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1 Introduction

Fermat surfaces have long since been an object of geometric and arithmetic interest. Since the
15th century when Pierre de Fermat found columns too restricting to fully write down his truly
marvellous proof of what would become known as Fermat’s last theorem, people have been
fascinated with answering the question of how many strictly positive integer points there are on
the curve xn+yn−zn = 0 for n > 2. We now know, thanks to Andrew Wiles, that the answer is
indeed 0. Other than Fermat’s last theorem, there has been an effort made to understand other
Fermat surfaces; for example, we know that there are exactly 27 distinct lines on the Fermat
cubic surface x3 + y3 + z3 + w3 = 0.

In this paper, we will be interested in the 4-dimensional manifolds given by the Fermat
hypersurface

Sd := {[z0 : z1 : z2 : z3] ∈ CP3 :
3∑
i=0

zdi = 0} ⊂ CP3.

We wish to understand some of the topological structure of this family of complex surfaces by
explicitly writing down their intersection forms. The ultimate goal of this paper is to prove
theorem 7.6, following the method in [GS99, theorem 1.3.8]. On the way there, we will take a
scenic route to build up the required machinery and intuition, and we will be taking a few stops
along the way to take in the view.

In section 2 we will give a short recap of some assumed knowledge in homology and coho-
mology theory, and we will set some conventions about notation.

Once these foundations have been set, section 3 will take two fundamental theorems in
algebraic topology, the Poincaré Duality Theorem and the Universal Coefficient Theorem, and
apply them to the specific case of closed, oriented 4-manifolds. We will see in lemma 3.5 that
the only torsion in any of the homology and cohomology modules comes from H1(X;Z), so
things become wonderful in the case that X is simply connected.

Section 4 will bring with it the definition of the intersection form for 4-manifolds. We will
build up the theory of symmetric bilinear forms over finitely generated Z-modules, with the goal
of the section to prove the classification theorem for indefinite unimodular forms, lemma 4.11.
Along the way, lemma 4.3 will show that every intersection form QX on a closed 4-manifold X
is unimodular.

We will then make an excursion in section 5 to the land of intersection theory. This section is
intended to build intuition in thinking of the cup product as dual to the geometric intersection
of submanifolds, and we will define the intersection product on homology to do so. In this
section we will also define the Euler class of a vector bundle and show that the name is not
purely coincidental, exposing in lemma 5.2 the close link between the Euler class of the tangent
bundle of a manifold and its Euler characteristic.

The Chern, Pontrijagin and Stiefel-Whitney classes will be defined in section 6, complet-
ing the array of characteristic classes needed to perform the required calculations in the final
section. We will calculate the total Chern class of CPn in lemma 6.1 and will also explore the
hyperplane bundle O(1), writing down its first Chern class as the Poincaré dual of a hyperplane
in proposition 6.2. Lemma 6.6 and corollary 6.9 are the main results of this section, giving us
the link between the characteristic classes of the tangent bundle of a 4-manifold X, and the
rank, signature and parity of the intersection form QX .

Finally, section 7 will bring the paper to a conclusion, bringing together all the pieces and
machinery that have been built up so far. We will prove the main theorem, theorem 7.6, giving
us an explicit description of the intersection forms for Sd.

Of course, this project would not have been possible without the help, guidance and en-
couragement from a large group of people. First and foremost, acknowledgements must go to
the plethora of mathematicians who laid the foundations for the material in this paper. In
particular, thanks must go to Robert Gompf and András Stipsicz for providing the statement
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and proof of the main theorem of this paper in [GS99]. I am extremely grateful to John Milnor
for his inspiring and enlightening expositions, along with James Stasheff and Dale Husemoller
in [Mil63], [MS74] and [MH73]. Thanks must also go to Alexandru Scorpan, who provides an
intuitive and entertaining exposition of 4-manifolds in [Sco05], and also to Marvin Greenberg
and John Harper, who provided the reference [GH81] from which I obtained the vast majority
of my knowledge of singular homology and cohomology. A massive thank you goes to the au-
thors of the classic books, Glen Bredon ([Bre93]), Raoul Bott and Loring Tu ([BT82]), Phillip
Griffiths and Joseph Harris ([GH78]), Allen Hatcher ([Hat02]), John Lee ([Lee03]), and Igor
Shafarevich ([Sha94]), for their ever reliable and comprehensive references.

I must also thank everyone in the Pure Mathematics department at the University of Wa-
terloo for an incredibly warm, friendly, fun and productive environment in which to do my
Master’s. I have never been surrounded by so many fantastic and inspiring teachers as I have
been over this past year in Waterloo. I am indebted to my fellow grad students, especially
Robert Garbary who is always willing to help me out when I was stuck on just about anything,
Adam Fuller and Ryan Hamilton who were both never short of advice and mentorship for me,
and my Master’s counterparts Ian Payne and Matt Wiersma who are an indispensable source
of company, support and sanity, as well as a healthy source of competition and entertainment.

Last but certainly not least, I am forever grateful for my supervisors David McKinnon and
Doug Park. They have far exceeded my expectations as supervisors, and are a seemingly endless
source of guidance and wisdom. I have always looked forward to my weekly meetings with them
and am greatly anticipating working with both of them for my PhD.

2 Notation, Conventions and Assumptions

For this paper, a manifold will always be connected and a closed manifold is one which is compact
and has no boundary. We will be assuming that the reader is comfortable with real and complex
vector bundles, especially the tangent bundle of a manifold, the pullback of a bundle and the
Whitney sum of two bundles. If you are not, [Lee03, §4-6] and [MS74, §2, §3] are both fantastic
for learning about vector bundles. We will also be assuming a reasonable grasp on singular
homology and cohomology of a manifold. If you feel your grasp is unreasonable, both [Hat02]
and [GH81] are excellent resources.

We know that for any orientable n-manifold M , the homology module Hn(M,∂M ;Z) is
isomorphic to Z and we make the following standard definition.

Definition. An orientation on the manifold is a choice of generator for this module, which we
call the fundamental class and denote it [M ] ∈ Hn(M,∂M ;Z).

Note that complex manifolds are always orientable and have a canonical orientation coming
from the biholomorphic maps patching the charts together.

The Kronecker product will be given by

〈 , 〉 : H i(M ;Z)×Hi(M ;Z) −→ Z

and the cup and cap products,

∪ : H i(M ;Z)×Hj(M ;Z) −→ H i+j(M ;Z) and

∩ : H i(M ;Z)×Hj(M ;Z) −→ Hj−i(M ;Z),

will be written such that 〈a ∪ b, x〉 = 〈a, b ∩ x〉.
Throughout the paper, whenever we are referring to a 4-dimensional manifold, it will be

denoted X, and when we are referring to a general manifold, it will be denoted M . I promise
to try my very hardest to stick to this convention.
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3 Poincare Duality and the Universal Coefficient Theorem

In this section we will state the Poincaré Duality Theorem and the Universal Coefficient Theorem
without proof, together with some of the important consequences, and apply them to the case
of 4-manifolds. These two important theorems in algebraic topology will give us the required
machinery to explicitly write down the relations between the homology and cohomology modules
of compact, oriented 4-manifolds.

Theorem 3.1 (Poincaré Duality). Let M be an oriented compact n-dimensional manifold. The
map

∩[M ] : Hk(M ;Z) −→ Hn−k(M ;Z)

a 7−→ a ∩ [M ]

is an isomorphism for all k. We will denote the inverse map by PD : Hk(M ;Z)→ Hn−k(M ;Z),
that is for an element x ∈ Hk(M ;Z), PD(x) ∈ Hn−k(M ;Z) is such that PD(x) ∩ [M ] = x.

For non-compact manifolds, the same theorem applies except the isomorphism is given by

∩[M ] : Hk
c (M ;Z) −→ Hn−k(M ;Z)

where Hk
c (M ;Z) = lim−→

K compact

Hk(M,M \K;Z) is the cohomology module with compact supports

(see [GH81, p. 215] and [Hat02, p. 245]). For our purposes however, we are only concerned with
the compact case. An important corollary of Poincaré duality and the fact that all compact
manifolds can be embedded in Euclidean space is the following [GH81, p. 228].

Corollary 3.2. The homology modules of a compact manifold are finitely generated.

Because of this result, from here on in all modules in this paper will be assumed to be finitely
generated. Now for the Universal Coefficient Theorem for cohomology [Hat02, p. 193].

Theorem 3.3 (Universal Coefficient Theorem). Let G be a Z-module. Then

0 −→ Ext(Hk−1(M ;Z), G) −→ Hk(M ;G) −→ HomZ(Hk(M ;G),Z) −→ 0

is a split exact sequence, where Ext is the derived functor of the Hom functor. The surjection
α : Hk(M ;G) −→ HomZ(Hk(M ;G),Z) is given by α(a) = 〈a, 〉 .

