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To the reader
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or have any feedback that you would like to share, please do so by posting on Piazza.

In order to ensure that you have the most up-to-date version, be sure to download the latest
one from LEARN.

https://piazza.com/uwaterloo.ca/fall2023/math235


Chapter 1

Abstract Vector Spaces

1.1 The Definition of a Vector Space

Linear algebra is the study of vector spaces. Before we formally define a vector space, let’s
introduce some familiar examples of vector spaces. As you go through each example, pay
close attention to the similarities between each.

Example 1.1.1 The vector space R𝑛 is given by

R𝑛 =

⎧⎪⎨⎪⎩
⎡⎢⎣𝑎1

...
𝑎𝑛

⎤⎥⎦ : 𝑎𝑖 ∈ R for all 𝑖

⎫⎪⎬⎪⎭ .

Addition and scalar multiplication are given by⎡⎢⎣𝑎1
...
𝑎𝑛

⎤⎥⎦+

⎡⎢⎣ 𝑏1
...
𝑏𝑛

⎤⎥⎦ =

⎡⎢⎣ 𝑎1 + 𝑏1
...

𝑎𝑛 + 𝑏𝑛

⎤⎥⎦ and 𝛼

⎡⎢⎣𝑎1
...
𝑎𝑛

⎤⎥⎦ =

⎡⎢⎣𝛼𝑎1
...

𝛼𝑎𝑛

⎤⎥⎦ (for 𝛼 ∈ R).

The intuitive picture that is helpful to have in mind are the cases of R2 and R3 that you
are familiar with from previous courses. You can picture R2 as the Cartesian plane, and
R3 as 3-dimensional space. In both of these vector spaces, you know how vector addition
and scalar multiplication work, and intuitively, it’s the same for R𝑛. Although R𝑛 is an
𝑛-dimensional vector space, it is usually helpful to use the visual imagery of R2 and R3.

In this course, we will study both real and complex vector spaces. The previous example is
the most basic real vector space. There is an analogous complex vector space.

Example 1.1.2 The vector space C𝑛 is given by

C𝑛 =

⎧⎪⎨⎪⎩
⎡⎢⎣𝑎1

...
𝑎𝑛

⎤⎥⎦ : 𝑎𝑖 ∈ C for all 𝑖

⎫⎪⎬⎪⎭ .
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Section 1.1 The Definition of a Vector Space 7

Addition and scalar multiplication are given by⎡⎢⎣𝑎1
...
𝑎𝑛

⎤⎥⎦+

⎡⎢⎣ 𝑏1
...
𝑏𝑛

⎤⎥⎦ =

⎡⎢⎣ 𝑎1 + 𝑏1
...

𝑎𝑛 + 𝑏𝑛

⎤⎥⎦ and 𝛼

⎡⎢⎣𝑎1
...
𝑎𝑛

⎤⎥⎦ =

⎡⎢⎣𝛼𝑎1
...

𝛼𝑎𝑛

⎤⎥⎦ (for 𝛼 ∈ C)

just like in the previous example. Notice however that we now allow ourselves to use complex
scalars 𝛼 ∈ C. The vector space C𝑛 might appear to be even more challenging to visualize
than R𝑛. However, the algebra works just the same. In this course we will learn how our
intuition from R2 and R3 will allow us to discover properties of C𝑛. This is one of the
strengths of linear algebra.

We will use the short-hand notation F (for “field”) to denote either R or C when we do not
wish to distinguish between them. This is convenient because many (though not at all!) of
our results work equally well over both R and C.

Example 1.1.3 The vector space F𝑛 is given by

F𝑛 =

⎧⎪⎨⎪⎩
⎡⎢⎣𝑎1

...
𝑎𝑛

⎤⎥⎦ : 𝑎𝑖 ∈ F for all 𝑖

⎫⎪⎬⎪⎭ .

Addition and scalar multiplication are given by⎡⎢⎣𝑎1
...
𝑎𝑛

⎤⎥⎦+

⎡⎢⎣ 𝑏1
...
𝑏𝑛

⎤⎥⎦ =

⎡⎢⎣ 𝑎1 + 𝑏1
...

𝑎𝑛 + 𝑏𝑛

⎤⎥⎦ and 𝛼

⎡⎢⎣𝑎1
...
𝑎𝑛

⎤⎥⎦ =

⎡⎢⎣𝛼𝑎1
...

𝛼𝑎𝑛

⎤⎥⎦ (for 𝛼 ∈ F).

If F = R, then F𝑛 is the real vector space R𝑛 from the first example; and if F = C, then
F𝑛 = C𝑛. Be mindful that the scalars 𝛼 are always chosen to be in the appropriate F. So
when we are working with F𝑛 = R𝑛, we only use real scalars 𝛼 ∈ R.

Example 1.1.4 The vector space 𝒫𝑛(F) is the set of polynomials of degree at most 𝑛 with coefficients in F.
That is

𝒫𝑛(F) = {𝑎0 + 𝑎1𝑥+ · · ·+ 𝑎𝑛𝑥
𝑛 : 𝑎𝑖 ∈ F for all 𝑖}

with addition and scalar multiplication defined by

(𝑎0 + 𝑎1𝑥+ · · ·+ 𝑎𝑛𝑥
𝑛)+ (𝑏0 + 𝑏1𝑥+ · · ·+ 𝑏𝑛𝑥

𝑛) = (𝑎0 + 𝑏0)+ (𝑎1 + 𝑏1)𝑥+ · · ·+(𝑎𝑛 + 𝑏𝑛)𝑥
𝑛

and
𝛼(𝑎0 + 𝑎1𝑥+ · · ·+ 𝑎𝑛𝑥

𝑛) = (𝛼𝑎0) + (𝛼𝑎1)𝑥+ · · ·+ (𝛼𝑎𝑛)𝑥
𝑛 (𝛼 ∈ F)

respectively.

