the basepoints B�@z†
pointwise, the image of z‰ is contained in PAut.K/. It follows from Proposition 2.1
and the fact that isotopic homeomorphisms relative to the basepoints induce the
same groupoid automorphism, that the image of z‰ is contained in SAut.K/. Since
K has at least one basepoint on each boundary component of z†, z‰ is injective
[14, Theorem 3.1.1]. It now suffices to show …z‰…�1D‰W LMod.†;B/!LAutH.G/.
Let Œf �2LMod.†;B/, g2G and zg2p�1� .g/�K . After identifying homeomorphisms
of † and z† with their restrictions to †ı and z†ı , respectively, we have

…z‰…�1.Œf �/.g/D…z‰.Œ zf �/.g/D p� zf�.zg/D f�p�.zg/D‰.Œf �/.g/:

Therefore …z‰ D‰…, completing the proof.

4.2 The case where everything lifts

We now move on to proving Theorem 1.1. As such, we return to the setting of the
original branched cover pW z†!† branched at B �† n @†. If Œf � 2Mod.†;B/, we
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will abuse notation and denote by f� 2 Aut.�1.†ı; A// the automorphism induced by
any representative homeomorphism for Œf �. The abuse of notation is legal since any rep-
resentative homeomorphism for Œf � fixes A pointwise, and isotopic homeomorphisms
induce the same groupoid automorphism.

Theorem 4.2 LMod.†;B/D fŒf � 2Mod.†;B/ W f� 2 LAutH.G/g:

Proof By Lemma 4.1 it suffices to show that if f�2LAutH.G/ then Œf �2LMod.†;B/.
The homeomorphism f lifts since f�.p��1.z†; zx0//D p��1.z†; zx0/. Let zf be the
lift of f such that zf .zx0/D zx0 . It remains to show zf fixes @z† pointwise.

Let zy 2 @z†. Note that y D p.zy/ is in the same component of @† as xi for some i .
Choose � 2 �1.†; @†/ such that s.�/ D y , t .�/ D xi and � is represented by an
arc completely contained in @†, so f�.�/ D � . Choose zı 2 �1.z†; @z†/ such that
s.zı/D zx0 and t .zı/D zy . Let ı D p�.zı/ and note that ı� 2 G.

Let z� be the unique lift of � such that s.z�/ D zy . We have p� zf�.zız�/ D f�.ı�/,
p�.zız�/ D ı� , s. zf�.zız�// D s.zız�/ D zx0 and t .f�.ı�// D t .ı�/. Since f�.ı�/
and ı� are in the same coset of H , Lemma 3.5 implies t . zf�.zız�//D t .zız�/, implying
t . zf�.z�// D t .z�/. Since p� zf�.z�/ D p�.z�/, we have zf�.z�/ D z� by Lemma 3.4.
Therefore zf .zy/D s. zf�.z�//D s.z�/D zy , completing the proof.

If † has one boundary component we get the following well-known corollary:

Corollary 4.3 Suppose † has one boundary component. Choose a basepoint x 2 @†ı

and zx 2 p�1.x/. Then

LMod.†;B/D fŒf � 2Mod.†;B/ W qf� D qg;

where qW �1.†ı; x/ ! �1.†
ı; x/=p��1.z†

ı; zx/ is the quotient map and f� is the
induced map on �1.†ı; x/.

Proof The condition qf� D q is equivalent to f� acting trivially on the cosets of
p��1.z†

ı; zx/ in �1.†ı; x/. The result then follows from Theorem 4.2.

The next proposition gives a direct way to check whether or not an element of
Mod.†;B/ is in LMod.†;B/. To that end, choose a point x0 2 @†ı and a lift
zx0 2 p

�1.x0/. Choose a generating set f
1; : : : ; 
ng of �1.†ı; x0/. Since the
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cover is regular, �1.†ı; x0/=p��1.z†ı; zx0/ Š D. Choose an isomorphism and let
qW �1.†

ı; x0/!D be the quotient map.

Suppose there are m components of @†ı . Enumerate the components not containing x0
from 1 to m�1. For each i 2 f1; : : : ; m�1g, choose an arc �i W Œ0; 1�!†ı such that
�i .0/D x0 and �i .1/ is in the i th boundary component. Let xi D �i .1/ 2 @†ı .

Let ADfx0; x1; : : : ; xm�1g�@†ı . Then the 
i and Œ�j � are all elements of �1.†ı; A/.
Given an element Œf � 2Mod.†ı/, f�Œ�j �D aj Œ�j � for some aj 2 �1.†ı; x0/.

Proposition 4.4 A mapping class Œf � is in LMod.†;B/ if and only if qf�.
i /Dq.
i /
for all i and aj 2 ker q for all j .

Proof Choose a lift zx0 2p�1.x0/. For all i choose lifts z�i of �i such that z�i .0/D zx0 .
Let zxi D z�i .1/ and let zA D fzx0; zx1; : : : ; zxm�1g. Let G D �1.†

ı; A/ and H D
p��1.z†

ı; zA/. Then, by Theorem 4.2, Œf �2LMod.†;B/ if and only if f�2LAutH.G/,
where LAutH.G/ is as defined in Section 3.2.

The condition qf�.
i /D q.
i / for all i is equivalent to f� acting trivially on the cosets
of p��1.z†ı; zx0/ in �1.†ı; x0/. The condition aj 2 ker q implies aj 2p��1.z†ı; zx0/
for all i . The result follows from observing that fŒ�1�; : : : ; Œ�m�1�g is a star in H and
applying Lemma 3.2.

We are now ready to prove the first of two classification results.