The construction of Ext will not be included here, but the important property of Ext is
that Ext(H,Z) is isomorphic to the torsion submodule of H when H is a finitely generated
Z-modules [Hat02, p. 196]. We will be interested in the case where G = Z and before we focus
on the 4-dimensional case, we will first prove the following algebraic lemma.

Lemma 3.4. If H is a finitely generated Z-module, then HomZ(H,Z) is isomorphic to the free
submodule of H.

Proof. Write H = F ⊕ T where F ∼= Z⊕n, that is the direct sum of Z with itself n times,
and T is the torsion submodule of H. First observe that if t ∈ T and a ∈ HomZ(H,Z), then
a(t) = 0 since mt = 0 for some m ∈ Z>0 and thus a(mt) = m(a(t)) = 0. Now consider a module
homomorphism

φ : H −→ HomZ(H,Z)

and first we will see that T ⊂ kerφ for any homomorphism.
Let t ∈ T so mt = 0 for some m ∈ Z>0 and assume φ(t) 6= 0 ∈ HomZ(H,Z). This means

φ(t)(b) 6= 0 for some b ∈ H, but φ(mt)(b) = φ(0)(b) = 0 ⇒ m(φ(t)(b)) = 0 and since m 6= 0,
φ(t)(b) = 0, a contradiction. Therefore T ⊂ kerφ.
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Now let {e1, . . . , en} be generators of each of the Z summands of F and let e∗i ∈ HomZ(H,Z)
be such that e∗i (ej) = δij . Define φ(ei) := e∗i , φ(t) = 0 for t ∈ T and extend linearly. From this
definition we have that kerφ = T . To see φ is surjective, consider an element a ∈ HomZ(H,Z)
and since a(t) = 0 for any t ∈ T , we know a is entirely determined by how it acts on F ,
and therefore how it acts on ei for all i. From this we see that {e∗1, . . . , e∗n} generates all of
HomZ(H,Z) and we conclude that HomZ(H,Z) ∼= H/T ∼= F . �

With this lemma out of the way, let us now turn out attention to the homology and co-
homology modules of a closed, oriented 4-manifold X. We know that the homology modules
are finitely generated, so write Hi(X;Z) ∼= Fi ⊕ Ti where Fi ∼= HomZ(Hi(X;Z),Z) is the free
part and Ti ∼= Ext(Hi(X;Z),Z) is the torsion submodule. The following lemma is from [Sco05,
p. 15].

Lemma 3.5. Let X be a closed, oriented 4-dimensional manifold. The homology and cohomol-
ogy modules are given as follows.

H0(X;Z) ∼= Z H0(X;Z) ∼= Z
H1(X;Z) ∼= F1 ⊕ T1 H1(X;Z) ∼= F1

H2(X;Z) ∼= F2 ⊕ T1 H2(X;Z) ∼= F2 ⊕ T1

H3(X;Z) ∼= F1 H3(X;Z) ∼= F1 ⊕ T1

H4(X;Z) ∼= Z H4(X;Z) ∼= Z.

Proof. SinceX is connected, closed and oriented, H0(X;Z) ∼= Z andH4(X, ∂X;Z) = H4(X;Z) ∼=
Z, and by Poincaré duality, H4(X;Z) ∼= Z and H4(X;Z) ∼= Z. Since the sequence in the uni-
versal coefficient theorem splits (theorem 3.3), we have

H i(X;Z) ∼= Ext(Hi−1(X;Z),Z)⊕HomZ(Hi(X;Z),Z) ∼= Ti−1 ⊕ Fi.

Putting this together with Poincaré duality we get

H3(X;Z) ∼= F3 ⊕ T2
∼= F1 ⊕ T1

∼= H1(X;Z)

H2(X;Z) ∼= F2 ⊕ T1
∼= F2 ⊕ T2

∼= H2(X;Z)

H1(X;Z) ∼= F1 ⊕ T0
∼= F3 ⊕ T3

∼= H3(X;Z)

which gives us that T1
∼= T2, T3

∼= T0
∼= {0} and F1

∼= F3 by comparing torsion and free
submodules. We now have

H0(X;Z) ∼= Z
H1(X;Z) ∼= F1 ⊕ T1

H2(X;Z) ∼= F2 ⊕ T1

H3(X;Z) ∼= F1

H4(X;Z) ∼= Z

and the cohomology modules follow from Poincaré duality. �

An important thing to notice here is that the only torsion anywhere to be seen comes from
H1(X;Z). We know that π1(X)/[π1(X), π1(X)] ∼= H1(X;Z) so if π1(X) ∼= {0}, T1

∼= {0} and
we have the following immediate corollary in the simply connected case.

Corollary 3.6. Let X be a simply connected, closed, oriented 4-manifold. Then

Hi(X;Z) ∼= H4−i(X;Z) ∼= H i(X;Z) ∼= H4−i(X;Z)

for all i and all of the homology and cohomology modules are torsion free.
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4 Intersection Forms

We now shift our attention to intersection forms on closed, orientable 4-manifolds. For a closed,
orientable 4-manifold X, we can define a bilinear form on H2(X, ∂X;Z) = H2(X;Z) as follows.

Definition. Let X be a closed, orientable 4-manifold. Define the intersection form QX as

QX : H2(X;Z)×H2(X;Z) −→ Z
(a, b) 7−→ 〈a ∪ b, [X]〉 ,

where [X] ∈ H4(X;Z) is the fundamental class of X.

Note that since 2 is even, a ∪ b = b ∪ a for all a, b ∈ H2(X, ∂X;Z), so QX(a, b) = QX(b, a).
Additionally, since the cup product and the Kronecker product are both bilinear, we have that
QX is a symmetric bilinear form.

The intersection form can just as easily be defined for compact, orientable 4-manifolds on
H2(X, ∂X;Z)×H2(X, ∂X;Z), which is how it is defined in [GS99, p. 7], but for our purposes,
we will only be dealing with closed manifolds.

It is worth remarking that the name intersection form comes from the fact that if X is
closed, then every class α ∈ H2(X;Z) can be represented by an embedded surface Σα, that
is α = i∗[Σα] where i : Σα → X is the inclusion map. Now consider a, b ∈ H2(X;Z) with
poincare duals α, β and their embedded representative surfaces Σα,Σβ respectively. If Σα and
Σβ are chosen so that they intersect transversally then they will intersect at distinct points
since the codimension of both embeddings is 2 and thus the codimension of the intersection will
be 4. QX(a, b) is then equal to the number of points in Σα ∩ Σβ counted with sign. For a full
treatment of this see [GS99, Prop. 1.2.3].

Now since X is compact, Poincaré duality tells us that H2(X;Z) ∼= H2(X;Z), so we can
also define QX on H2(X;Z)×H2(X;Z) as

QX(c, d) := 〈PD(c) ∪ PD(d), [X]〉

where PD(c) ∈ H2(X;Z) is the Poincaré dual of c as noted above. Note that if a or b has
torsion, QX(a, b) = 0 since, without loss of generality, if na = 0 for some n ∈ Z>0,

nQX(a, b) = n 〈a ∪ b, [X]〉 = 〈na ∪ b, [X]〉 = 〈0, [X]〉 = 0

and since n 6= 0, QX(a, b) = 0. With this in mind, if we let T be the torsion submodule of
H2(X;Z), we can consider QX on the free Z-module H2(X;Z)/T . We can now pick a basis for
H2(X;Z)/T , and if this free Z-module has dimension r, we can represent QX on H2(X;Z)/T
as a matrix M ∈Mr×r(Z) with respect to the chosen basis.

At this point we will take a brief foray into the land of symmetric bilinear forms over finitely
generated free Z-modules and build up the theory a little before returning to the specific case
of intersection forms. From here on in, all free Z-modules are finitely generated. We first make
the following definitions.

Definition. Let A be a free Z-module with symmetric bilinear form Q : A × A → Z. Pick a
basis for A and let M be the matrix of Q with respect to that basis.

• The rank of Q, denoted rk(Q), is the dimension of A.

• Extend M over A ⊗Z R and diagonalise. Let b+2 be the number of +1 entries on the
diagonal, and b−2 the number of −1 entries.

• The signature of Q, denoted σ(Q), is the difference b+2 − b
−
2 .
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• Q is positive definite if rk(Q) = σ(Q), negative definite if rk(Q) = −σ(Q), and
indefinite otherwise.

• Q is even if Q(α, α) ≡ 0 mod 2 for all α ∈ A, and odd otherwise. The property of being
even or odd is called the parity of Q.

• An element x ∈ A is called characteristic if Q(α, x) ≡ Q(α, α) mod 2 for all α ∈ A.

• The determinant, detQ, is the determinant of M .

• Q is called unimodular if detQ = ±1.