If a coefficient is 0, we usually omit it. So instead of writing 2+ 3𝑥+0𝑥2 +4𝑥3 +0𝑥5, we’ll
simply write 2 + 3𝑥+ 4𝑥3.

For example, 1+2𝑥−3𝑥2 ∈ 𝒫2(R) and 1+(2+ 𝑖)𝑥−𝑥5 ∈ 𝒫5(C). Both of these polynomials
are also in 𝒫10(C), if we pretend they are missing some 0 coefficients.
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Here is an example of addition in 𝒫2(R):

(4 + 7𝑥) + (1 + 𝑥2) = 5 + 7𝑥+ 𝑥2.

Here is an example of scalar multiplication in 𝒫3(C):

25𝑖(1 + 2𝑖𝑥3) = 25𝑖− 50𝑥3.

Warning: You may be used to thinking of polynomials as functions. In the context of
this course, don’t! Although it is sometimes useful to evaluate a polynomial at a certain
number, in this course, polynomials are not functions. They are simply objects that you
can add together and multiply by scalars.

Example 1.1.5 The vector space of 𝑚 by 𝑛 matrices with entries in F is given by

𝑀𝑚×𝑛(F) =

⎧⎪⎨⎪⎩
⎡⎢⎣ 𝑎11 · · · 𝑎1𝑛

...
. . .

...
𝑎𝑚1 · · · 𝑎𝑚𝑛

⎤⎥⎦ : 𝑎𝑖𝑗 ∈ F for all 𝑖, 𝑗

⎫⎪⎬⎪⎭ .

Addition and scalar multiplication are given by matrix addition and scalar multiplication
of matrices as usual. For instance, in 𝑀2×2(R),[︂

2 5
7 𝜋

]︂
+

[︂
1 0
1 1

]︂
=

[︂
3 5
8 𝜋 + 1

]︂
and

√
2

[︂
2 5
7 𝜋

]︂
=

[︂
2
√
2 5

√
2

7
√
2 𝜋

√
2

]︂
.

Example 1.1.6 The vector space of real-valued continuous functions on the interval [0, 1] is denoted by

𝒞([0, 1]) = {𝑓 : [0, 1] → R : 𝑓 is continuous on [0, 1]}.

Addition and scalar multiplication are defined by

(𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥) and (𝛼𝑓)(𝑥) = 𝛼(𝑓(𝑥)).

This example is a little trickier. Here, the ‘vectors’ are continuous functions from [0, 1] to
R. When we add two functions, we get another function, and when we multiply a function
by a scalar, we get another function. For example,

(sin(𝑥)) + (cos(𝑥)) = sin𝑥+ cos𝑥 and 3(𝑥2 + 1) = 3𝑥2 + 3.

Example 1.1.7 Here’s a slightly more interesting example. Let 𝑉 be the set of all lines in R2 with slope 1.
Each such line has equation 𝑦 = 𝑥+ 𝑑 for some 𝑑 ∈ R. Addition and scalar multiplication
in 𝑉 are defined by

(𝑦 = 𝑥+ 𝑑1) + (𝑦 = 𝑥+ 𝑑2) = (𝑦 = 𝑥+ (𝑑1 + 𝑑2)) and 𝛼(𝑦 = 𝑥+ 𝑑) = (𝑦 = 𝑥+ 𝛼𝑑).
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Now that we have seen a few examples of vector spaces, you might have a perfectly reason-
able question in mind: What is a vector space? Before we give the formal definition, let’s
take a look at the similarities between all of these examples.

They each consist of a set of objects called ‘vectors’ (even though sometimes these vectors
can look a little unusual, like a straight line in R2 of slope 1) and some set of scalars (R or
C). Furthermore, there is a way to ‘add’ two vectors to get another vector, and to ‘multiply’
a vector by a scalar to get another vector. There is some other structure lurking in the
background which is perhaps a little harder to notice just from these examples. Indeed, in
each vector space there is a special vector (call it

#»
0 , the zero vector) with the property that

#»
0 + #»𝑣 = #»𝑣 for all vectors #»𝑣 in the vector space.

Formally, we define a vector space as follows:

Definition 1.1.8

Vector Space Over
F, Vector Addition,

Scalar
Multiplication,
Vector Space
Axioms, Zero

Vector, Additive
Inverse

A vector space over F is a set 𝑉 together with an operation +: 𝑉 × 𝑉 → 𝑉 (vector
addition) so that

for all #»𝑥 , #»𝑦 ∈ 𝑉, #»𝑥 + #»𝑦 ∈ 𝑉,

and an operation · : F× 𝑉 → 𝑉 (scalar multiplication) so that

for all 𝑠 ∈ F and #»𝑥 ∈ 𝑉, 𝑠 · #»𝑥 ∈ 𝑉.