Proof of Theorem 1.1 We first prove that LMod.†;B/DMod.†;B/ if and only if
pW z†!† is a Burau cover. Let pW z†ı!Dn be the associated unbranched cover of a
Burau cover. Let x02@Dn and let fc1; : : : ; cng be a generating set for �1.Dn; x0/ such
that ci is represented by a loop which surrounds only the i th puncture anticlockwise.
Let Hi 2Mod.Dn/ be a half twist whose support (a disk with two punctures) intersects
all representative loops of ci and ciC1 and is disjoint from representatives of cj for
all j ¤ i; i C 1. If we consider each Hi as an automorphism of �1.Dn; x0/, we can
assume that Hi .ci /D ciciC1c�1i and Hi .ciC1/D ci . From the definition of Burau
covers we have that

qHi .ci /D q.ciciC1c
�1
i /D q.ci /q.ciC1/q.c

�1
i /D 1;

qHi .ciC1/D q.ci /D 1;

qHi .cj /D q.cj /D 1 for all j ¤ i; i C 1:
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x0

x1

x2

xm�1

a1

b1
a2

b2

ag

bg
c1 c2 cn �1

�2

�m�1

d1

d2

dm�1

Figure 3: A generating set for �1.†ı; A/ .

By Corollary 4.3 we have that Hi 2 LMod.Dn/. It follows from the fact that
the set fH1; : : : ;Hn�1g generates Mod.Dn/ that every mapping class lifts, that is,
LMod.Dn/DMod.Dn/. As discussed at the beginning of Section 4 this is equivalent
to showing that LMod.†10;B/DMod.†10;B/.

Conversely, assume LMod.†;B/ D Mod.†;B/. Suppose jBj D n � 0 and † has
genus g � 0 and m� 1 boundary components. Consider the generating set

fa1; b1; : : : ; ag ; bg ; c1; : : : ; cn; d1; : : : ; dm�1; �1; : : : ; �m�1g

of the fundamental groupoid G D �1.†ı; A/ defined in Figure 3, where G is as in
the beginning of Section 4.1. Note that f�1; : : : ; �m�1g forms a star in G, and each
�i is represented by a nonseparating simple arc. Denote by ‡ the generating set
fa1; b1; : : : ; ag ; bg ; c1; : : : ; cn; d1; : : : ; dm�1g of �1.†ı; x0/.

We aim to show † is a disk, and we begin by showing mD 1. Suppose not, and note
that every element in G of the form c�1 where c 2‡ can be represented by a simple
arc with initial and terminal endpoint agreeing with �1 . Therefore there is an element
Œf �2Mod.†ı/ such that f�.�1/D c�1 . By Proposition 4.4 we have c 2p��1.z†ı; zx0/
for all c 2 ‡ , contradicting the assumption that p is nontrivial. Therefore † must
have a single boundary component.

Assume now that mD 1 and † has positive genus g . For all i 2 f1; : : : ; ng we can
find an element Œf � 2Mod.†ı/ such that f�.ci /D c1 . It follows from Corollary 4.3
that q.ci /D qf�.ci /D q.c1/ for all i .
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Since the ai and bi are represented by a simple nonseparating loops based at x0� @†ı ,
there is an element of Mod.†ı/ that sends a1 to ai (or bi ) for any i . Therefore
q.ai /D q.bj / for all i and j . Similarly, since a1b1 and a1c1 are also represented
by simple nonseparating loops based at x0 , there exist Œf �; Œh� 2Mod.†ı/ such that
f�.a1/D a1b1 and h�.a1/D a1c1 . We now have that

q.a1/D qf�.a1/D q.a1b1/D q.a1/q.b1/;

and similarly q.a1/D q.a1/q.c1/. Therefore q.b1/ and q.c1/ are the identity in the
deck group D. We may conclude that q.ai / and q.bi / are the identity in D for all i ,
and q.cj / is the identity in D for all j . However, this implies ker.q/D �1.†ı; x0/,
contradicting the assumption that p is nontrivial.

The genus of † must therefore be zero and, as shown above, † has a single boundary
component, that is, † is a disk. We have already shown that q.ci / D q.c1/ for all
i D 1; : : : ; n and so it follows that pW z†! † is a Burau cover. This completes the
proof of (i).

For (ii), recall the definitions of the fundamental groupoids H and G from the beginning
of Section 4.1. Let ‰W Mod.†;B/! PAut.G/ be the injective homomorphism given
by the action of Mod.†;B/ on the fundamental groupoid G. By Theorem 4.2 it follows
that ‰.LMod.†;B//D LAutH.G/\‰.Mod.†;B//. We have

ŒMod.†;B/ WLMod.†;B/�D Œ‰.Mod.†;B// W‰.LMod.†;B//�

� ŒPAut.G/ WLAutH.G/�

<1:

The first inequality follows from the fact that for subgroups H and K of a group G,
ŒG WH�� ŒK WH \K�. The second inequality is by Lemma 3.3.

While we have shown that there are infinitely many covering spaces with the property
that LMod.†;B/DMod.†;B/, it is clear that this occurs only in a distinct minority
of cases. We will see in the next section that the conditions for a covering space to
satisfy SMod.z†/DMod.z†/ are even more severe.

4.3 The case where everything is symmetric

In this section we prove Theorem 1.2. In particular, we show that the symmetric
mapping class group SMod.z†/ coincides with the mapping class group Mod.z†/ in
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a very small number of cases. To prove the result we make use of the mapping class
group action on homology. Recall that the Lefschetz fixed point theorem for smooth
manifolds statesX

p2fix.f /

i.f; p/D

1X
iD0

.�1/i tr.f�W Hi .†IQ/!Hi .†IQ//;

where i.f; p/ is the index of the fixed point p of the homeomorphism f [17]. We
will apply this result to our context of surfaces with boundary.

Lemma 4.5 Let † be a compact oriented surface with boundary. Let f be a finite-
order, orientation-preserving homeomorphism of †. Then the fixed points of f are
isolated and the number of fixed points is equal to

1� tr.f�W H1.†IZ/!H1.†IZ//:

Proof We will first prove that the fixed points are isolated. Let f have order k and
let � be a Riemannian metric on †. Define the Riemannian metric

x� WD

kX
iD1

.f k/��:

Then f �x�D x� and so f is an isometry. Since f is orientation-preserving, its fixed
points must be isolated. Let p 2 † be such a fixed point and let Tp† Š R2 be the
tangent space. Now, all orientation-preserving isometries of R2 that fix the origin are
rotations about the origin. We therefore have that f induces a rotation Tp†! Tp†

and so i.f; p/D 1.