Remark. Observe that from these definitions we immediately get that if Q is even, then 0 ∈ A
is characteristic.

For our particular purposes, we will see that we only care about unimodular forms (see
lemma 4.3). In this case, the definitions tell us that for any unimodular form rk(Q) = b+2 + b−2
and we get that σ(Q) ≡ rk(Q) mod 2. Also for a unimodular form Q, observe that being
positive or negative definite is equivalent to b−2 = 0 or b+2 = 0 respectively.

We will now deal with the potential issue of whether or not the determinant of Q is well
defined, since it depends on our choice of basis.

Lemma 4.1. The determinant of a bilinear form Q on a free Z-module is well defined.

Proof. Let B = {β1, . . . , βn} and C = {γ1, . . . , γn} be two different bases for a free rank n
Z-module A. Then

βi =
n∑
j=1

djiγj and γi =
n∑
j=1

ejiβj

for dji, eji ∈ Z. We see from this that [dij ], [eij ] ∈ Mn×n(Z) are change of bases matrices that
are inverses of each other. Since a matrix T ∈Mn×n(Z) is invertible if and only if detT = ±1, it
follows that any change of bases matrix on a free Z-module has determinant ±1. Now let M be
the matrix for Q with respect to some basis. If P is a basis transformation to another basis, the
matrix for Q with respect to that basis is P TMP and since detP = ±1, det(P TMP ) = detM .
Therefore detQ is well defined. �

Notice that if A has rank n, A ∼= Z⊕n and therefore it admits a standard basis
S = {e1, . . . , en}. It follows from the proof of the lemma that a subset B = {a1, . . . , an} ⊂ A is
a basis if and only if when we write ai =

∑n
j=1 αjiej , the matrix [αij ] has determinant ±1 since

this is precisely the basis transformation from B to S. This motivates the following definition.

Definition. Let Q1, Q2 be bilinear forms on free Z-modules A1, A2 with matrices M1,M2 re-
spectively. We say that Q1 and Q2 are isomorphic or equivalent if M1 = P TM2P for some
invertible integer matrix P . We denote this Q1

∼= Q2.

Observe that P : A1 → A2 here can be viewed as a module isomorphism (since it is invertible)
such that Q1(a, b) = Q2(Pa, Pb). We now wish to make precise what we mean when we say kQ
for some k ∈ Z, since as we will see, this is not represented by the matrix kM .

Definition. If A1, A2 are free Z-modules with bilinear forms Q1, Q2 respectively, the direct
sum Q = Q1 ⊕Q2 on A1 ⊕A2 is the bilinear form represented by the matrix

M =

[
M1 0
0 M2

]
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where M1 and M2 are matrices representing Q1 and Q2 respectively. The matrix M is with
respect to the basis formed by concatenating the bases of A1 and A2 in that order. With this
in mind, we make the following definition of kQ for k ∈ Z.

kQ :=


⊕

kQ for k > 0,
|k| (−Q) for k < 0,

0 for k = 0.

where (−Q)(a, b) := −(Q(a, b)) or alternatively if M is a matrix representing Q, then −M
represents −Q.

The following two lemmas provide plenty of incentive to focus our attention on unimodular
forms.

Lemma 4.2. A symmetric bilinear form Q on A is unimodular if and only if the map

L : A −→ HomZ(A,Z)

a 7−→ Q(a, )

is an isomorphism.

Proof. Fix a basis {a1, . . . , an} of A and let M be the matrix of Q with respect to this basis.
Let {a∗1, . . . , a∗n} be the dual basis, that is a basis such that a∗i (aj) = δij . Now

L(ai) =
n∑
j=1

Q(aj , ai)a
∗
j

which means the matrix with respect to this basis of L is given by [bij ] where bij = Q(ai, aj),
which is exactly the matrix M . Now L is an isomorphism if and only if M is invertible, which
is the case if and only if detM = ±1. Therefore L is an isomorphism if and only if Q is
unimodular. �

Lemma 4.3. If X is a closed 4-manifold, then the intersection form QX is unimodular.

Proof. By lemma 4.2 it suffices to show the map

LX : H2(X;Z)/T2 −→ HomZ(H2(X;Z),Z)

a 7−→ QX(a, )

is an isomorphism where T2 ⊂ H2(X;Z) is the torsion submodule. This will follow from Poincaré
duality and the Universal Coefficient Theorem. Let T 2 ⊂ H2(X;Z) be the torsion submodule
and consider the inverse Poincaré duality isomorphism

PD : H2(X;Z) −→ H2(X;Z).

Since T2
∼= T 2 from lemma 3.5, this isomorphism descends to

P̃D : H2(X;Z)/T2 −→ H2(X;Z)/T 2

[a] 7−→ [PD(a)],

which is also an isomorphism. By abuse of notation, for the rest of the proof we will also refer
to this map as PD. We now consider the isomorphism

φ : H2(X;Z)/Ext(H2(X;Z),Z) −→ HomZ(H2(X;Z),Z)

a 7−→ 〈a, 〉
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from the Universal Coefficient Theorem (theorem 3.3). Consider the composition ϕ = φ ◦ PD
and we get the isomorphism

ϕ : H2(X;Z)/T2 −→ HomZ(H2(X;Z),Z)

a 7−→ 〈PD(a), 〉 .

It remains to show that ϕ = LX . Let a, b ∈ H2(X;Z), then

LX(a)(b) = QX(a, b)

= 〈PD(a) ∪ PD(b), [X]〉
= 〈PD(a), PD(b) ∩ [X]〉
= 〈PD(a), b〉
= ϕ(a)(b)

and thus LX = ϕ, proving the lemma. �

We now shift our effort to classifying all indefinite unimodular bilinear forms on free
Z-modules, with our goal being to prove lemma 4.11 below. To get there, we will need to
use Serre’s Classification Lemma (without proof) and the following lemma. For a full proof of
Serre’s Classification Lemma, see [MH73, ch. 2, theorem 5.3].

Fact 4.4. Let Q1, Q2 be indefinite unimodular forms on A1 and A2 respectively. If they have
the same rank, signature and parity, then they are equivalent.

Lemma 4.5. Let Q be a unimodular bilinear form on a free Z-module A. If x ∈ A is charac-
teristic, then Q(x, x) ≡ σ(Q) mod 8.

Proof. First we will find a characteristic element on an indefinite form (note that Q may be
positive or negative definite), so we can then apply the previous fact. Let

y = x+ e+ + e− ∈ A′ = A⊕ Z⊕ Z

where e+ and e− are generators for the first and second copies of Z respectively. Consider the
bilinear form Q′ = Q⊕ 〈1〉 ⊕ 〈−1〉 on A′.

Claim 4.6. The element y ∈ A′ is a charactersitic element of Q′.

Proof. Consider an element a′ = a+ a+e+ + a−e− ∈ A′ where a+, a− ∈ Z, a ∈ A. Then

Q′(a′, a′) = Q(a, a) + a2
+ − a2

− and Q(y, a′) = Q(x, a) + a+ − a−.

Now we know Q(x, a) ≡ Q(a, a) mod 2 and we also have for any integer b that b2 ≡ b mod 2.
Therefore, Q′(y, a′) ≡ Q′(a′, a′) mod 2 for all a′ ∈ A′ and y indeed is characteristic. �

Now we have an indefinite unimodular form Q′ since the summands 〈1〉 and 〈−1〉 ensure
(b+2 )′ ≥ 1 and (b−2 )′ ≥ 1. Now consider the form P = (b+2 + 1)〈1〉⊕ (b−2 + 1)〈−1〉 on A′, we want
to show that the rank, signature and parity of Q′ and P agree. We see that

rk(Q′) = b+2 + 1 + b−2 + 1 = rk(P ) and σ(Q′) = b+2 + 1− (b−2 + 1) = σ(P ).

For parity, notice that both forms are odd since Q′(e+, e+) = 1 and P (e1, e1) = 1 if e1 is the
first basis vector with respect to which P is determined. Since Q′ and P have the same rank,
signature and parity, we can apply fact 4.4 to conclude that

Q′ = Q⊕ 〈1〉 ⊕ 〈−1〉 ∼= (b+2 + 1)〈1〉 ⊕ (b−2 + 1)〈−1〉,

where Q′ in this form is with respect to some basis {e1, . . . , eN} of A′ and N = rk(Q′).
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Claim 4.7. With respect to this basis, the characteristic element y =
∑N

i=1 yiei is such that yi
is odd for all i.

Proof. First note that

Q′(ei, ej) =


1 if i = j and i ≤ b+2 + 1,
−1 if i = j and i > b+2 + 1,
0 if i 6= j.

Since y is characteristic, Q′(y, ei) = yiQ
′(ei, ei) ≡ Q′(ei, ei) mod 2 for all i and we therefore

get yi ≡ 1 mod 2 for all i. �

If we now consider Q′(y, y) we see

Q′(y, y) =
N∑
i=1

y2
iQ
′(ei, ei) =

b+2 +1∑
i=1

y2
i −

N∑
i=b+2 +2

y2
i .

