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Lifting Homeomorphisms and Cyclic Branched Covers
of Spheres

Tyrone Ghaswala & Rebecca R. Winarski

Abstract. We characterize the cyclic branched covers of the 2-sphere
where every homeomorphism of the sphere lifts to a homeomorphism
of the covering surface. This answers the question that appeared in an
early version of the erratum of Birman and Hilden [2].

1. Introduction

Let � be a closed orientable surface. Let p : � → �0 be a cyclic branched cover-
ing space of the sphere �0. We assume that all homeomorphisms of �0 preserve
the set of branch points. For brevity, we say that a homeomorphism f of �0 lifts
if there exists a homeomorphism f̃ of � such that pf̃ = fp.

The 2-fold cover � → �0 induced by the hyperelliptic involution of � is of
interest in the study of low-dimensional topology (see, e.g., Brendle, Margalit, and
Putman [3], Johnson and Schmoll [6], and Morifuji [7]) and algebraic geometry
(see, e.g., Gorchinskiy and Viviani [4] and Hidalgo [5]). In this 2-fold covering
space, every homeomorphism of �0 lifts. However, it is not true in general that
every homeomorphism of �0 lifts to a homeomorphism of the covering surface.

We answer the question that appeared in an early version of [2].

Question (Birman–Hilden). Let � be a closed orientable surface, and �0 a 2-
sphere. For which cyclic branched covering spaces of the sphere � → �0 does
every homeomorphism of �0 lift?

Let �◦
0 denote a sphere with punctures, and x0 ∈ �◦

0 . Each characteristic sub-
group of π1(�

◦
0 , x0) corresponds to a branched covering space of �0 where every

homeomorphism lifts. However, cyclic subgroups of π1(�
◦
0 , x0) are rarely char-

acteristic in π1(�
◦
0 , x0). In fact, in the case of the hyperelliptic involution, the

corresponding subgroup of π1(�
◦
0, x0) is not characteristic, but all homeomor-

phisms of �0 lift.
Let A be a finite Abelian group. An admissible k-tuple is a tuple (a1, . . . , ak) ∈

(A \ {0})k such that
∑k

i=1 ai = 0 and {a1, . . . , ak} is a generating set for A. An
admissible k-tuple defines a cyclic covering space over a punctured sphere as
follows.

Let �0,k be a sphere with k punctures, and fix an enumeration of the punc-
tures. Let xi be the homology class of a loop surrounding the ith puncture that is
oriented counterclockwise. The homomorphism φ : H1(�0,k;Z) → A defined by
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φ(xi) = ai is surjective and therefore determines a regular cover of �0,k with deck
group A. By filling in the punctures we obtain a regular branched cover of �0.

Theorem 1.1. Let A be a finite cyclic group, and (a1, . . . , ak) an admissible k-
tuple. Let � → �0 be the cyclic branched cover of the sphere with deck group A

and k branch points defined by the admissible tuple. Every homeomorphism of �0
lifts if and only if one of the following is true:

• There is an isomorphism δ : A → Z/nZ with k ≡ 0 mod n such that δ(ai) = 1
for all i.

• k = 2, and there is an isomorphism δ : A → Z/nZ for some n ≥ 3 such that
δ(a1) = 1 and δ(a2) = −1.

The 2-fold cover induced by the hyperelliptic involution is defined by the admis-
sible tuple (1, . . . ,1) with deck group equal to Z/2Z. Our theorem provides an
alternative proof that for the cover induced by the hyperelliptic involution, every
homeomorphism lifts.

Superelliptic Curves: Choose distinct points z1, . . . , zt ∈ C. Any cyclic
branched cover of the sphere can be modeled by an irreducible plane curve C

of the form
yn = (x − z1)

a1 · · · (x − zt )
at (1)

for some n ≥ 2 and integers 1 ≤ ai ≤ n − 1. Indeed, let C̃ be the normalization of
the projective closure of the affine curve C. Projection onto the x axis gives an n-
sheeted cyclic branched covering C̃ → P

1 that is branched at each zi and possibly
at infinity. There is branching at infinity if and only if

∑t
i=1 ai �≡ 0 mod n.