For a surface with boundary, Hi .†IQ/Šf0g for all i � 2. Furthermore, H0.†IQ/Š
Q and f�W H0.†IQ/!H0.†IQ/ is the identity map. It follows that

tr.f�W H0.†IQ/!H0.†IQ//D 1:

Note that since the first homology group is free abelian we may replace the coefficients
with Z. Finally, since the index of each fixed point is 1, we have that the number of
fixed points is equal to

1� tr.f�W H1.†IZ/!H1.†IZ//;

completing the proof.
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Corollary 4.6 Suppose † is a compact orientable surface of genus g with m � 1
boundary components other than a disk or an annulus. Let f 2 HomeoC.†/ be a
finite-order, orientation-preserving homeomorphism of †. Then f acts nontrivially on
H1.†IZ/.

Proof If f acts trivially on H1.†IZ/ then tr.f�WH1.†IZ/!H1.†IZ//D2gCm�1
by choice of a natural basis of H1.†IZ/. By Lemma 4.5 we must have 1�.2gCm�1/�
0 and so 2gCm � 2. This only occurs when g D 0 and mD 1; 2, or, equivalently,
when † is a disk or an annulus.

The next result shows that a hyperelliptic involution has a unique action on homology
up to conjugation. The proof follows from Lemma 4.5 and an argument similar to that
of [11, Proposition 7.15].

Lemma 4.7 Let † be a surface of genus g � 1 with a single boundary compo-
nent. Suppose f1; f2 2 HomeoC.†/ are order 2 homeomorphisms such that .f1/� D
.f2/� D�I W H1.†IZ/!H1.†IZ/. Then f1 and f2 are conjugate in HomeoC.†/.

Throughout the proof of Theorem 1.2 we will repeatedly use the fact that if c is an
isotopy class of simple closed curves then every power of the Dehn twist Tc is an
element of SMod.z†/ if and only if d.c/D c for all d 2D, where D is the deck group.

Proof of Theorem 1.2 We start by proving that SMod.z†/ D Mod.z†/ in the three
cases stated in the theorem. First, if z† is a disk then SMod.z†/DMod.z†/ trivially. If
z† is an annulus, let c be the unique unoriented isotopy class of an essential simple
closed curve. For every homeomorphism f of z† we have that f .c/ D c . Since
Mod.z†/D hTci it follows that SMod.z†/DMod.z†/. Finally, suppose z† is a torus
with a single boundary component, and let �2HomeoC.z†/ be a hyperelliptic involution.
There exist two simple closed curves a and b whose isotopy classes are fixed by �
such that the Dehn twists Ta and Tb generate Mod.z†/. Therefore we have that
SMod.z†/DMod.z†/.

Conversely, suppose SMod.z†/ D Mod.z†/ and z† is neither a disk nor an annulus.
Suppose z† is a surface of genus g � 0 with m� 1 boundary components. There is a
generating set ÃDfa1; : : : ; a2g ; x1; : : : ; xm�1g of H1.z†IZ/ where each generator ai
is represented by an essential simple closed curve and each xi is the homology class
of a curve isotopic to a boundary component.
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Let d be a nontrivial element of the deck group D. It must be that d preserves the
unoriented isotopy class of every essential simple closed curve and so we see that
d�W H1.z†IZ/!H1.z†IZ/ is given by the diagonal matrix24�1 : : :

�2gCm�1

35
with respect to the generating set Ã, where �i D˙1 for all i . However, since d is
orientation-preserving, it must preserve the orientation of every boundary component,
therefore �i D 1 for all i > 2g . It follows from Corollary 4.6 that g � 1 and there is
at least one i 2 f1; : : : ; 2gg such that �i D�1.

We now argue that z† must have exactly one boundary component. If m � 2 then
there is at least one element in Ã that is the homology class of a boundary component.
Consider the homology classes x1C ai and x1� ai , where �i D�1. One of these is
the homology class of an essential simple closed curve c . Since d�.x1˙ai /D x1�ai ,
we have that d�.c/ ¤ ˙c and so the unoriented isotopy class of c is not preserved
by d . Therefore Tc … SMod.z†/ and so SMod.z†/ ¤ Mod.z†/, a contradiction. It
follows then that mD 1.

The next step is to show d is a hyperelliptic involution. Suppose not; then, by
Corollary 4.6, there are i; j 2 f1; : : : ; 2gg such that �i D 1 and �j D�1. Similar to
the above argument, we can find a curve c such that Tc … SMod.z†/. This implies that

d� D�I W H1.z†IZ/!H1.z†IZ/

for all nontrivial d 2D. Suppose d1; d2 2D are nontrivial elements. Then .d1d2/�D
I W H1.z†IZ/!H1.z†IZ/, so, by Corollary 4.6, d1 D d2 and jDj D 2.

Let � be a hyperelliptic involution of z†; then ��D�I W H1.z†IZ/!H1.z†IZ/. Since
any conjugate of � is a hyperelliptic involution, it follows from Lemma 4.7 that D is
generated by a hyperelliptic involution. Finally, if g � 2 then we can find a curve that
is not fixed by � (see Figure 4), completing the proof of the first statement.

If SMod.z†/¤Mod.z†/ then we may choose a Dehn twist Tc … SMod.z†/ and note
that each power belongs to a different coset of SMod.z†/ in Mod.z†/. Since Dehn
twists have infinite order, it follows that SMod.z†/ is infinite-index in Mod.z†/.

Remark 4.8 Suppose pW z†!† is a finite-sheeted, regular, possibly branched cover
of compact surfaces without boundary with deck group D. Combining the proof of
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Figure 4: A curve whose isotopy class is not preserved by the hyperelliptic
involution for a surface with boundary † of genus at least two.

Theorem 4 in [4] with the Neilsen realisation theorem for finite groups [15] allows one
to conclude that SMod.z†/ is the normaliser of D in Mod.z†/.