Since yi is odd for all i and an odd number squared is congruent to 1 mod 8, we see
Q′(y, y) ≡ (b+2 + 1) − (b−2 + 1) = σ(Q) mod 8. It remains to show that Q(x, x) = Q′(y, y)
which follows immediately since

Q′(y, y) = Q′(x+ e+ + e−, x+ e+ + e−) = Q(x, x) + 1− 1.

Alas, we now conclude that Q(x, x) ≡ σ(Q) mod 8. �

Corollary 4.8. If Q is even, then σ(Q) ≡ 0 mod 8 since 0 ∈ A is characteristic.

Now we will define two bilinear forms which will be the building blocks for the even forms
and we will prove some basic properties about them. Let E8 and H be given by the following
matrices,

E8 :=



2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 1
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 0
0 0 0 0 1 0 0 2


and H :=

[
0 1
1 0

]
.

Lemma 4.9. The forms E8 and H are both even unimodular forms such that σ(E8) = 8 and
σ(H) = 0.

Proof. Taking determinants of both their representative matrices we see that detE8 = 1 and
detH = −1 so they are both unimodular. Diagonalising over R we see that E8 has 8 positive
eigenvalues, giving σ(E8) = 8, and H has eigenvalues +1 and −1 giving σ(H) = 0. To see both
forms are even, we prove the following claim.

Claim 4.10. If a matrix [aij ] representing a symmetric bilinear form Q on A is such that aii
is even for all i, then Q is an even form.

Proof. Write aii = 2βii for βii ∈ Z for all i. Let {e1, . . . , en} be the basis with respect to which
[aij ] is the matrix of Q and consider an element x =

∑n
i=1 xiei ∈ A. Then

Q(x, x) = Q

(
n∑
i=1

xiei,

n∑
i=1

xiei

)
= 2

n∑
i=1

βiix
2
i + 2

∑
i<j

1≤i≤n
1≤j≤n

aijxixj ≡ 0 mod 2. �
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Applying the claim to E8 and H we see that they are both even, proving the lemma. �

Now we can prove the following result which classifies all indefinite unimodular forms.

Lemma 4.11. Suppose that Q is an indefinite, unimodular form. If Q is odd, then it is
isomorphic to b+2 〈1〉 ⊕ b

−
2 〈−1〉. If Q is even, it is isomorphic to σ(Q)

8 E8 ⊕ rk(Q)−|σ(Q)|
2 H.

Proof. Fact 4.4 tells us that it suffices to find an indefinite unimodular form for every possible
signature and rank for both odd and even forms. Recall that σ(Q) ≡ rk(Q) mod 2 and since Q
is unimodular we have b+2 = 1

2(rk(Q) +σ(Q)) and b−2 = 1
2(rk(Q)−σ(Q)). Since our assumption

is that Q is indefinite, we have the additional constraint that rk(Q) > |σ(Q)|.
For the odd case, given any rank r and signature σ, we get b+2 and b−2 and setting the form

Q = b+2 〈1〉 ⊕ b
−
2 〈−1〉

gives an odd form of rank r and signature σ (it is odd since Q(e, e) ≡ 1 mod 2 for any basis
vector e).

For the even case, given rank r and signature σ we have the additional constraint that
σ ≡ 0 mod 8 (corollary 4.8). This implies that r ≡ 0 mod 2 and we can build up an even
form with rank r and signature σ using E8 and H as follows. We can first get a form of the
required signature by using σ

8E8, since σ(E8) = 8. Since σ(H) = 0, adding copies of H doesn’t
change the signature. Since r is even, we can obtain the required rank by adding the appropriate
number of copies of H. We can now conclude that the form

Q =
σ

8
E8 ⊕

r − |σ|
2

H

is an even form of rank r and signature σ, completing the proof of the lemma. �

5 Intersection Theory and the Euler Class

In this section we will give a quick survey of intersection theory to build up some important
tools, machinery and most importantly intuition for the proofs and definitions to come. This
section will be light on the details and heavy on the results. For more details (and just as many
results) see [Bre93, Ch. 6 §11, §12].

Definition. Let M be an n-dimensional manifold. Define the intersection product

• : Hi(M ;Z)×Hj(M ;Z) −→ Hi+j−n(M ;Z)

by PD(a • b) := PD(b) ∪ PD(a).

From this definition we get

a • b = (−1)(n−i)(n−j)b • a and a • (b • c) = (a • b) • c.

This concept is very closely related to the intersection form of a four manifold X. Notice that
if i = j = 2, then a • b ∈ H0(X;Z) ∼= Z. The integer to which a • b corresponds is exactly
QX(a, b), which we see since

QX(a, b) = 〈PD(a) ∪ PD(b), [X]〉 = 〈PD(a • b), [X]〉 = 〈1, a • b〉 .

Notice that since a, b ∈ H2(X;Z), the order of the cup product and intersection product doesn’t
matter.

Now since this section is called intersection theory, we will hope to relate this to geometric
intersections. Given an oriented m-dimensional manifold M and an oriented n-dimensional
submanifold N , we can define the homology class [N ] as follows.
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Definition. Let i : N → M be the inclusion map, and let [N ] ∈ Hn(N ;Z) be the fundamen-
tal class of N . Then we can view the class of N in M as i∗[N ], which we simply denote
[N ] ∈ Hn(M ;Z).

This definition leads us to the following fact proved in [Bre93, p. 372].

Fact 5.1. Let M be an oriented m-dimensional manifold and let N and K be oriented n-
dimensional and k-dimensional submanifolds respectively such that N and K intersect transver-
sally. Then [K ∩N ] = [N ] • [K] ∈ Hn+k−m(M ;Z).

From this we have PD([K ∩N ]) = PD([K])∪ PD([N ]) and we see that the cup product is
dual to the transverse intersection of submanifolds. This is an extremely helpful way to think
about cup products. Now we can define the Euler class of a vector bundle.

Definition. Let E be a rank k oriented vector bundle over a n-dimensional oriented manifold
M and let W be the total space. Let i : M →W be a smooth embedding (we can view this as
identifying M with the zero section of E). Define the Euler class as

e(E) := i∗(PD(i∗[M ])) ∈ Hk(M ;Z).

Note that in this definition, the map PD is the inverse of ∩[W ] : H i(W ;Z)→ Hn+k−i(W ;Z),
which is why we insist that E is an oriented vector bundle. Ignoring for a moment the push-
forward and pullback maps, this defines the Euler class as the Poincaré dual in W of the
fundamental class of M .

Now we realise this as an intersection as follows. First notice that any bundle over M can
be viewed as the normal bundle when M is embedded into the total space of the bundle under
the inclusion taking it to the zero section as above. Furthermore, we know we can associate an
open neighbourhood of M with the total space of the normal bundle, and if M is closed in the
total space, this neighbourhood is homotopy equivalent to M (see [MS74, §11]).

Now let M be an n-dimensional manifold, and W be such a neighbourhood in the total space
of a rank k vector bundle. We can define the self intersection class of M as
[M ] • [M ] ∈ Hn−k(W ;Z) if M is n-dimensional. Geometrically, this corresponds to deforming
M smoothly within the neighbourhood such that it intersects itself transversally, and [M ] • [M ]
is the class of this intersection. If we let i : M →W be the inclusion map we then have

[M ] • [M ] = (PD(i∗[M ]) ∪ PD(i∗[M ])) ∩ [W ]

= PD(i∗[M ]) ∩ (i∗[M ])

= i∗(i
∗PD(i∗[M ]) ∩ [M ])

= i∗(e(νM) ∩ [M ])

where νM is the normal bundle. Now since W is homotopy equivalent to M , we have that
i∗ : H•(M ;Z)→ H•(W ;Z) is an isomorphism so we can view e(νM) ∩ [M ] ∈ Hn−k(M ;Z). We
now have that e(νM) = PD([M ]• [M ]) ∈ Hk(M ;Z). Since we can view any bundle this way by
embedding M in the total space, we can make the following equivalent, and much more useful,
definition of the Euler class of a vector bundle over a manifold.

Definition. Let F be a real rank n vector bundle over a m-dimensional manifold M . Pick a
section s : M → F which intersects transversally with the zero section, s0(p) = (p, 0) for all
p ∈ M . Let Z be the preimage of the zero set of s, Z := s−1(0) ∈ M . Since s was chosen to
intersect the zero section transversally, Z is an (m − n)-dimensional subset of M and we can
therefore consider [Z] ∈ Hm−n(M ;Z). Define the Euler class

e(F ) := PD([Z]) ∈ Hn(M ;Z).