These operations must satisfy the following properties:

1. For all #»𝑥 , #»𝑦 , #»𝑧 ∈ 𝑉 , ( #»𝑥 + #»𝑦 ) + #»𝑧 = #»𝑥 + ( #»𝑦 + #»𝑧 );

2. There exists a vector
#»
0 ∈ 𝑉 such that, for all #»𝑥 ∈ 𝑉 ,

#»
0 + #»𝑥 = #»𝑥 +

#»
0 = #»𝑥 ;

3. For all #»𝑥 ∈ 𝑉 , there exists a vector −�⃗� ∈ 𝑉 such that #»𝑥 + (−�⃗�) = (−�⃗�) + #»𝑥 =
#»
0 ;

4. For all #»𝑥 , #»𝑦 ∈ 𝑉 , #»𝑥 + #»𝑦 = #»𝑦 + #»𝑥 ;

5. For all #»𝑥 ∈ 𝑉 and 𝑠, 𝑡 ∈ F, 𝑠 · (𝑡 · #»𝑥 ) = (𝑠𝑡) · #»𝑥 ;

6. For all #»𝑥 ∈ 𝑉 and 𝑠, 𝑡 ∈ F, (𝑠+ 𝑡) · #»𝑥 = 𝑠 · #»𝑥 + 𝑡 · #»𝑥 ;

7. For all #»𝑥 , #»𝑦 ∈ 𝑉 and 𝑠 ∈ F, 𝑠 · ( #»𝑥 + #»𝑦 ) = 𝑠 · #»𝑥 + 𝑠 · #»𝑦 ; and

8. For all #»𝑥 ∈ 𝑉 , 1 · #»𝑥 = #»𝑥 .

The above properties are called the vector space axioms.

The vector
#»
0 in axiom 2 is called the zero vector of 𝑉 . The vector − #»𝑥 in axiom 3 is

called the additive inverse of #»𝑥 . (See remarks 3 and 4 below.)

REMARKS

1. It is important to understand that the operations + and · above must be supplied
as part of the definition of a vector space. You have the freedom to define any two
functions +: 𝑉 ×𝑉 → 𝑉 and · : F×𝑉 → 𝑉 on any set 𝑉 . However, you will only get
a vector space if your functions satisfy the vector space axioms.
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2. Be careful to not confuse the abstract scalar multiplication · and the usual scalar
multiplication in F. For instance, in Axiom 5, on the left side we perform scalar mul-
tiplication by 𝑡 and then by 𝑠; while on the right side we perform scalar multiplication
by the scalar 𝑠𝑡. In general, there is no reason why these should produce the same
result. However, our intuition for a vector space suggests that they should, and this
is why we formally require this property as an axiom.

3. In this section, we will always use · for our abstract scalar multiplication. However,
this gets cumbersome very quickly, and so in later sections we will omit it and simply
write expressions like 𝑎 #»𝑥 instead of 𝑎 · #»𝑥 .

4. We will show below that, in a vector space 𝑉 , there can be exactly one vector that
satisfies axiom 2. It is therefore acceptable to call this vector the zero vector of 𝑉 .
Likewise, for each #»𝑥 ∈ 𝑉 , there will be exactly one vector − #»𝑥 that satisfies axiom 3.
See Proposition 1.1.13.

5. The notation − #»𝑥 chosen for the additive inverse of #»𝑥 is very suggestive. It resembles
the scalar multiplication (−1) · #»𝑥 of −1 ∈ F and #»𝑥 ∈ 𝑉 . However, since the definition
above is very abstract and general, it is conceivable that − #»𝑥 and (−1) · #»𝑥 might be
different vectors. Happily, that is not the case! It turns out that the vector space
axioms actually imply that − #»𝑥 = (−1) · #»𝑥 . See Proposition 1.1.14.

6. The vector #»𝑥 + (− #»𝑦 ) will usually be written as #»𝑥 − #»𝑦 .

Example 1.1.9 Let’s check that R2 with the usual definitions of addition and scalar multiplication is a
vector space over R.

To check axiom 1, let #»𝑥 =

[︂
𝑥1
𝑥2

]︂
, #»𝑦 =

[︂
𝑦1
𝑦2

]︂
, and #»𝑧 =

[︂
𝑧1
𝑧2

]︂
be three arbitrary

vectors in R2. Then

( #»𝑥 + #»𝑦 ) + #»𝑧 =

[︂
𝑥1 + 𝑦2
𝑥2 + 𝑦2

]︂
+

[︂
𝑧1
𝑧2

]︂
=

[︂
𝑥1 + 𝑦1 + 𝑧1
𝑥2 + 𝑦2 + 𝑧2

]︂
=

[︂
𝑥1
𝑥2

]︂
+

[︂
𝑦1 + 𝑧1
𝑦2 + 𝑧2

]︂
= #»𝑥 + ( #»𝑦 + #»𝑧 ),

so axiom 1 holds.

The vector
#»
0 =

[︂
0
0

]︂
satisfies the properties of axiom 2. If #»𝑥 =

[︂
𝑥1
𝑥2

]︂
, then − #»𝑥 =

[︂
−𝑥1
−𝑥2

]︂
satisfies #»𝑥 + (− #»𝑥 ) = (− #»𝑥 ) + #»𝑥 =

#»
0 , so 3 holds. For 7, let 𝑠 ∈ R be an arbitrary scalar.