When the surfaces in question have boundary, then D is not a subgroup of Mod.z†/.
However, D and Mod.†/ are both subgroups of Aut.K/, where K is the groupoid
defined in Section 4.1.

In light of both the normaliser result just stated for closed surfaces, and Theorem 4.2
for LMod.†;B/, we conjecture that SMod.z†/ D fŒf � 2 Mod.z†/ W f� 2 SAut.K/g.
Unfortunately, a proof seems out of reach at the moment.

5 Nongeometric embeddings of braid groups

In this section we will investigate a family of injective homomorphisms from the braid
group to mapping class groups. We will refer to such a homomorphism as a braid
group embedding. We first recall the definition of the Burau covers from Section 1.

Burau covers

Pick a point x 2 @Dn and let 
i 2�1.Dn; x/ be the homotopy class of a loop surround-
ing solely the i th puncture anticlockwise. Then f
1; : : : ; 
ng generates �1.Dn; x/.
For each k � 2, define a homomorphism

qk W �1.Dn; x/! Z=kZ; 
i 7! 1

for all i . The kernel of qk determines a k–sheeted cyclic branched cover pk W †mg !†10
branched at n points. Here mD gcd.n; k/ and g D 1� 1

2
.kCn�nkCm/.

In Theorem 1.1 it was shown that LMod.†;B/ D Mod.†;B/ if and only if † is a
disk and pk W †mg !†10 is a k–sheeted Burau cover. We can therefore define the braid
group embedding

ˇk W Bn ŠMod.†10;B/D LMod.†10;B/Š SMod.†mg / ,!Mod.†mg /:
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The first isomorphism is well known, the equality comes from Theorem 1.1, and the
second isomorphism is a consequence of the Birman–Hilden theorem.

Let f�1; : : : ; �n�1g be the standard generators of Bn . It is known that ˇ2.�i /D Tci
,

where ci is some nonseparating curve for all i 2 f1; : : : ; n�1g. Furthermore, the deck
group D Š Z=2Z is generated by a hyperelliptic involution [11, Section 9.4].

In this section we will describe the image of the standard braid generators under ˇk
where k � 3. In particular we show that ˇk is a nongeometric embedding of the braid
group, that is, ˇk.�i / is not a Dehn twist. In order to describe the image of a single
braid generator it suffices to consider the embeddings

ˇ2gC1W B2 ,!Mod.†1g/ and ˇ2gC2W B2 ,!Mod.†2g/

for integers g > 0. In other words, we will study the Burau covers

p2gC1W †
1
g !†10 and p2gC2W †

2
g !†10;

in each case branched at two points. We will deal with the two cases separately although
the techniques used in each case are similar.

5.1 Odd Burau

First we consider the braid group embedding ˇ2gC1 given above. We will define an
element N of Mod.†1g/ and then prove that the isomorphism

…W SMod.†1g/! LMod.†10;B/

sends N to the standard generator of Mod.†10;B/. Recall that we can represent a
closed surface of genus g by a regular .4gC2/–gon, centred at the origin, with opposite
sides identified. If we remove an open disk about the centre we arrive at a representation
of †1g . Label this representation P and let � be the anticlockwise rotation of P about
its centre by 2�=.2gC 1/ (see Figure 5, left, for � when g D 1). The two unique
vertices of P are fixed by �. We see that the quotient space †1g=h�i is homeomorphic
to †10 , and the quotient map is a covering map branched at two points. Furthermore,
around both fixed points � is locally a rotation by 2�=.2gC1/ anticlockwise, therefore
the associated covering space is the .2gC1/–sheeted Burau cover of †10 with deck
group D Š Z=.2gC 1/Z.

We will write p2gC1W †1g
ı
!D2 for the associated unbranched cover. Let x 2 @D2

and let a and b be elements of �1.D2; x/ such that a is represented by a loop that
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� �

Figure 5: Left: a generator of the deck group D Š Z=3Z of the 3–sheeted
Burau cover. Right: a generator of the deck group D Š Z=4Z of the 4–
sheeted Burau cover.

surrounds a single marked point and b is represented by a loop isotopic to @D2 as in
Figure 6, left.

The elements a and b generate �1.D2; x/. Denote the full preimage p�12gC1.x/
by fzxig, indexed by elements of Z=.2gC 1/Z such that �.zxi /D zxiC1 . Similarly we
define .p2gC1/�1� .a/ D faig and .p2gC1/�1� .b/ D fbig, where s.ai / D s.bi / D zxi .
Furthermore, we have that ��.ai /D aiC1 and ��.bi /D biC1 ; see Figure 6, centre. The
set fai ; big, indexed by elements of Z=.2gC1/Z, generates the fundamental groupoid
�1.†

1
g
ı
; fzxig/, a fact which follows from Lemma 3.4.

The odd notch

We let N denote the mapping class in Mod.†1g/ represented by the homeomorphism
that rotates the edges of P by 2�=.4gC 2/ and fixes the single boundary component
at the centre. See Figure 7 for an image of N when g D 1.

In the following lemma we will write H for the half twist in Mod.†10;B/ and for the
induced automorphism of �1.D2; x/ such that H.a/D ba�1 .

Lemma 5.1 Given the Burau cover p2gC1W †1g!†10 , the half twist H 2Mod.†10;B/
lifts to the mapping class N 2Mod.†1g/.

a

b
a0 a2

a1

a0

a1

a2

a3

Figure 6: Left: generators of the fundamental group of D2 . Centre: genera-
tors for the fundamental groupoid �1.†11

ı
; fzx0; zx1; zx2g/ . Right: generators

for �1.†21
ı
; fzx0; zx1; zx2; zx3g/ .
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H H

N N

Figure 7: The mapping class H 2 Mod.D2/ and its lifts in the 3– and
4–sheeted Burau covers. Lemma 5.1 shows that N is the lift of H.