12



We will close this section by drawing the link between the Euler class and the Euler char-
acteristic of a manifold. First we define the latter and finish with the lemma below, for which
we will only provide an outline of the proof. Complete proofs can be found in [Bre93, p. 379]
and [MS74, p. 130].

Definition. Given a n-dimensional manifold M , define the Euler characteristic

χ(M) :=
n∑
i=0

(−1)iβi

where βi is the ith Betti number and is given by the rank of the ith homology module
Hi(M ;Z).

Lemma 5.2. The Euler characteristic χ(M) of a smooth, closed, oriented n-manifold M is
given by the equality 〈e(TM), [M ]〉 = χ(M), where [M ] ∈ Hn(M ;Z) is the fundamental class of
M .

Sketch of proof. The total space of a manifold can be realised as the normal bundle of M ,
embedded via the diagonal map, in M ×M [MS74, p. 121]. Since we are now dealing with
M ×M , we would like to use the Künneth isomorphism, H•(X × Y ) ∼= H•(X)⊗H•(Y ), so we
change the coefficients of homology and cohomology to a field (say Q). We now pick a basis
{αi} and a dual basis {α∗i } of H•(M ;Q), that is 〈a∗i ∪ αj , [M ]〉 = δij .

From this we end up with

〈e(TM), [M ]〉 =
∑
i

(−1)deg(αi) 〈α∗i ∪ αi, [M ]〉 =
∑
i

(−1)deg(αi) = χ(M).

Note that changing the coefficients to Q not only allows us to use the Künneth isomorphism,
but also doesn’t change the rank of the homology modules, it only removes torsion leaving the
Euler characteristic unchanged. �

6 Characteristic Classes and the Intersection Form

We have already discussed the Euler class, an important characteristic class, in the previous
section. Here we will explore the Chern, Pontrijagin and Stiefel-Whitney classes and see how
they relate to important characteristics of the intersection form of a 4-manifold. The character-
istic classes of a vector bundle E over a manifold M are elements of H•(M ;Z) (or H•(M ;Z/2)
for the Stiefel-Whitney class). From now on, when the vector bundle in question is the tangent
bundle, we will denote all characteristic classes differently. For example, the total Chern class
of the tangent bundle of a manifold, TM , will be denoted c(M) := c(TM), and similarly for
the other characteristic classes.

We begin this section by exploring the Chern classes of a complex vector bundle. For any
rank n complex vector bundle E over a manifold M with total space W , denote ER as the
underlying rank 2n real vector bundle. Consider the space

W0 := {(p, v) ∈W : v 6= 0},

that is W0 is the total space of E without the zero section. Let π0 : W0 →M be the restriction
of the projection map to W0.

Put a Hermitian metric on the bundle (and thus on each fibre) and construct a complex
vector bundle on W0 as follows. Define the fibre above each point (p, v) ∈ W0 as 〈v〉⊥. This
gives us a rank n− 1 complex bundle on W0, which we will denote E0.

Now any rank k bundle posseses an exact sequence, the Gysin sequence [MS74, p. 143], given
by

· · · −→ H i−k(M)
∪e−→ H i(M)

π∗
0−→ H i(W0) −→ H i−k+1(M) −→ · · ·

13



where ∪e is cup product with the Euler class e(ER). For i < 2n− 1, we have that

H i−2n(M) ∼= H i−2n+1(M) ∼= {0}

so π∗0 : H i(M) → H i(W0) is an isomorphism and (π∗0)−1 makes sense. We are now ready to
define the Chern classes.

Definition. Let E be a rank n complex vector bundle over a manifold M . Define the Chern
classes ci(E) ∈ H2i(M ;Z) inductively as follows.

• For i > n, set ci(E) = 0.

• Define cn(E) := e(ER), the Euler class of the underlying real bundle.

• For i < n, set ci(E) := (π∗0)−1ci(E0).

The formal sum c(E) := 1 + c1(E) + · · ·+ cn(E) ∈ H•(M ;Z) is called the total Chern class
of E.

The Chern classes satisfy the following properties (see [MS74, §14] for a full treatment of
this).

1. If f : M → M ′ is a smooth map between manifolds covered by a bundle map E → E′

such that E and E′ are of the same rank, then c(E) = f∗c(E′).

2. For a Whitney sum of vector bundles E ⊕ F over M , the Whitney product formula
c(E ⊕ F ) = c(E)c(F ) holds.

3. If E is the conjugate bundle of a complex vector bundle E, then ci(E) = (−1)ici(E).

4. If E is the trivial bundle, then the total Chern class c(E) is 1.

Now we define the Chern numbers.

Definition. Let M be a complex n-dimensional manifold and let [M ] ∈ H2n(M ;Z) be the fun-
damental class. Let {i1, . . . , ik} be a partition of n, then ci1(M)∪· · ·∪cik(M) ∈ H2n(M ;Z) and
therefore can be evaluated on [M ] to give 〈ci1(M) ∪ · · · ∪ cik(M), [M ]〉 ∈ Z. This integer is the
Chern number corresponding to the partition {i1, . . . , ik} and will be denoted ci1ci2 . . . cik [M ].

In our case, we will be specifically interested in complex 2-manifolds, where the possible
Chern numbers are c2

1[M ] := c1c1[M ] and c2[M ].
Using the facts and properties of Chern classes above, we will now explicitly calculate the

Chern class of CPn, following the method in [MS74, p. 169].

Lemma 6.1. The total Chern class of CPn is given by c(CPn) = (1 + g)n+1 where g is given
by g = c1(O(1)) ∈ H2(CPn;Z) and O(1) is the dual of the tautological line bundle over CPn.

Proof. Let O(−1) be the tautological line bundle on CPn, that is at each point p ∈ CPn, the
fibre is the line corresponding to p itself, call it Lp. View O(−1) as a subbundle of the trivial
bundle CPn × Cn+1, that is each fibre of O(−1) is a line through the origin of a fibre of the
trivial bundle, and define a rank n bundle ωn as follows. Put a Hermitian metric on the trivial
bundle and define the fibre of ωn at a point p ∈ CPn to be L⊥p . This gives us a rank n complex
bundle ωn such that O(−1)⊕ ωn is the complex rank (n+ 1) trivial bundle.

Consider the bundle given by HomC(O(−1), ωn) and identify it with the tangent bundle
TCPn as follows. View S2n+1 embedded in Cn+1 as S2n+1 = {z ∈ Cn+1 : |z| = 1} and
let S1 = {z ∈ C : |z| = 1}. Then we can view CPn as the quotient, S2n+1/S1 and let
π : S2n+1 → S2n+1/S1 be the quotient map.
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Now every point in the tangent bundle TCPn can be associated with a set
{(tx, tv) ∈ TS2n+1 : t ∈ S1} where 〈x, x〉 = 1 and 〈x, v〉 = 0. This is because under the
map π∗ : TS2n+1 → TCPn, π∗(x, v) = π∗(tx, tv) for all t ∈ S1.

If we now fix a point p ∈ CPn, this is equivalent to fixing the unit vectors on the line Lp, which
we will denote by {txp ∈ Lp : t ∈ S1, |xp| = 1}. An element of the fibre HomC(O(−1), ωn)

∣∣
p

is

a linear map φ : Lp → L⊥p . Each element φ uniquely determines a set

{(txp, tφ(xp)) ∈ TpS2n+1 : t ∈ S1},

which determines an element of TpCPn. Conversely, given an element of TpCPn, we have an asso-
ciated set {(txp, tvp) ∈ TpS2n+1} which uniquely determines an element of HomC(O(−1), ωn)

∣∣
p

by setting φ(xp) = vp. Under this association we have

TCPn ∼= HomC(O(−1), ωn).

Now if we add the trivial line bundle C ∼= HomC(O(−1),O(−1)) we get

TCPn ⊕ C ∼= HomC(O(−1), ωn ⊕O(−1))

∼= HomC

(
O(−1),C⊕(n+1)

)
since O(−1)⊕ ωn is trivial,

∼= HomC(O(−1),C)⊕(n+1).

If we define O(1) := HomC(O(−1),C) we get TCPn ⊕ C ∼= O(1)⊕(n+1). Using the Whitney
product formula and the property that c(C) = 1 we get

c(TCPn) = c(TCPn ⊕ C)

= c(O(1)⊕(n+1))

= c(O(1))n+1

= (1 + c1(O(1)))n+1.

Setting g = c1(O(1)) proves the lemma. �

Now we want to discuss what exactly the zero sets of global sections of O(1) look like as
this will come in handy for calculating the Euler class later on. Global sections of O(1) can be
constructed as follows. Consider a linear functional f : Cn+1 → C. For any line L through the
origin, we get a linear functional on L by the restriction f

∣∣
L

: L → C. Note that any linear
functional is zero on an n-dimensional subspace, unless it is 0 everywhere.