Then

𝑠 · ( #»𝑥 + #»𝑦 ) = 𝑠 ·
[︂
𝑥1 + 𝑦1
𝑥2 + 𝑦2

]︂
=

[︂
𝑠(𝑥1 + 𝑦1)
𝑠(𝑥2 + 𝑦2)

]︂
=

[︂
𝑠𝑥1 + 𝑠𝑦1
𝑠𝑥2 + 𝑠𝑦2

]︂
=

[︂
𝑠𝑥1
𝑠𝑥2

]︂
+

[︂
𝑠𝑦1
𝑠𝑦2

]︂
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= 𝑠 · #»𝑥 + 𝑠 · #»𝑦 .

We leave the rest of the axioms as an exercise for you to check.

Exercise 1 Prove that axioms 4, 5, 6, and 8 hold for R2, implying that R2 is indeed a vector space
(over R).

Note: Solutions to these exercises can be found in Appendix A.

Exercise 2 Go through each of Examples 1.1.1–1.1.7 and convince yourself that each of them does in
fact give a vector space (over the appropriate F). In particular, what is the zero vector in
Example 1.1.7?

Here is a not very interesting—but important!—example of a vector space.

Example 1.1.10 The zero vector space is the vector space 𝑉 = { #»
0 } consisting of precisely one vector.

The definitions of addition and scalar multiplication are:

#»
0 +

#»
0 =

#»
0 and 𝛼 · #»

0 =
#»
0 (𝛼 ∈ F).

It’s very easy to check that these definitions satisfy axioms 1 through 8, with
#»
0 (of course)

being the zero vector.

Here are examples of things that are not a vector space.

Example 1.1.11 Let 𝑉 be the set of polynomials with coefficients in C of degree at most 1, with addition of
vectors and scalar multiplication (by scalars in C) given by

(𝑎0 + 𝑎1𝑥) + (𝑏0 + 𝑏1𝑥) = (𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝑥 and 𝛼 · (𝑎0 + 𝑎1𝑥) = (𝛼𝑎1) + (𝛼𝑎0)𝑥

respectively. Notice that the addition is standard, but scalar multiplication has the coef-
ficients swapped. Then 𝑉 is not a vector space since 1 · (3 + 𝑖𝑥) = 𝑖 + 3𝑥, so axiom 8
fails.

Example 1.1.12 Let 𝑉 be the set of polynomials with coefficients in R of degree at most 1, with addition of
vectors and scalar multiplication (by scalars in R) given by

(𝑎0 + 𝑎1𝑥) + (𝑏0 + 𝑏1𝑥) = (𝑎0 + 𝑎1) + (𝑏0 + 𝑏1)𝑥 and 𝛼 · (𝑎0 + 𝑎1𝑥) = (𝛼𝑎0) + (𝛼𝑎1)𝑥

respectively. This time scalar multiplication is standard, whereas the addition is not. Notice
that 𝑉 is not a vector space since

(3 + 2𝑥) + (5 + 4𝑥) = (3 + 2) + (5 + 4)𝑥

̸= (5 + 4) + (3 + 2)𝑥

= (5 + 4𝑥) + (3 + 2𝑥),

so axiom 4 fails.
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Proposition 1.1.13 Let 𝑉 be a vector space over F. Then

(a) The zero vector in 𝑉 is unique. That is, if
#»
0 1 ∈ 𝑉 satisfies the property that #»𝑥+

#»
0 1 =

#»𝑥
for all #»𝑥 ∈ 𝑉 , and if

#»
0 2 ∈ 𝑉 satisfies the property that #»𝑥 +

#»
0 2 = #»𝑥 for all #»𝑥 ∈ 𝑉 ,

then
#»
0 1 =

#»
0 2.

(b) Let #»𝑥 ∈ 𝑉 . The additive inverse of #»𝑥 is uniquely determined by #»𝑥 . That is, if #»𝑦
satisfies the property that #»𝑥 + #»𝑦 = #»𝑦 + #»𝑥 =

#»
0 , then #»𝑦 = − #»𝑥 .

Proof: (a) If
#»
0 1 is a zero vector (i.e. it satisfies axiom 2), then

#»
0 1 +

#»
0 2 =

#»
0 2.

Similarly, if
#»
0 2 is a zero vector we have

#»
0 1 +

#»
0 2 =

#»
0 1.

The left sides of the preceding equations are the same, so the right sides must be too.
Thus,

#»
0 1 =

#»
0 2, as desired.

(b) Let #»𝑥 , #»𝑦 ∈ 𝑉 be such that #»𝑥 + #»𝑦 = #»𝑦 + #»𝑥 =
#»
0 . Since #»𝑥 ∈ 𝑉 , it follows from axiom

3 that there exists a vector − #»𝑥 ∈ 𝑉 such that #»𝑥 + (− #»𝑥 ) =
#»
0 . Now, the equations

#»𝑥 + (− #»𝑥 ) =
#»
0 and #»𝑥 + #»𝑦 =

#»
0

imply that
#»𝑥 + (− #»𝑥 ) = #»𝑥 + #»𝑦 .

Adding #»𝑦 to both sides,

#»𝑦 + ( #»𝑥 + (− #»𝑥 )) = #»𝑦 + ( #»𝑥 + #»𝑦 ).

By axiom 1, this is the same as

( #»𝑦 + #»𝑥 ) + (− #»𝑥 ) = ( #»𝑦 + #»𝑥 ) + #»𝑦 .