Proof Let GD�1.D2; x/ and let K be the fundamental groupoid �1.†1g
ı
; fzxig/. We

will abuse notation by writing N for its image in Aut.K/ and H for its image in Aut.G/
under the injective natural homomorphisms. We need to show that N 2 SAut.K/ as
defined in Section 3.3. Since the deck group D is generated by �, this is equivalent
to showing that N�D �N as automorphisms of K . It can be seen from Figure 7 that
N.ai /D bia

�1
iC1Cg and that N.bi /D bi .

It follows then that

N�.ai /DN.aiC1/D biC1a
�1
iC2Cg D �.bia

�1
iC1Cg/D �N.ai /;

N �.bi /DN.biC1/D biC1 D �.bi /D �N.bi /:

Since the set fai ; big generates the fundamental groupoid, we are done.

We will now show that the image of N in LAutH.G/ under the isomorphism … of
Lemma 3.6 is equal to H. This makes sense since LMod.†10;B/DMod.†10;B/ and
so, from Theorem 4.2, we conclude that H 2 LAutH.G/. We now have

….N/.a/D p�N.ai /D p�.bia
�1
iC1Cg/D ba

�1
DH.a/;

….N/.b/D p�N.bi /D p�.bi /D b DH.b/:

So ….N/DH and since the diagram

SMod.†1g/ SAut.K/

Mod.†10;B/ LAutH.G/

z‰

…Š …Š

‰

from Lemma 4.1 commutes, the mapping class N is indeed the lift of the half twist H.
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5.2 Even Burau

We will now move on to the braid group embedding ˇ2gC2W B2 ,!Mod.†2g/ given
above. As in the odd case we will define an element of Mod.†2g/ and then prove that
it is the lift of a half twist H. We take H to be the half twist such that H�.a/D ba�1

for a; b 2 �1.D2; x/ as before. We want to find a polygonal representation of †2g . We
take a regular .4gC2/–gon with opposite sides identified. This time, we remove two
open disks as shown in Figure 5 and label the representation P.

We define an order 2gC 2 homeomorphism � as follows:

(1) Cut P along a straight line connecting the top and bottom vertices and label the
resulting .2gC2/–gons PL and PR .

(2) Rotate both PL and PR anticlockwise by 2�=.2gC2/ and reattach them along
the straight line connecting the top and bottom vertices.

(3) Rotate P by � .

For a picture of � when g D 1, see Figure 5, right. While this homeomorphism of †2g
is substantially more complicated than the one described in Section 5.1, it shares many
properties. Both vertices of P are fixed by � however, this time, locally � is a clockwise
rotation by 2�=.2gC 2/. It follows that the quotient space †2g=h�i is homeomorphic
to †10 and the associated covering space is the .2gC2/–sheeted Burau cover of †10
with deck group D Š Z=.2gC 2/Z.

The even notch

We define N 2Mod.†2g/ to be the mapping class represented by the homeomorphism
that rotates the edges of both PL and PR by 2�=.2gC 2/ and fixes the boundary
components. See Figure 7 for an image of N when g D 1.

Using the same method as the proof of Lemma 5.1 we arrive at the following result:

Lemma 5.2 Given the Burau cover p2gC2W †2g!†10 , the half twist H 2Mod.†10;B/
lifts to the mapping class N 2Mod.†1g/.

The proof of Lemma 5.2 is identical to the odd case, except that, while N.bi /D bi as
before, we now have N.ai /D bia�1iC1 .
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d d1

d2

Figure 8: A 4–chain and a 5–chain. The 4–chain has a single boundary
curve and the 5–chain has two boundary curves.

5.3 Chain twists

We will now describe the two maps defined in the previous section as products of Dehn
twists. We will often abuse notation by referring to an isotopy class of curves by the
name of a single representative curve.

Chains

Recall that a sequence of curves fc1; c2; : : : ; ckg is called a k–chain when i.ci ; cj /D 1
if j D i ˙ 1 and i.ci ; cj / D 0 otherwise. If k D 2g for some g then the closed
neighbourhood of

S
ci is a subsurface homeomorphic to †1g with boundary component

isotopic to the curve d . Furthermore, if k D 2gC 1 then the closed neighbourhood
of
S
ci is a subsurface homeomorphic to †2g with boundary components d1 and d2

(see Figure 8).

By considering the braid group embedding ˇ2W BkC1 ,! z† it can be shown that

.Tc1
Tc2

: : : Tc2g
/4gC2 D Td and .Tc1

Tc2
: : : Tc2gC1

/2gC2 D Td1
Td2
I

see Farb and Margalit [11, Section 4.4] for more details. Given a k–chain C D
fc1; c2; : : : ; ckg, we call the product TC WD Tc1

Tc2
: : : Tck

a k–chain twist (or a chain
twist). Now, let p2gC1W †1g !†10 be a Burau cover and let N be the lift of the half
twist as discussed in Lemma 5.1. If the curve d is isotopic to the boundary of †1g then
it is clear that

N 4gC2
D Td D .TC/

4gC2

for any 2g–chain C in †1g . Similarly, suppose p2gC2W †2g ! †10 is a Burau cover
and N is the lift of the half twist discussed in Lemma 5.2. If the curves d1 and d2 are
isotopic to the boundary components of †2g then we have

N 2gC2
D Td1

Td2
D .TC/

2gC2

for any .2gC1/–chain C in †2g . In Proposition 5.3 we will prove that as well as having
the same power as a chain twist, the notch N is in fact equal to a chain twist in both the
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c1 c2

c1

c2

c3

Figure 9: The 2–chain and 3–chain shown have corresponding chain twists
equal to the notch N coming from the 3–fold and 4–fold Burau covers,
respectively.

odd and even cases, proving Theorem 1.3. This implies that there exist chains A and B
(of any length) whose corresponding chain twists TA and TB satisfy the braid relation.

In Section 5.4 we will give the explicit combinatorial data required for two k–chains
to admit chain twists satisfying the braid relation. Furthermore, we show that this data
encodes the braid relation on the level of Dehn twists.

Proposition 5.3 Given a Burau cover pk W z†!†10 , the half twist H 2Mod.†10;B/
lifts to a .k�1/–chain twist.