Now given a point p ∈ CPn, the fibre O(1)p is the space of linear functionals from the line
Lp to C, that is O(1)p ∼= HomC(Lp,C). A global section s : CPn → O(1) is given by s(p) = f

∣∣
Lp

for some linear functional f : Cn+1 → C. The zero set of such a global section is exactly a
hyperplane corresponding to the lines through the origin in Cn+1 on which f

∣∣
Lp

= 0.

Furthermore, if we are given a hyperplane H in CPn given by
∑n

i=0 aixi = 0 it is the zero
set of a global section. To see this, pick a basis B = {e0, . . . , en} of Cn+1 corresponding to the
coordinates {x0, . . . , xn} and a Hermitian metric with respect to which B is orthogonal. Then
all linear functionals on Cn+1 can be written as 〈v, 〉 for v ∈ Cn+1. If we set v =

∑n
i=0 aiei then

the global section given by restricting f = 〈v, 〉 to each line Lp has a zero set which is exactly
the hyperplane H. This is why O(1) is also called the hyperplane bundle. From this discussion
and the definition of the Euler class above, we immediately get the following proposition.

Proposition 6.2. The Euler class and first Chern class of O(1) over CPn is given by

e(O(1)) = c1(O(1)) = PD([H])

for any hyperplane H in CPn.

15



It is worth remarking here that the notation of O(−1) and O(1) is standard for the particular
corresponding line bundles in the discussion above.

We now define another set of characteristic classes called the Pontrijagin classes. These are
classes on real vector bundles and are defined using the complexification of a real vector bundle.
Before defining them we will briefly discuss what the complexification looks like on each fibre.

Definition. Given a real vector space V , the complexification is a complex vector space given
by V ⊗ C.

Every element in the complexification of a vector space V ⊗ C can be written as x+ iy for
some x, y ∈ V and as a result, V ⊗ C ∼= V ⊕ V as real vector spaces. Applying this to every
fibre in a real rank n vector bundle F we get the complexification F ⊗ C, which is a complex
rank n vector bundle isomorphic (as a real vector bundle) to the Whitney sum F ⊕ F . We can
now define the Pontrijagin classes as follows.

Definition. Given a real rank n vector bundle F over a manifold M , define the ith Pontrijagin
class of F as pi(F ) ∈ H4i(M ;Z) given by

pi(F ) := (−1)ic2i(F ⊗ C).

Define the total Pontrijagin class p(F ) := 1+p1(F )+ · · ·+Pbn2 c(F ) where bn2 c is the greatest

integer less than or equal to n
2 .

Now we want to express these Pontrijagin classes in terms of the Chern classes, with the
intention of proving lemma 6.6 below. To this this, we first need the following result.

Lemma 6.3. For any complex vector bundle E, the vector bundle E ⊗ C is isomorphic to the
Whitney sum E ⊕ E where E is the conjugate bundle.

Proof. We will construct an isomorphism on each fibre individually, which will extend to an
isomorphism of vector bundles. Given a vector space V , we know that any element in V ⊗ C
can be written as x + iy for x, y ∈ V . Now let V be a complex vector space and consider the
map

φ(V ⊗ C) −→ V ⊕ V

x+ iy 7−→
(

1

2
(x+ iy),

1

2
(x− iy)

)
.

Given α ∈ C we have

φ(α(x+ iy)) =

(
α

1

2
(x+ iy), α

1

2
(x− iy)

)
= α(φ(x+ iy))

and since φ clearly commutes with addition we have a complex linear map. Now we see that if
{v1, . . . , vn} is a basis for V , then {(v1, iv1), . . . , (vn, ivn), (v1,−iv1), . . . , (vn,−ivn)} is a basis for
V ⊕V so dimC(V ⊕V ) = 2n = dimC(V ⊗C). Lastly, note kerφ = 0 and therefore V ⊗C ∼= V ⊕V
as complex vector spaces. Since this map is natural and independent of any choice of basis, we
can extend this isomorphism to the vector bundle isomorphism E ⊗ C ∼= E ⊕ E for a complex
vector bundle E. �

With this result we can now write down an expression for the Pontrijagin classes in terms
of the Chern classes.

Lemma 6.4. For any complex rank n vector bundle E over a manifold M , the relation

1−p1(E) +p2(E)−· · ·+ (−1)npn(E) = (1 + c1(E) + · · ·+ cn(E))(1− c1(E) + · · ·+ (−1)ncn(E))

holds. In particular we have p1(E) = c2
1(E)− 2c2(E).
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Proof. From the Whitney product formula we have c(E ⊗ C) = c(E ⊕ E) = c(E)c(E), and we
know ci(E) = (−1)i(E) so

c(E ⊗ C) = c(E)c(E) = (1 + c1(E) + · · ·+ cn(E))(1− c1(E) + · · ·+ (−1)ncn(E)).

Once this is expanded, all odd Chern classes vanish and comparing dimensions we are left
precisely with the required formula. Note that the alternating sum on the left hand side is
from the factor of (−1)i in the definition, pi(E) := (−1)ic2i(E ⊗ C). In particular, for the first
Pontrijagin class, looking at the terms in H4i(M) we get

c(E ⊗ C) = (1 + c1(E) + c2(E) + · · · )(1− c1(E) + c2(E) + · · · ) = 1 + (2c2(E)− c2
1(E)) + · · ·

and thus p1(E) = c2
1(E)− 2c2(E). �

We are now one great big hammer away from having the machinery to prove lemma 6.6,
and that hammer is the following fact, which is the 4-dimensional instance of the Hirzebruch
Signature Theorem. A proof of the general statement can be found in [MS74, p. 224].

Fact 6.5 (Hirzebruch Signature Theorem for 4-Manifolds). If X is a smooth, closed, oriented
4-manifold, then σ(QX) = 1

3 〈p1(X), [X]〉.

Lemma 6.6. Let X be a simply connected, smooth, closed, oriented 4-manifold with intersection
form QX . Then

c2[X] = χ(X) = 2 + rk(QX) and c2
1[X] = 3σ(QX) + 2χ(X).

Proof. For the first equality, we know c2(X) = e(X) and thus c2[X] = 〈e(X), [X]〉 = χ(X) by
lemma 5.2. However, χ(X) =

∑4
i=0(−1)iβi where βi is the rank of Hi(X;Z). Now Poincaré

duality tells us that βi = β4−i for all i. Since X is simply connected, H1(X;Z) = {0} and
β1 = β3 = 0 and also the connectedness implies β0 = β4 = 1. From the definition of the rank of
a quadratic form we know that rk(QX) is the rank of the free module it acts on, which in this
case is the rank of H2(X;Z), or β2. Putting all of this together we get

c2[X] = χ(X) =
4∑
i=0

βi = 2 + rk(QX).

The second equality follows from fact 6.5 above as follows. Lemma 6.4 gives us

〈p1(X), [X]〉 =
〈
c2

1(X)− 2c2(X), [X]
〉

= c2
1[X]− 2c2[X].

The fact above now gives σ(QX) = 1
3(c2

1[X]− 2c2[X]) and since c2[X] = χ(X) we have

c2
1[X] = 3σ(QX) + 2χ(X)

completing the proof. �

Before moving on to the next section, we will mention the Stiefel-Whitney classes, which are
characteristic classes wi(E) ∈ H i(M ;Z/2). Historically, these classes came first but they play
a very small part in this exposition. We will state some of their properties without proof and
prove a result which will be needed later. For a more comprehensive and informative treatment,
see [MS74, §4 and §8] and [Bre93, Ch 6, §17]. We will define them here axiomatically, the same
way as is done in [MS74].

Definition. Let E be a real rank n vector bundle over a manifold M . There are a sequence of
cohomology classes wi(E) ∈ H i(M ;Z/2) called the Stiefel-Whitney classes that satisfy the
following four axioms.
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1. The class w0(E) = 1 and wi(E) = 0 if i > n.

2. If N is another manifold with vector bundle F and if f : M → N is covered by a bundle
map g : E → F , then wi(E) = f∗wi(F ).

3. If E and F are both bundles over M , then wk(E ⊕ F ) =
∑k

i=0wi(E) ∪ wk−i(F ).

4. Let γ be the tautological line bundle over RP1. Then w1(γ) 6= 0.

The element w = 1 +w1(E) + · · ·+wn(E) ∈ H•(M ;Z/2) is called the total Stiefel-Whitney
class.

It turns out that such classes always exist and can be explicitly constructed using the Thom
isomorphism and Steenrod squares [Bre93, p. 421], [MS74, p. 91]. From this construction, the
following two properties follow.

Fact 6.7. Let E be a rank n vector bundle over M . Then

1. E is orientable if and only if w1(E) = 0, and

2. Under the natural projection map Hn(M ;Z) → Hn(M ;Z/2), the Euler class e(E) maps
to the top Stiefel-Whitney class, wn(E).