From the property given in (b), we know that #»𝑦 + #»𝑥 =
#»
0 . So the above equation is

simply
#»
0 + (− #»𝑥 ) =

#»
0 + #»𝑦 .

Hence − #»𝑥 = #»𝑦 , by axiom 2.

Part (a) of Proposition 1.1.13 allows us to unambiguously use the symbol
#»
0 to denote the

zero vector of a vector space. Here are some further basic properties of the zero vector and
the additive inverse.
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Proposition 1.1.14 Let 𝑉 be a vector space over F. Then

(a) 0 · #»𝑥 =
#»
0 for all #»𝑥 ∈ 𝑉 ,

(b) (−1) · #»𝑥 = − #»𝑥 for all #»𝑥 ∈ 𝑉 , and

(c) 𝑡 · #»
0 =

#»
0 for all 𝑡 ∈ F.

Exercise 3 Prove Proposition 1.1.14.

Notice that part (a) of the previous Proposition gives us a quick way of determining the
zero vector of a given vector space: we simply scalar multiply any vector by the scalar zero.
For instance, if 𝑉 is the vector space from Example 1.1.7, and if, say, we consider the vector
𝑦 = 𝑥+ 1, then using the definition of scalar multiplication in 𝑉 we find that

#»
0 = 0 · (𝑦 = 𝑥+ 1) = (𝑦 = 𝑥).

Similarly, we can use part (b) to quickly determine the additive inverse of any given vector.

Of course, for this to be a useful strategy, we need to be sure that 𝑉 is in fact a vector
space. There are situations where we can be sure of this without having to check each of
the 8 axioms.

1.2 Subspaces

We know that if we consider just the plane {
[︀
𝑥 𝑦 0

]︀𝑇
: 𝑥, 𝑦 ∈ R} consisting of only the

𝑥𝑦-coordinates of points in R3, then we can think of this as “a copy” of R2 living inside R3.
This is an example of a subspace of R3. To make this idea precise, we first formally define
a subspace.

Definition 1.2.1

Subspace

Let 𝑉 be a vector space over F and 𝑈 ⊆ 𝑉 a subset. We call 𝑈 a subspace of 𝑉 if 𝑈 ,
endowed with the addition and scalar multiplication from 𝑉 , is itself a vector space over F.

Example 1.2.2 Every vector space 𝑉 has two obvious subspaces: 𝑉 itself and the subspace { #»
0 } consisting

of the zero vector of 𝑉 .

Example 1.2.3 Consider the subset 𝑈 ⊆ 𝒫2(F) given by 𝑈 = {𝑝 ∈ 𝒫2(F) : 𝑝(2) = 0}. First to get a feel for
𝑈 , note that 𝑝1(𝑥) = 𝑥2 + 𝑥− 6 is in 𝑈 , but 𝑝2(𝑥) = 𝑥2 is not in 𝑈 , because

𝑝1(2) = 22 + 2− 6 = 0 and 𝑝2(2) = 22 = 4 ̸= 0.

We claim that 𝑈 is a subspace of 𝒫2(F). Let’s check some of the axioms to convince
ourselves.
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First we have to check that the addition and scalar multiplication from 𝒫2(F) make sense as
addition and scalar multiplication in 𝑈 . That is, we have to make sure that if we take two
vectors in 𝑈 and add them together, we get a vector in 𝑈 , and that every scalar multiple
of a vector in 𝑈 is in 𝑈 .

Suppose 𝑝, 𝑞 ∈ 𝑈 and 𝛼 ∈ F. Then (𝑝+ 𝑞)(2) = 𝑝(2) + 𝑞(2) = 0 so 𝑝+ 𝑞 ∈ 𝑈 . Furthermore,
(𝛼𝑝)(2) = 𝛼𝑝(2) = 0 so 𝛼𝑝 ∈ 𝑈 . Thus, addition and scalar multiplication make sense on 𝑈 .

Since the addition and scalar multiplication on 𝑈 is simply that from 𝒫2(F), and 𝒫2(F) is
a vector space, axioms 1, 4, 5, 6, 7, and 8 obviously hold for 𝑈 . Since that the zero vector
#»
0 = 0𝑥2 +0𝑥+0 of 𝒫2(F) is in 𝑈 , we deduce that axiom 2 is satisfied. Finally, by part (b)
of Proposition 1.1.14, −𝑝 = (−1)𝑝 ∈ 𝑈 , so axiom 3 is satisfied. We may finally conclude
that 𝑈 is a vector space.

Checking that addition and scalar multiplication make sense on 𝑈 and checking all 8 axioms
is a little cumbersome. However, if you carefully examine the previous example, a lot of
things came for free from the fact that 𝒫2(F) was already a vector space. The next theorem
allows us never to have to do that much work again, and simply check three things to check
whether or not a subset of a vector space is a subspace or not.

Theorem 1.2.4 (The Subspace Test)

Let 𝑉 be vector space over F and let 𝑈 be a subset of 𝑉 . Then 𝑈 is a subspace of 𝑉 if and
only if the following three conditions hold.

(a) 𝑈 is non-empty.

(b) For all #»𝑢 1,
#»𝑢 2 ∈ 𝑈 , #»𝑢 1 +

#»𝑢 2 ∈ 𝑈 . (We say that 𝑈 is closed under addition.)