Proof Given Lemmas 5.1 and 5.2 we need only show that the mapping class N 2
Mod.†mg / is equal to a .k�1/–chain twist TC for some .k�1/–chain C . To do this
we will show that the images of TC and N are equal in the group Aut.K/, where K is
a fundamental groupoid of †mg with basepoints on all boundary components.

To that end, let k D 2gC 1 and let K be the fundamental groupoid of †1g generated
by the set depicted in Figure 6, centre. Note that this set was also used to define a
fundamental groupoid of †1g

ı . In this setting, however, the vertices of the polygon are
not punctures. Furthermore, in order to facilitate the proof we change the indexing so
that ˛2i WD ai . We define the curve c0 uniquely by the groupoid element ˛0˛1b�10 .
We then define ci to be N i .c0/ for all i 2 Z=.2gC 1/Z; see Figure 9, left. Now, we
define the 2g–chain C WD fc1; : : : ; c2gg. In fact, we may choose C to be any 2g–chain
consisting of the curves ci . Now, by construction it can be seen that

Tci
.˛i /DN.˛i /;

Tcj .˛i /D ˛i for j > i;

TcjN.˛i /DN.˛i / for j < i:

It follows then that for any i 2 f1; : : : ; 2gg we have

TC.˛i /D Tc1
Tc2
� � �Tc2g

.˛i /D Tc1
Tc2
� � �Tci

.˛i /D Tc1
Tc2
� � �Tci�1

N.˛i /DN.˛i /:
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c1 c2

˛0

c1

Tc2
.˛0/

Tc1
Tc2

.˛0/

Figure 10: All arcs on the bottom row of hexagons are isotopic to the arc
shown in the hexagon on the top right. The arcs TC.˛0/ and N.˛0/ are
isotopic and so are equal as elements of the fundamental groupoid.

It remains to show that TC.˛0/DN.˛0/. The curve c2g intersects the representative
of ˛0 once and by definition i.ci ; ciC1/D 1. It therefore follows that the product TC
adds a copy of each of the ci to ˛0 . It is shown in Figure 10 that this is in fact equal
to N.˛0/ in the case where g D 1, and, indeed, this is true for any g > 0. It follows
that TC D N as groupoid automorphisms, and hence, they are equal as elements of
Mod.†1g/. The case where k D 2gC 2 is similar to that of 2gC 1. We can use the
groupoid generators shown in Figure 6, right, and the details are left to the reader.

Note that Proposition 5.3 proves Theorem 1.3 in that it completely determines the
image of each braid group generator �i by the homomorphism ˇk .

5.4 Intersection data

In Section 5.3 we saw that half twists lift to .k�1/–chain twists with respect to any
k–sheeted Burau cover where k � 3. We will now explicitly describe a sufficient
combinatorial condition for two chains that implies their chain twists satisfy the braid
relation. We will assume that k � 3 for the remainder of this section.

Bracelets

Let C D fc1; : : : ; ck�1g be a .k�1/–chain and let c0 D TC.ck�1/. We call the set
fci W i 2 Z=kZg a k–bracelet (or a bracelet). Such a bracelet is called the bracelet
completion of the chain C .
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Lemma 5.4 Let C D fc1; : : : ; ck�1g be a chain and fci W i 2 Z=kZg the bracelet
completion of C . Then

(i) i.ci ; cj /D

�
1 if i D j � 1; j C 1;
0 otherwise,

(ii) Tci
TciC1

� � �Tci�2
D TciC1

TciC2
� � �Tci�1

for all i 2 Z=kZ.

Proof Note that Tc0
D Tc1

� � �Tck�1
T �1ck�2

� � �T �1c1
. Any solution to the word problem

for the braid group (Dehornoy’s handle reduction [9] for example) can be used to show
ŒTc0

; Tci
�D 1 if i ¤ 1; k� 1 and Tc0

Tci
Tc0
D Tci

Tc0
Tci

if i D 1; k� 1. This proves
property (i).

For (ii), note Tc0
� � �Tck�2

D Tc1
� � �Tck�1

from the definition of c0 . Suppose now
Tcj � � �Tcj�2

D TcjC1
� � �Tcj�1

for some j 2 Z=kZ. Then

TcjC2
� � �Tcj D T

�1
cjC1

TcjC1
TcjC2

� � �Tcj�1
Tcj

D T �1cjC1
Tcj TcjC1

� � �Tcj�2
Tcj

D Tcj TcjC1
T �1cj TcjC2

� � �Tcj�2
Tcj

D Tcj � � �Tcj�2
;

completing the proof.

Note that property (ii) in Lemma 5.4 implies that a k–bracelet is the completion of any
of the .k�1/–chains obtained by deleting a curve. Abusing notation, suppose C is a
k–bracelet. In light of this fact, define the bracelet twist TC as the chain twist about
any of the .k�1/–chains obtained by deleting a curve from C .

Mesh intersection

Let AD fai W i 2 Z=kZg and B D fbj W j 2 Z=kZg be two k–bracelets. We say A
and B have mesh intersection if there exists t 2 Z=kZ such that

i.ai ; bjCt /D

�
1 if i D j; j C 1;
0 otherwise.

In practice, we may simply relabel the curves in B and assume t D 0.

Fix k � 3 and let ˇk W B3!Mod.†mg / be the embedding of the braid group arising
from the k–sheeted Burau cover. Proposition 5.3 shows that each standard generator
is sent to a .k�1/–chain twist. The proof proceeds by first constructing a set of k
curves, and then arbitrarily discarding one. The set of k curves constructed is in fact the
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a0
c

a2

b0

b1

Figure 11: Two 3–bracelets AD fa0; c; a2g and B D fb0; b1; cg with mesh intersection.

completion of the .k�1/–chain. Furthermore, it can be checked that ˇk sends the two
standard generators to bracelet twists about bracelets with mesh intersection. In fact, in
the discussion following the statement of Proposition 5.6 we will see that if A and B
are two bracelets with mesh intersection such that all 2k curves are distinct, then there
exists a Burau cover that lifts two half twists satisfying a braid relation to TA and TB .
It follows from Theorem 1.1 that TA and TB satisfy the braid relation. By leveraging
the algebraic properties of Dehn twists, we may arrive at the same conclusion without
mention of such a covering space.