By abuse of notation, we write the second fact e(E) ≡ wn(E) mod 2. We now prove the
following important lemma.

Lemma 6.8. Let X be an oriented 4-manifold and α ∈ H2(X;Z). Then

〈w2(X), α〉 ≡ QX(α, α) mod 2

where in the expression 〈w2(X), α〉, α is reduced to Z/2 coefficients.

Proof. Represent α ∈ H2(X;Z) by an embedded orientable surface Σ, that is α = i∗[Σ] where
i : Σ→ X is the inclusion map. Letting νΣ be the normal bundle of Σ in X we have

〈w2(X), α〉 = 〈w2(X), i∗[Σ]〉
= 〈i∗w2(X), [Σ]〉
= 〈w2(i∗TX), [Σ]〉
=
〈
w2(TX

∣∣
Σ

), [Σ]
〉

= 〈w2(TΣ⊕ νΣ), [Σ]〉
= 〈w2(TΣ), [Σ]〉+ 〈w2(νΣ), [Σ]〉+ 〈w1(TΣ) ∪ w1(νΣ), [Σ]〉
≡ χ(Σ) + 〈e(νΣ), [Σ]〉 mod 2,

since w1(TΣ) = 0 and e(Σ) ≡ w2(Σ) mod 2. Now since Σ is orientable, a classical result tells
us χ(Σ) = 2 − 2g ≡ 0 mod 2 where g is the genus of the surface. We know from intersection
theory that the Euler class of the normal bundle when viewed in the ambient space [X] is given
by PD([Σ] • [Σ]). This gives us

〈w2(X), α〉 ≡ 〈e(νΣ), [Σ]〉 = 〈PD(i∗[Σ]) ∪ PD(i∗[Σ]), [X]〉 = QX(α, α) mod 2,

completing the proof. �

From corollary 3.6 we know that if X is closed and simply connected then H2(X;Z) has no
torsion. This gives us the following corollary.

Corollary 6.9. Let X be a simply connected closed 4-manifold. The intersection form QX is
even if and only if w2(X) = 0.
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7 Fermat Surfaces

Consider the Fermat surface in CP3,

Sd := {[z0 : z1 : z2 : z3] ∈ CP3 :

3∑
i=0

zdi = 0} ⊂ CP3

where d is a positive integer.
Our goal is to prove theorem 7.6, and our first step is to prove π1(Sd) ∼= {1}, that is, Sd

is simply connected. To do this, we will use the Lefschetz Hyperplane Theorem without proof
(see [Mil63, §7] for a full treatment of this).

Theorem 7.1 (Lefschetz Hyperplane Theorem). Let X be a compact complex n-dimensional
submanifold of CPN . If H is a hyperplane in CPN , then the homomorphism

πi(X ∩H) −→ πi(X)

is an isomorphism for i < n− 1 and a surjection for i = n− 1.

With this ammunition, we can now prove the following lemma.

Lemma 7.2. The 4-manifold Sd is simply connected.

Proof. Consider the dth Veronese embedding

νd : CP3 −→ CPN

where N =

(
d+ 3
d

)
− 1 is one less than the number of monomials of degree d in the four

variables z0, z1, z2, z3. Let the map be given by

νd([z0 : z1 : z2 : z3]) = [zd0 : zd1 : zd2 : zd3 : m1 : · · · : mN−3]

where {mi}N−3
i=1 are all other monomials of degree d. Give CPN coordinates [X0 : · · · : XN ].

The hyperplane H given by X0 + X1 + X2 + X3 = 0 contains the image of Sd under the
Veronese embedding and if we restrict this hyperplane to the image of CP3 we exactly get
H ∩ νd(CP3) = νd(Sd).

Since the Veronese embedding is an isomorphic embedding [Sha94, p. 52], we have that
νd(CP3) is an embedded complex 3-manifold in CPN and applying the Lefschetz Hyperplane
Theorem we get π1(νd(Sd)) ∼= π1(νd(CP3)). Since CP3 is simply connected we get
π1(Sd) ∼= π1(CP3) ∼= {1} and Sd is simply connected. �

We are now two short lemmas away from the main theorem of this exposition. From here
on in, let i : Sd → CP3 be the inclusion map.

Lemma 7.3. The first Chern class of the normal bundle νSd in CP3 is equal to dx where
x = i∗(g) and g = c1(O(1)) (see lemma 6.1).

Proof. For this argument, first endow CPn with a metric (for example, the Fubini-Study metric
will do). Let S′d ⊂ CP3 be another hypersurface cut out by a homogeneous polynomial of degree
d. By altering the coefficients of the polynomial defining Sd as little or as much as need be, we
can choose S′d to be smooth, arbitrarily uniformly close to Sd and to intersect Sd transversally
(full justification of this fact will be left out, but the smoothness is a consequence of Sard’s
theorem and the arbitrary closeness and transversality are consequences of Bertini’s theorem).
Since we have this freedom in the choice of S′d we can choose it to be a section of the normal
bundle νSd, and the general idea of how we do this is as follows.
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Note that the normal bundle νSd is a line bundle since Sd is of codimension 1 in CP3. For
a point p ∈ Sd, consider the normal line Np passing through p. By Bezout’s theorem [Sha94,
§2.1], this line intersects Sd at at least one other point since Np intersects Sd transversally at
p for all p. Take the minimum distance between p and any of the other points and call this
distance mp. First note that since Sd is smooth, mp > 0 for all p. Now let µ = minp∈Sd

{mp},
which is attained since Sd is compact. Let ε = 1

4µ and choose S′d to be such that the distance
between the two compact sets Sd and S′d is less than ε and for every p ∈ Sd there is exactly one
point p′ ∈ S′d such that p′ ∈ S′d ∩Np and dist(p, p′) < ε. Now for each point p ∈ Sd, choose this
p′ in the normal fibre Np, defining the global section. This section will be S′d.

If we now let V = Sd ∩S′d, then this is the zero set of a section of νSd so e(νSd) = PD([V ]).

Claim 7.4. The class [S1] ∈ H4(CP3;Z) ∼= Z is a generator and [Sd] = [S′d] = d · [S1].

Proof. For this claim we will make use of the Gysin sequence [MS74, p. 143] which for an
oriented rank n vector bundle E over a manifold M is the exact sequence

· · · −→ H i−n(M ;Z)
∪e−→ H i(M ;Z)

π∗
0−→ H i(E0;Z) −→ H i−n+1(M ;Z) −→ · · ·

where e = e(E) is the Euler class of the vector bundle, E0 is the total space of the vector bundle
without the zero section, and π0 is the projection map of the vector bundle restricted to E0. If
we apply this to O(−1), the tautological line bundle over CPn (see the proof of lemma 6.1), we
first notice that E0 is the set of all pairs (L, v) where L is a line through the origin in Cn+1 and
v ∈ L is a non-zero vector on that line. Therefore we can identify E0 with Cn+1 \ {0}, which
we know is homotopy equivalent to S2n+1, the 2n+ 1 sphere.

This gives us H i(E0;Z) ∼= {0} for all 0 < i < 2n+ 1 and the Gysin sequence gives us exact
sequences

0 −→ H i(CPn;Z)
∪e−→ H i+2(CPn;Z) −→ 0

for 0 ≤ i ≤ 2n− 2. Applying this to the case n = 3 we have

Z ∼= H0(CP3;Z) ∼= H2(CP3;Z) ∼= H4(CP3;Z) ∼= H6(CP3;Z)

since CP3 is connected. Furthermore we see that e, e∪ e and e∪ e∪ e generate the 2nd, 4th and
6th cohomology modules respectively.

Now for any complex vector bundle, we can endow it with a hermitian metric and we get
an isomorphism E ∼= HomC(E,C) by the map v 7−→ 〈 , v〉. Since O(1) = HomC(O(−1),C),
we have e(O(−1)) = c1(O(−1)) = −c1(O(1)) and therefore c1(O(1)) is the other generator for
H2(CP3;Z).

Since S1 is a hyperplane in CP3, we know from proposition 6.2 that PD([S1]) = c1(O(1))
and since PD is an isomorphism, [S1] is a generator for H4(CP3;Z).

