ERRATUM TO LIFTABLE MAPPING CLASS GROUP OF BALANCED SUPERELLIPTIC COVERS

TYRONE GHASWALA AND REBECCA R. WINARSKI

There is an error in the statement (but not the proof) of Lemma 6.3. It should be as follows.

Lemma 6.3. In the abelianization of G_n , $B^{n^2} = A^{-n^2-n}$.

This typo has a follow-on effect for the rest of the paper. The statement of Lemma 6.5 should be as follows, although the proof still holds as written.

Lemma 6.5. The abelianization $G_n/[G_n, G_n]$ admits the presentation

$$\left\langle a, d, A, B \mid B^{n^2 - n} = A^{1 - n^2}, B^{n^2} = A^{-n^2 - n}, a^2 = B, d^2 = A^{n+1}, \mathcal{T} \right\rangle$$

where $a = \phi(a_1)d = \phi(c), A = \phi(A_{12}), B = \phi(A_{13}), and \mathcal{T}$ is the set of all commutators.

Theorem 1.1 now has a different statement and proof, which we present now.

Theorem 1.1. Let $k \ge 3$. Then

$$H_1(\mathrm{LMod}_{g,k}(\Sigma_0,\mathcal{B})) \cong \begin{cases} \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z} & \text{if } n \text{ is odd,} \\ \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z} & \text{if } n \text{ is even.} \end{cases}$$

Proof. Replacing the generator B with a^2 gives the presentation

$$\langle a, d, A \mid a^{2n^2 - 2n} = A^{1 - n^2}, a^{2n^2} = A^{-n^2 - n}, d^2 = A^{n+1}, \mathcal{T} \rangle$$

for $G_n/[G_n, G_n]$. This presentation has presentation matrix

$$\begin{bmatrix} 2 & -n-1 & 0\\ 0 & n^2-1 & 2n^2-2n\\ 0 & n^2+n & 2n^2 \end{bmatrix}.$$

If n is odd we can perform row and column operations below to obtain the Smith normal form:

 $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Therefore $G_n/[G_n, G_n] \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}$. If *n* is even, the Smith normal form will be:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Therefore $G_n/[G_n, G_n] \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}$.

Of course, the correct statement of Theorem 1.1 implies the following correct statement of Theorem 1.2.

Theorem 1.2. The abelianization of the balanced superelliptic mapping class group $H_1(\mathrm{SMod}_{g,k}(\Sigma_g);\mathbb{Z})$ is an infinite non-cyclic abelian group. Furthermore, the first Betti number of $\mathrm{SMod}_{g,k}(\Sigma_g)$ is 1.

We would like to thank Michael Lönne for pointing out the error in Lemma 6.3 and the subsequent incongruence in results.

References

 Tyrone Ghaswala and Rebecca R. Winarski. The liftable mapping class group of superelliptic covers. New York Journal of mathematics, 23:133–164, 2017.