A cyclic branched covering space defined by (1) has a deck group A ∼= Z/nZ.
Such a cover is defined by the admissible tuple (a1, . . . , at ) if there is no branch-
ing at infinity. If there is a branch point at infinity, then the cover is defined by
(a1, . . . , at ,−∑t

i=1 ai) [8, Ch. 2]. The irreducibility of C ensures that {ai} form
a generating set for A. We have an immediate corollary of Theorem 1.1.

Corollary 1.2. Let C̃ → P
1 be a cyclic branched cover defined by an irre-

ducible superelliptic curve as in equation (1). Then every homeomorphism of P1

lifts if and only if one of the following is true:

• a1 = · · · = at and t ≡ 0 or −1 mod n,
• n ≥ 3 and t = 1, or
• n ≥ 3, t = 2, and a1 ≡ −a2 mod n.

A cover where not all homeomorphisms lift: We may represent a genus 2 sur-
face �2 as a 10-gon with sides identified as in Figure 1. A counterclockwise
rotation by 2π/5 of the 10-gon induces an action of Z/5Z on �2. The resulting
quotient space is homeomorphic to a sphere. The quotient map is a branched cov-
ering map �2 → �0 branched at three points. The preimages of the branch points
in the 10-gon are the center and two distinct orbits of vertices under rotation. The
cover corresponds to the admissible tuple (1,1,3) with the deck group equal to
Z/5Z. Therefore, by Theorem 1.1, not all homeomorphisms of �0 lift.



Lifting Homeomorphisms and Cyclic Branched Covers of Spheres 887

a1

a5

a2
a1

a3

a2

a4
a3

a5

a4

Figure 1 A rotation by 2π/5 generates an action of Z/5Z on �2

Application to the mapping class group: Let X be an orientable surface pos-
sibly with marked points. The mapping class group of X, denoted Mod(X), is the
group of orientation-preserving homeomorphisms of X that preserve the set of
marked points up to isotopies that preserve the set of marked points.

Let � be a surface, and � → �0 be a cyclic branched cover with deck group A.
The symmetric mapping class group of �, denoted SMod(�), is the subgroup of
Mod(�) comprised of isotopy classes of fiber-preserving homeomorphisms of
�. By work of Birman and Hilden [1, Theorem 3], the quotient SMod(�)/A

is isomorphic to a finite-index subgroup of Mod(�0). When the conditions of
Theorem 1.1 are satisfied, SMod(�)/A is isomorphic to Mod(�0). This gives us
the following corrected statement of Theorem 5 in [1].

Theorem 1.3. Let A be a finite cyclic group, and (a1, . . . , ak) an admissible k-
tuple. Let � → �0 be the cyclic branched cover of the sphere with deck group A

and k branch points defined by the admissible tuple. The quotient SMod(�)/A

is isomorphic to Mod(�0) if there is an isomorphism δ : A → Z/nZ with k ≡ 0
mod n such that δ(ai) = 1 for all i and (n, k) is not equal to (2,2), (2,4), or
(3,3).

Theorem 5 from [1] requires that � is hyperbolic. In the statement of Theo-
rem 1.3, we have excluded the cases from Theorem 1.1 where � is not hyperbolic.

2. Proof of Main Theorem

Let �0,k be a 2-sphere with k punctures. Any finite sheeted regular cover with
base space �0,k and Abelian deck group A is determined by a surjective ho-
momorphism φ : H1(�0,k;Z) → A. The homomorphism φ is unique up to an
automorphism of A.

Reduction to the unbranched case: A branched cover � → �0 with k branch
points induces a cover of �0,k by removing the branch points and their preimages
in �. Conversely, a cover of �0,k can be completed to a branched cover where
each puncture is filled with a branch point. We will restrict homeomorphisms of
�0 to �0,k and extend homeomorphisms of �0,k to homeomorphisms of �0 when
it is convenient.
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Fix an enumeration of the punctures and let xi be the homology class of
a loop surrounding the ith puncture that is oriented counterclockwise. Each
xi ∈ H1(�0,k;Z) is supported on a neighborhood of the ith puncture. Let f be
a homeomorphism of �0,k . The automorphism f∗ of H1(�0,k,Z) is determined
by the permutation induced by f on the punctures of �0,k . Indeed, let σ ∈ Sk be
the permutation induced by f . If f is orientation preserving, then f∗(xi) = xσ(i).
If f is orientation reversing, then f∗(xi) = −xσ(i).