Theorem 5.5 If two k–bracelets A and B have mesh intersection then TATBTA D
TBTATB .

Proof By relabelling the curves in B , we may assume t D 0 in the definition of mesh
intersection. We first show that TATBTai

D Tbi
TATB as follows:

TATBTai
D TaiC1

� � �Tai�1
Tbi
� � �Tbi�2

Tai

D TaiC1
Tbi
TaiC2

� � �Tai�1
TbiC1

� � �Tbi�2
Tai

D TaiC1
Tbi
TaiC2

� � �Tai�1
Tai
TbiC1

� � �Tbi�2

D TaiC1
Tbi
TaiC1

� � �Tai�1
TbiC1

� � �Tbi�2

D Tbi
TaiC1

Tbi
TaiC2

� � �Tai�1
TbiC1

� � �Tbi�2

D Tbi
TaiC1

TaiC2
� � �Tai�1

Tbi
TbiC1

� � �Tbi�2

D Tbi
TATB:

The second and third equalities come from the intersection data of curves bi and ai�1 ,
respectively. The fourth equality comes from property (ii) of Lemma 5.4. The fifth and
sixth equalities come from property (i) of Lemma 5.4 applied to B .
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c1

c2

c3
Tc1

.c3/

c2

Figure 12: The triple .c1; c2; c3/ bounds a positively oriented triangle.
The right image shows the bigon between Tc1

.c3/ and c2 , implying
i.Tc1

.c3/; c2/D 0 .

This allows us to achieve the braid relation as follows:

TATBTA D TATBTa0
Ta1
� � �Tak�2

D Tb0
TATBTa1

� � �Tak�2

:::

D Tb0
Tb1
� � �Tbk�2

TATB

D TBTATB:

When k � 4, it can be shown that if two k–bracelets have mesh intersection, then all
2k curves in question are distinct. However, this is not the case when kD 3. Figure 11
shows two 3–bracelets fai W i 2 Z=3Zg and fbi W i 2 Z=3Zg with mesh intersection
such that a1 D b2 .

Intersection data for chains

We now shift our attention to finding a sufficient combinatorial condition for two
.k�1/–chains A and B to have the property that their bracelet completions have mesh
intersection. We will then be able to conclude, by Theorem 5.5, that the two chain
twists TA and TB satisfy a braid relation.

Suppose ˛1 , ˛2 and ˛3 are curves on a surface in minimal position such that i.˛i ; j̨ /D

1 if i ¤ j . The graph given by the three curves defines two triangles and a hexagon on
the surface. Suppose one of the triangles bounds a disk D. We say the triple .˛1; ˛2; ˛3/
bounds a positively oriented triangle if you can traverse @D in a anticlockwise direction
from the intersection point x 2˛1\˛3 and travel along a segment of ˛1 , then a segment
of ˛2 , then a segment of ˛3 in that order and return to x . See Figure 12 for a local
picture of three curves bounding a positively oriented triangle.
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We say a triple .c1; c2; c3/ of isotopy classes of curves bounds a positively oriented
triangle if there exist representatives 
i of ci such that .
1; 
2; 
3/ bounds a positively
oriented triangle.

Note that if .c1; c2; c3/ bounds a positively oriented triangle and � 2S3 is a permutation,
then .c�.1/; c�.2/; c�.3// bounds a positively oriented triangle if and only if � is an
even permutation.

The importance of the definition of a triple bounding a positively oriented triangle is
that if .c1; c2; c3/ bounds a positively oriented triangle, then i.Tc1

.c3/; c2/D 0. This
can be seen in Figure 12.

Proposition 5.6 Suppose A D fa1; : : : ; ak�1g and B D fb1; : : : ; bk�1g are two
.k�1/–chains with the property that

(i) i.ai ; bj /D

�
1 if i D j; j C 1;
0 otherwise,

(ii) the triples .ai ; bi ; aiC1/ and .bi ; aiC1; biC1/ bound positively oriented triangles
for all i 2 f1; : : : ; k� 2g.

Then the chain twists TA and TB satisfy a braid relation.

If each of the 2k�2 curves in A and B are distinct then we may view them as depicted
in Figure 13.

Defining †mg to be the regular neighbourhood of the curves and triangles, it can be
seen that m D gcd.3; k/. Furthermore, an Euler characteristic argument shows that
gD k�2 if mD 3 and gD k�1 if mD 1. These are precisely the values of m and g
that give rise to a k–sheeted Burau cover pk W †mg ! †10 with three branch points.
By using a variation of the change of coordinates principle (see [11, Section 1.3.2])
we may conclude that TA and TB are lifts of half twists that satisfy a braid relation.
Hence, from Theorem 1.1 we conclude that TA and TB satisfy a braid relation.

Unlike the discussion above, the following proof of Proposition 5.6 does not make use
of the Birman–Hilden theorem. As such, it provides a more intrinsic perspective of
chain twists satisfying a braid relation, and deals with the case when the curves in A
and B are not distinct.

Proof of Proposition 5.6 Let a0DTA.ak�1/ and b0DTB.bk�1/. To ease notation let
�D Tb1

� � �Tbk�2
and r D Tb2

� � �Tbk�1
. Note that Tb0

D�Tbk�1
��1 Dr�1Tb1

r .
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Figure 13: Intersecting circles describing two 5–chains satisfying the con-
ditions of Proposition 5.6. The regular neighbourhood of this collection of
curves and triangles is homeomorphic to †34 .

By Theorem 5.5 it suffices to show

i.a0; bj /D

�
1 if j D 0; k� 1;
0 otherwise

and i.ai ; b0/D

�
1 if i D 0; 1;
0 otherwise.