(c) For all 𝛼 ∈ F and for all #»𝑢 ∈ 𝑈 , 𝛼 #»𝑢 ∈ 𝑈 . (We say that 𝑈 is closed under scalar
multiplication.)

Proof: If 𝑈 is a subspace, then (b) and (c) hold as part of being a definition of a subspace,
and since all vector spaces have a zero vector, 𝑈 must be non-empty.

Conversely, suppose (a), (b) and (c) hold for a subset 𝑈 of 𝑉 . Properties (b) and (c)
imply that the addition and scalar multiplication from 𝑉 restrict to addition and scalar
multiplication on 𝑈 . Axioms 1,4,5,6,7, and 8 hold since 𝑉 is a vector space. For axiom 2,
since 𝑈 is non-empty, choose a vector #»𝑢 ∈ 𝑈 and then note by Proposition 1.1.14, 0 #»𝑢 =

#»
0 .

Property (c) then implies that
#»
0 is in 𝑈 . Similarly, for axiom 3 let #»𝑢 ∈ 𝑈 . Then by

Proposition 1.1.14 and property (c), − #»𝑢 = (−1) #»𝑢 ∈ 𝑈 , completing the proof.

Example 1.2.5 Prove that 𝑈 = {𝑝 ∈ 𝒫2(F) : 𝑝(2) = 0} is a subspace of 𝒫2(F).

Proof: By the Subspace Test, we only need to check three things:

(a) Since
#»
0 = 0𝑥2 + 0𝑥+ 0 ∈ 𝑈 , 𝑈 is non-empty.
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(b) Let 𝑝, 𝑞 ∈ 𝑈 . Then (𝑝 + 𝑞)(2) = 𝑝(2) + 𝑞(2) = 0, so 𝑝 + 𝑞 ∈ 𝑈 . Thus, 𝑈 is closed
under addition.

(c) Let 𝑝 ∈ 𝑈 and 𝛼 ∈ R. Then (𝛼𝑝)(2) = 𝛼𝑝(2) = 0 so 𝛼𝑝 ∈ R. Thus, 𝑈 is closed
under scalar multiplication.

Therefore, by the Subspace Test, 𝑈 is a subspace of 𝒫2(F).

It is natural to ask now what kind of things aren’t subspaces. If you study the proof of
The Subspace Test, you will see that a subspace of a vector space 𝑉 must contain the zero
vector of 𝑉 . So any subset of 𝑉 that doesn’t contain the zero vector of 𝑉 cannot possibly
be a subspace of 𝑉 . We state this result formally in the corollary below, where we also
address a related subtlety: a subspace 𝑈 of a vector space 𝑉 is itself a vector space, so it
has a zero vector by definition. Could it be that this zero vector in 𝑈 is different from the
zero vector in 𝑉 ?

Corollary 1.2.6 Let 𝑉 be a vector space over F and suppose that 𝑈 is a subspace of 𝑉 . Let
#»
0 𝑉 and

#»
0 𝑈

denote the zero vectors in 𝑉 and 𝑈 , respectively. Then
#»
0 𝑈 =

#»
0 𝑉 . In particular, the zero

vector in 𝑉 is in 𝑈 :
#»
0 𝑉 ∈ 𝑈 .

Exercise 4 Prove Corollary 1.2.6.

This corollary allows us to write 0⃗ unambiguously if we’re working inside a fixed vector
space 𝑉 .

Example 1.2.7 Let 𝑆 = {𝑝(𝑥) ∈ 𝒫2(F) : 𝑝(2) = 1}. Then 𝑆 is not a subspace of 𝒫2(F) because it does not
contain

#»
0 = 0 + 0𝑥+ 0𝑥2, the zero vector of 𝒫2(F).

Of course a subset of a vector space may contain
#»
0 yet fail to be a subspace.

Example 1.2.8 Let Z denote the set of all integers, and consider the subset

𝐿 =

{︂[︂
𝑎 𝑏
𝑐 𝑑

]︂
∈ 𝑀2×2(F) : 𝑎, 𝑏, 𝑐, 𝑑 ∈ Z

}︂

of 𝑀2×2(F). This is not a subspace of 𝑀2×2(F) since 1
2

[︂
1 1
1 1

]︂
/∈ 𝐿 whereas

[︂
1 1
1 1

]︂
∈ 𝐿.

That is, 𝐿 is not closed under scalar multiplication.

Now that we have studied some examples, an interesting question to think about is how
subspaces can be created. One way is to take a subset of vectors in your vector space,
and then throw in everything else that needs to be there to make that subset a subspace!
This is the same process that you have seen in F𝑛. The following definition uses familiar
terminology.
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Definition 1.2.9

Span, Linear
Combination

Let 𝑆 = { #»𝑣 1, . . . ,
#»𝑣 𝑘} be a subset of a vector space 𝑉 over F. Define the span of 𝑆 by

Span(𝑆) = {𝑡1 #»𝑣 1 + · · ·+ 𝑡𝑘
#»𝑣 𝑘 : 𝑡1, . . . , 𝑡𝑘 ∈ F}.

A vector of the form 𝑡1
#»𝑣 1 + · · · + 𝑡𝑘

#»𝑣 𝑘 is called a linear combination of the vectors
#»𝑣 1, . . . ,

#»𝑣 𝑘.

By convention, we define the span of the empty set to be the set consisting of the zero
vector: Span∅ = { #»

0 }.