Recall that an admissible k-tuple defines a surjective homomorphism φ :
H1(�0,k;Z) → A by φ(xi) = ai and therefore defines a branched cover of �0.
Another admissible k-tuple (a′

1, . . . , a
′
k) determines an equivalent covering space

if and only if there is an automorphism ψ ∈ Aut(A) such that ψ(ai) = a′
i for all i.

Lemma 2.1. Let A be a finite Abelian group, and (a1, . . . , ak) an admissible
k-tuple. Let � → �0,k be the covering space defined by this tuple. Let f be a
homeomorphism of �0,k , and let σ ∈ Sk be the permutation of the punctures in-
duced by f . The homeomorphism f lifts if and only if there is an automorphism
ψ ∈ Aut(A) such that ψ(ai) = aσ(i) for all i.

Proof. Let φ : H1(�0,k;Z) → A be the homomorphism defining the cover and
defined by φ(xi) = ai . Let f∗ be the automorphism of H1(�0,k;Z) induced by f .
We use the following facts:

(1) The equality f∗(ker(φ)) = ker(φ) holds if and only if ker(φf∗) = ker(φ).
(2) Let f,g : G → A be surjective homomorphisms. Then ker(f ) = ker(g) if and

only if f = ξg for some ξ ∈ Aut(A).

We omit the proofs of these facts.
The homeomorphism f lifts if and only if f∗(ker(φ)) = ker(φ). Therefore

by fact (1), f lifts if and only if ker(φf∗) = ker(φ). By fact (2), f lifts if and
only if there exists an automorphism ψ ∈ Aut(A) such that φf∗ = ψφ. If f is
orientation preserving, then aσ(i) = φf∗(xi) = ψφ(xi) = ψ(ai) for all i, and the
result follows.

The map a �→ −a is an automorphism of an Abelian group. If f is orientation
reserving, then we compose a �→ −a with the automorphism ψ in the orientation-
preserving case. �

Lemma 2.2. Let A be a finite cyclic group, and let (a1, . . . , ak) be an admissible
tuple. For every permutation σ ∈ Sk , there exists ψ ∈ Aut(A) such that ψ(ai) =
aσ(i) for all i if and only if one of the following is true:

• There is an isomorphism δ : A → Z/nZ with k ≡ 0 mod n such that δ(ai) = 1
for all i.

• k = 2, and there is an isomorphism δ : A → Z/nZ for some n ≥ 3 such that
δ(a1) = 1 and δ(a2) = −1.

Proof. For the forward direction, first suppose that all ai are equal. Then each ai is
a generator of A, and there is an isomorphism δ : A → Z/nZ such that δ(ai) = 1
for all i. The condition

∑k
i=1 ai = 0 implies that k ≡ 0 mod n.
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Suppose now that the ai are not all equal. Then they must all be distinct. In-
deed, assume to the contrary that there exist three distinct elements ap , aq , ar of
the admissible tuple such that ap = aq �= ar . Let σ ∈ Sk be the transposition that
switches q and r . By assumption there exists ψ ∈ Aut(A) such that ψ(ai) = aσ(i)

for all i. Therefore ap = ψ(ap) = ψ(aq) = ar , which is a contradiction.
We may therefore assume the ai are distinct. Then there is a subgroup of

Aut(A) isomorphic to the symmetric group Sk . Since the automorphism group
of a cyclic group is abelian, it must be that k = 2. Since k = 2, we have that
a1 = −a2 with a1 a generator of A. Since a1 and a2 are distinct, |A| ≥ 3. There-
fore the map δ : A → Z/nZ with δ(a1) = 1 and δ(a2) = −1 is an isomorphism
when n = |A|.

For the converse, we must write down an appropriate automorphism for each
permutation σ ∈ Sk . In the case that δ(ai) = 1 for all i, the identity automorphism
suffices for all permutations. In the case where k = 2, δ(a1) = 1, and δ(a2) = −1,
the automorphism a �→ −a of A suffices for the nontrivial permutation. �

We now prove the main result.

Proof of Theorem 1.1. Any permutation of the branch points can be induced by a
homeomorphism of the sphere. Therefore, the result follows by combining Lem-
mas 2.1 and 2.2. �
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