Now consider the map

φ : H2(CP3;Z) −→ Z
[S] 7−→

∣∣S ∩ CP1
∣∣ .

where S is an embedded surface. If Sa is cut out by a degree a polynomial, then

φ([Sa] + [Sb]) =
∣∣(Sa ∪ Sb) ∩ CP3

∣∣ = a+ b = φ([Sa]) + φ([Sb])

by Bezout’s theorem and since for the generator [S1], φ([S1]) = 1, φ is an isomorphism. From
this we see that φ([Sd]) = d = φ([S′d]) and thus [Sd] = [S′d] = d · [S1], proving the claim. �
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With this claim in hand we can now calculate e(νSd) which we know is equal to c1(νSd).
Since Sd and S′d are compact submanifolds of CP3 that intersect transversally, we have
PD([Sd ∩ S′d]) = i∗PD([S′d]) where i : Sd → CP3 is the inclusion map (see [Bre93, p. 371]).
From the definition of the Euler class above we have

c1(νSd) = PD([Sd ∩ S′d]) = i∗PD([S′d]) = di∗PD([S1]) = dx

where x = i∗g = i∗PD([H]) for any hyperplane H ⊂ CP3, proving the lemma. �

Lemma 7.5. The Chern classes of Sd are given by

c1(Sd) = (4− d)x and c2(Sd) = (d2 − 4d+ 6)x2

where x = i∗g and g = c1(O(1)) as in the previous lemma. Moreover,
〈
x2, [Sd]

〉
= d and thus

c2[Sd] = (d2 − 4d + 6)d and c2
1[Sd] = (4 − d)2d. Additionally, QSd

is even if and only if d is
even.

Proof. If we restrict the tangent bundle TCP3 to Sd, we can write it as the Whitney sum of the
tangent bundle TSd and the normal bundle νSd, that is TCP3

∣∣
Sd

= TSd ⊕ νSd. Note that TSd
is a rank 2 complex vector bundle and νSd is of rank 1. It is important here to clarify what we
mean by ‘restricting the tangent bundle.’

Consider the inclusion map i : Sd → CP3. Then the restriction TCP3
∣∣
Sd

as a vector bundle

over Sd is the pullback i∗(TCP3). That is given a point p ∈ Sd, the fibre over p is the tangent
space of CP3 at i(p).

Note that i : Sd → CP3 is covered by a bundle map ϕ : TCP3
∣∣
Sd
→ TCP3, which takes

a fibre Tp in TCP
∣∣
Sd

to the fibre Ti(p) in TCP3 via the identity map. Since these two vector

bundles have the same rank, we know i∗c(TCP3) = c(TCP3
∣∣
Sd

).
Using this and the Whitney product formula, we get

c(TCP3
∣∣
Sd

) = i∗(1 + g)4 = (1 + x)4 = (1 + c1(Sd) + c2(Sd)) · (1 + c1(νSd)).

and therefore

1 + c1(Sd) + c2(Sd) = (1 + x)4(1 + c1(νSd))
−1 = (1 + 4x+ 6x2) · (1− c1(νSd) + c2

1(νSd)).

Note that x3 ∈ H6(Sd;Z) and x4 ∈ H8(Sd;Z) and since Sd is a real 4-manifold, these are zero.
Lemma 7.3 tells us that c1(νSd) = dx and we get

1 + c1(Sd) + c2(Sd) = (1 + 4x+ 6x2) · (1− dx+ d2x2).

By comparing the dimensions of the terms we get c1(Sd) = (4−d)x and c2(Sd) = (d2−4d+6)x2

as desired.
To calculate

〈
x2, [Sd]

〉
we have〈

x2, [Sd]
〉

=
〈
(i∗g)2, [Sd]

〉
=
〈
g2, i∗[Sd]

〉
=
〈
g2, PD(i∗[Sd]) ∩ [CP3]

〉
=
〈
g2 ∪ PD(i∗[Sd]), [CP3]

〉
=
〈
g2 ∪ dPD(i∗[S1]), [CP3]

〉
=
〈
g2 ∪ dg, [CP3]

〉
= d

〈
g3, [CP3]

〉
= d
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In the last step, we evaluated
〈
g3, [CP3]

〉
= 1, which needs justification. One way to see why

this is the case is through intersection theory. We know that g = PD(i∗[H]), the Poincaré
dual of the class of a hyperplane, so g ∪ g ∪ g = PD(i∗[H1 ∩ H2 ∩ H3]) where H1, H2 and
H3 are three hyperplanes that intersect transversally. Since three transverse hyperplanes will
intersect at a point in CP3, g3 = PD(i∗[pt]) and the Poincaré dual of a point is exactly the dual
element to [CP3], that is

〈
PD(i∗[pt]), [CP3]

〉
= 1. We can also see this using de Rham coho-

mology, where the Poincaré dual to a point is a bump top cohomology form, and the expression〈
PD(i∗[pt]), [CP3]

〉
corresponds to integrating this bump form over the whole manifold, giving

1 [BT82, p. 68].
From the calculation above we note that for odd d the term

〈
x2, [Sd]

〉
= QSd

(x, x) is odd and
hence QSd

is odd as well. If d is even, then c1(Sd) = (4− d)x ≡ 0 mod 2, implying w2(Sd) = 0
and thus QSd

is even (corollary 6.9). Therefore QSd
is even if and only if d is even. For the

Chern numbers we have

c2[Sd] = 〈c2(Sd), [Sd]〉 = (d2 − 4d+ 6)
〈
x2, [Sd]

〉
= (d2 − 4d+ 6)d

and
c2

1[Sd] =
〈
c2

1(Sd), [Sd]
〉

= (4− d)2
〈
x2, [Sd]

〉
= (4− d)2d,

completing the proof of the lemma. �

Theorem 7.6. The hypersurface Sd is a smooth, simply connected, complex surface. The
intersection form QSd

is equivalent to

• λd〈1〉 ⊕ µd〈−1〉 where λd = 1
3(d3 − 6d2 + 11d− 3) and µd = 1

3(d− 1)(2d2 − 4d+ 3) if d is
odd, and

• ld(−E8)⊕mdH, where ld = 1
24d(d2 − 4) and md = 1

3(d3 − 6d2 + 11d− 3) if d is even.

Proof. The implicit function theorem tells us that Sd is a smooth 4-manifold, and lemma 7.2
showed that it is simply connected.

By lemma 4.3 we know QSd
is unimodular so if QSd

is indefinite it suffices to compute the
parity, rank and signature of the form, as per Lemma 4.11. We will see that only the d = 1 case
will not be indefinite, and we deal with that case separately at the very end of the proof.

We already know QSd
is even if and only if d is even (lemma 7.5) and from lemma 6.6 we

know the Chern numbers c2
1[Sd] and c2[Sd] satisfy

c2[Sd] = χ(Sd) = 2 + rk(QSd
) and c2

1[Sd] = 3σ(QSd
) + 2χ(Sd).

We have c2[Sd] = (d2 − 4d + 6)d and c2
1[Sd] = (4 − d)2d from lemma 7.5 and using this we are

now able to compute b+2 , b−2 , σ(QSd
) and rk(QSd

) and we get

rk(QSd
) = c2[Sd]− 2 = d3 − 4d2 + 6d− 2

and

σ(QSd
) =

1

3
(c2

1[Sd]− 2c2[Sd]) =
d

3
(4− d2).

Since QSd
is unimodular, We know b+2 + b−2 = rk(QSd

) and b+2 − b
−
2 = σ(QSd

). Solving these
two equations simultaneously we get

b+2 =
1

3
(d3 − 6d2 + 11d− 3) and b−2 =

1

3
(d− 1)(2d2 − 4d+ 3).

Now, using lemma 4.11 and the fact that |σ(QSd
)| = −σ(QSd

) for d ≥ 2, we conclude that QSd

is equivalent to

b+2 〈1〉 ⊕ b
−
2 〈−1〉 =

1

3
(d3 − 6d2 + 11d− 3)〈1〉 ⊕ 1

3
(d− 1)(2d2 − 4d+ 3)〈−1〉
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if d is odd, and

σ(QSd
)

8
E8 ⊕

rk(QSd
)− |σ(QSd

)|
2

H =

∣∣∣∣σ(QSd
)

8

∣∣∣∣ (−E8)⊕ 1

2
(b+2 + b−2 − (b−2 − b

+
2 ))H

=
1

24
d(d2 − 4)(−E8)⊕ 1

3
(d3 − 6d2 + 11d− 3)H

if d is even. Note here that d = 1 is the only integer where b+2 or b−2 are zero and thus QS1 is
not indefinite so lemma 4.11 doesn’t hold. However, we see that σ(QS1) = 1 and since QS1 is
unimodular, we have that QS1

∼= 〈1〉 and the theorem still holds. This completes the proof of
the main theorem. �

As a final remark it is definitely worth noting when X is a simply connected 4-manifold,
H1(X;Z) ∼= H3(X;Z) ∼= {0} and there is no torsion in any of the homology or cohomology
modules as noted in corollary 3.6. In this case, simply knowing the rank of the intersection
form completely determines all the homology and cohomology modules. For example consider
S4. Since rk(QS4) = 22, we know

H0(S4;Z) ∼= H4(S4;Z) ∼= Z, H1(S4;Z) ∼= H3(S4;Z) ∼= {0} and H2(S4;Z) ∼= Z⊕22,

and Poincaré duality gives us the cohomology modules. To me, this is remarkable.
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