REMARK

Notice that the previous definition only applies to finite subsets of 𝑉 . If 𝑆 is an infinite
subset of 𝑉 , then the span of 𝑆 is defined to be the union of the spans of all finite subsets
of 𝑆. Equivalently, the span of 𝑆 is the set of all linear combinations of all finite collections
of vectors in 𝑆.

In this course, we will not be making use of this more general definition. However, in more
advanced treatments of linear algebra, this generalization plays an important role.

Example 1.2.10 In 𝑀2×2(F), let 𝑆 =

{︂[︂
1 1
0 0

]︂
,

[︂
0 0
1 1

]︂}︂
. Then

[︂
2 2
−3 −3

]︂
∈ Span(𝑆), since

[︂
2 2
−3 −3

]︂
= 2

[︂
1 1
0 0

]︂
+ (−3)

[︂
0 0
1 1

]︂
.

On the other hand,

[︂
1 0
0 1

]︂
̸∈ Span(𝑆), since there are no 𝑎, 𝑏 ∈ F such that

[︂
1 0
0 1

]︂
= 𝑎

[︂
1 1
0 0

]︂
+ 𝑏

[︂
0 0
1 1

]︂
,

as you can check.

Example 1.2.11 In 𝒫1(F), let 𝑆 = {1 + 𝑥, 1− 𝑥}. Then

Span(𝑆) = {𝑎(1 + 𝑥) + 𝑏(1− 𝑥) : 𝑎, 𝑏 ∈ F}.

There are many different descriptions of Span(𝑆). For instance, we claim that

Span(𝑆) = Span(𝐵), where 𝐵 = {1, 𝑥}.

Indeed, since
𝑎(1 + 𝑥) + 𝑏(1− 𝑥) = (𝑎+ 𝑏) · 1 + (𝑎− 𝑏) · 𝑥,

we see that every element 𝑎(1+𝑥)+ 𝑏(1−𝑥) of Span(𝑆) is also an element of Span(𝐵), i.e.,
Span(𝑆) ⊆ Span(𝐵). Conversely, notice that

𝑐+ 𝑑𝑥 =
𝑐+ 𝑑

2
(1− 𝑥) +

𝑐− 𝑑

2
(1 + 𝑥),
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(Where did this seemingly magical expression come from? You may want to review how to
solve systems of linear equations! See the Exercise following this example.) This shows that
every element 𝑐 + 𝑑𝑥 of Span(𝐵) is also an element of Span(𝑆), i.e., Span(𝐵) ⊆ Span(𝑆).
This proves that the sets Span(𝑆) and Span(𝐵) are equal.

Exercise 5 In the example above, behind the scenes we ended up solving two systems of linear equations.
When proving Span(𝑆) ⊆ Span(𝐵), we took an arbitrary element 𝑎(1 + 𝑥) + 𝑏(1 − 𝑥) in
Span(𝑆) and solved the equation

𝑎(1 + 𝑥) + 𝑏(1− 𝑥) = 𝑐 · 1 + 𝑑 · 𝑥

for 𝑐 and 𝑑. When proving Span(𝐵) ⊆ Span(𝑆), we took an arbitrary element 𝑐 + 𝑑𝑥 in
Span(𝐵) and solved the equation

𝑐+ 𝑑𝑥 = 𝑎(1 + 𝑥) + 𝑏(1− 𝑥)

for 𝑎 and 𝑏. Can you write down the associated systems of linear equations in matrix form
and then solve them?

Let’s prove now that taking the span of some vectors does actually result in a subspace.
The proof is exactly as it was for F𝑛. This is a common theme of the subject. Any result
that we can prove for F𝑛 using only the vector space structure of F𝑛 can usually be carried
over word for word to the setting of an abstract vector space over F. Indeed, this is one
motivation for even defining abstract vector spaces! We can now prove one result that
simultaneously applies to a wide variety of different-looking spaces, such as F𝑛, 𝑀𝑚×𝑛(F),
𝒫𝑛(F), etc.

Proposition 1.2.12 Let 𝑆 = { #»𝑣 1, . . . ,
#»𝑣 𝑘} be a subset of a vector space 𝑉 . Then Span(𝑆) is a subspace of 𝑉 .

Proof: Since
#»
0 = 0 #»𝑣 1 + · · · + 0 #»𝑣 𝑘,

#»
0 ∈ Span(𝑆) so Span(𝑆) is non-empty. Suppose

#»𝑥 , #»𝑦 ∈ Span(𝑆), and let #»𝑥 = 𝑡1
#»𝑣 1 + · · · + 𝑡𝑘

#»𝑣 𝑘 and 𝑦 = 𝑠1
#»𝑣 1 + · · · + 𝑠𝑘

#»𝑣 𝑘 for elements
𝑡1, . . . , 𝑡𝑘, 𝑠1, . . . , 𝑠𝑘 ∈ F. Then

#»𝑥 + #»𝑦 = (𝑡1 + 𝑠1)
#»𝑣 1 + · · ·+ (𝑡𝑘 + 𝑠𝑘)

#»𝑣 𝑘

so #»𝑥 + #»𝑦 ∈ Span(𝑆) and hence Span(𝑆) is closed under addition. Finally, let #»𝑥 ∈ Span(𝑆)
be as above, and let 𝛼 ∈ F. Then 𝛼 #»𝑥 = (𝛼𝑡1)

#»𝑣 1 + · · ·+(𝛼𝑡𝑘)
#»𝑣 𝑘 and since 𝛼𝑡𝑖 ∈ F for all 𝑖,

𝛼 #»𝑥 ∈ Span(𝑆) and hence Span(𝑆) is closed under scalar multiplication. Therefore, by the
Subspace Test, Span(𝑆) is a subspace of 𝑉 .