Let i¤0;1. Since .bj ;ajC1;bjC1/ bounds a positively triangle for all j 2f1; : : : ;k�2g,
we have i.Tbj

.bjC1/; ajC1/ D 0 so ŒTbj
TbjC1

T �1
bj
; TajC1

� D 1. Rearranging and
relabelling, we get

T �1bi
T �1bi�1

Tai
Tbi�1

Tbi
D T �1bi�1

Tai
Tbi�1

for all i ¤ 0; 1. We have

ŒTb0
; Tai

�D�Tbk�1
��1Tai

�T �1bk�1
��1T �1ai

D�Tbk�1
T �1bk�2

� � �T �1biC1
T �1bi

T �1bi�1
Tai

Tbi�1
Tbi
TbiC1

� � �Tbk�2
T �1bk�1

��1T �1ai

D�Tbk�1
T �1bk�2

� � �T �1biC1
T �1bi�1

Tai
Tbi�1

TbiC1
� � �Tbk�2

T �1bk�1
��1T �1ai

D Tb1
� � �Tbi�1

Tbi
T �1bi�1

Tai
Tbi�1

T �1bi
T �1bi�1

� � �T �1b1
T �1ai

D Tb1
� � �Tbi�1

T �1bi�1
Tai

Tbi�1
T �1bi�1

� � �T �1b1
T �1ai

D Tb1
� � �Tbi�2

Tai
T �1bi�2

� � �T �1b1
T �1ai

D 1:

Therefore i.ai ; b0/D 0. When i D 1 we have

Ta1
Tb0

Ta1
D Ta1

r
�1Tb1

rTa1

Dr
�1Ta1

Tb1
Ta1
r

D r
�1Tb1

Ta1
Tb1
r

D r
�1Tb1

rTa1
r
�1Tb1

r

D Tb0
Ta1

Tb0
;

so i.a1; b0/ D 1. Similar arguments show i.a0; bj / D 0 for j ¤ 0; k � 1 and
i.a0; bk�1/D 1.
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It remains to show i.a0; b0/D 1. We have

Ta0
Tb0

Ta0
D Ta0

�Tbk�1
��1Ta0

D�Ta0
Tbk�1

Ta0
��1

D�Tbk�1
Ta0

Tbk�1
��1

D�Tbk�1
��1Ta0

�Tbk�1
��1

D Tb0
Ta0

Tb0
;

completing the proof.

See Figure 2 for two 3–chains on †13 satisfying the conditions of Proposition 5.6. The
positively oriented triangles are shaded in grey.

5.5 Open questions

Here are a few natural questions relating to the braid group embeddings constructed
above. Recall that for each k � 3 and n � 2 we have constructed an embedding
ˇk W Bn ,!Mod.†mg / arising from the k–sheeted Burau cover. Here, mD gcd.n; k/
and g D 1� 1

2
.kCnCm�nk/.

Necessity of mesh intersection

When two simple closed curves a and b on a surface intersect once, then Ta and Tb
satisfy a braid relation. In fact, this condition is necessary. That is, TaTbTa D TbTaTb
if and only if i.a; b/D 1 (see [11, Section 3.5]). The next question asks the analogous
question for chain twists.

Question 5.7 Suppose A and B are k–chains for k � 2, and let TA and TB be the
corresponding chain twists. Is it true that if TATBTA D TBTATB , then the bracelet
completions of A and B have mesh intersection?

Automorphisms of free groups

For a surface † with nonempty boundary, there is a homomorphism Mod.†/ !
Aut.�1.†// given by the action of Mod.†/ on the fundamental group of † with a
basepoint on the boundary. For a surface of genus g and m boundary components,
�1.†

m
g /Š F2gCm�1 . Precomposing with the braid group embeddings above, we get

an induced homomorphism from the braid group into the automorphism group of a
free group.
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Question 5.8 Let k � 3. For each n � 2 there is a homomorphism �n;k W Bn !

F.n�1/.k�1/ . What can be said about this family of homomorphisms? Do they give
rise to new embeddings of the braid group in Aut.Fn/?

Triviality of the induced map on stable homology

There is a geometric embedding B2g ,! Mod.†1g/ for each g . This family of em-
beddings gives a map from B1 D limg!1B2g to �1 D limg!1Mod.†1g/. In the
1980s J Harer conjectured that the induced map on stable homology H�.B1IZ=2Z/!
H�.�1IZ=2Z/ is trivial. The conjecture was proved by Song and Tillman in [24,
Theorem 1.1]. A stronger version of Harer’s conjecture was proved for a large family
of nongeometric embeddings of the braid group in [5].

Question 5.9 Fix k > 3. Is there a version of Harer’s conjecture that is true with
respect to the embeddings ˇk W Bn ,!Mod.†mg /?

Note that this question is answered affirmatively for stable homology with any coeffi-
cients when k D 3 by Kim and Song [16, Theorem 3.4].

Classifying braid embeddings

There are now infinite families of nongeometric embeddings of braid groups in mapping
class groups.

Question 5.10 Is there a classification of all possible conjugacy classes of embeddings
of the braid group in the mapping class group?

The proof of Theorem 5.5 suggests a way to construct more examples, as follows:

Suppose we have two subsets of mapping classes f�ig and f�ig indexed by Z=kZ

such that

�i�j D

�
�j�i�j�

�1
i if j D i � 1; i C 1;

�j�i otherwise,

�i�j D

�
�j �i�j �

�1
i if j D i � 1; i C 1;

�j �i otherwise.

Suppose further that

�i�j D

�
�j�i�j�

�1
i if i D j; j C 1;

�j�i otherwise,
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and for any i 2 Z=kZ we have

ˆ WD �i � � ��i�2 D �iC1 � � ��i�1 and ‚ WD �i � � � �i�2 D �iC1 � � � �i�1:

Then the products ˆ and ‚ satisfy the braid relation, that is, ˆ‚ˆD‚ˆ‚.

We conjecture however, that this is only possible when each �i and �i is a Dehn twist
and the corresponding sets of curves are bracelets with mesh intersection. There is no
particular reason to assume otherwise, except to satisfy our own insatiable desire for
pattern.
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