1.3 Bases and Dimension

We now shift our focus to formalizing the notion of dimension. Intuitively we know that R2

is a 2-dimensional space, because there are 2 different directions one can travel in, and no
more. We may also have an idea that R2 is 2-dimensional since every vector is determined by
2 pieces of information (the 𝑥 and 𝑦 coordinates). Similarly, we may guess that R𝑛 would be
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an 𝑛-dimensional vector space, and we would be correct! However, this geometric intuition
fails us when thinking about other vector spaces. For example, what is the dimension of
C2, or 𝒫3(R), or 𝒞([0, 1])?
As you’ve learned in a previous course, the key to defining a useful notion of dimension is to
first define “basis.” The definition of basis for F𝑛 carries over without change to the setting
of an abstract vector space. Recall that a basis for F𝑛 is a linearly independent spanning
set for F𝑛. Thus, we must begin by defining these concepts in this new abstract setting.

1.3.1 Spanning Sets, Linear Independence, and Bases

Definition 1.3.1

Spanning Set,
Spans

A set of vectors 𝑆 = { #»𝑣 1, . . . ,
#»𝑣 𝑘} in a vector space 𝑉 is a spanning set for 𝑉 if

Span(𝑆) = 𝑉.

We also say that 𝑆 spans 𝑉 .

Intuitively, a set of vectors span a vector space if every vector in that vector space can
be obtained from those vectors. More precisely, every vector in the vector space can be
expressed as linear combination of those from the spanning set.

Example 1.3.2 The set 𝐵 = {1, 𝑥} is a spanning set for 𝒫1(F). Indeed, by definition

𝒫1(F) = {𝑎+ 𝑏𝑥 : 𝑎, 𝑏 ∈ F} = Span(𝐵).

In Example 1.2.11, we effectively showed that 𝑆 = {1− 𝑥, 1 + 𝑥} is also a spanning set for
𝒫1(F).

It is easy to see that 𝑇 = {3 + 2𝑥} is not a spanning set for 𝒫1(F). For instance, there is
no way of writing the polynomial 𝑥 as a multiple of 3 + 2𝑥.

A spanning set can sometimes have redundant information. For example, the sets{︂[︂
1
0

]︂
,

[︂
0
1

]︂
,

[︂
1
1

]︂}︂
and

{︂[︂
1
0

]︂
,

[︂
0
1

]︂}︂

are both spanning sets for R2, but the vector

[︂
1
1

]︂
in the first set is redundant since it is a

linear combination of the other two vectors. To formalize this, we introduce the notion of
linear independence.

Definition 1.3.3

Linearly
Independent,

Linearly
Dependent

A set of vectors { #»𝑣 1, . . . ,
#»𝑣 𝑘} in a vector space 𝑉 is linearly independent if the only

solution to the equation
𝑡1

#»𝑣 1 + · · ·+ 𝑡𝑘
#»𝑣 𝑘 =

#»
0

is 𝑡1 = · · · = 𝑡𝑘 = 0. The set is linearly dependent otherwise.

By convention, the empty set ∅ is linearly independent.
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REMARK

We can extend the definition of linear independence to infinite subsets of 𝑉 by defining such
a set to be linearly independent if all of its finite subsets are linearly independent. Just as
for spanning sets, this more general definition will not play a role in our course.

Although this is the formal definition we are to work with, the intuition is that a linearly
independent set is a set of vectors that all “point in different directions” so that no vector
in the set is “redundant.” The next result elaborates on this idea.

Proposition 1.3.4 A subset 𝑆 = { #»𝑣 1, . . . ,
#»𝑣 𝑘} of a vector space 𝑉 is linearly dependent if and only if at least

one vector in 𝑆 is a linear combination of other vectors in 𝑆.

Proof: If 𝑆 is linearly dependent, then there is a solution to

𝑡1
#»𝑣 1 + · · ·+ 𝑡𝑘

#»𝑣 𝑘 =
#»
0

with some 𝑡𝑖 ̸= 0. But then by moving the 𝑖th term on the left to the right-side of the above
equation, we get ∑︁

𝑗 ̸=𝑖

𝑡𝑗
#»𝑣 𝑗 = (−𝑡𝑖)

#»𝑣 𝑖

and then by dividing both sides by −𝑡𝑖 (which is non-zero!), we’ve expressed #»𝑣 𝑖 as a linear
combination of the other vectors in 𝑆.

Conversely, assume that some vector in 𝑆, say #»𝑣 𝑖 is a linear combination of some other
vectors, say

#»𝑣 𝑖 =
∑︁
𝑗 ̸=𝑖

𝑐𝑗
#»𝑣 𝑗

(we can assume that all of the other vectors of 𝑆 appear on the right-side by letting 𝑐𝑗 = 0
if needed). Then by moving #»𝑣 𝑖 to the right, we get

𝑐1
#»𝑣 1 + · · ·+ (−1) #»𝑣 𝑖 + · · ·+ 𝑐𝑘

#»𝑣 𝑘 = 0.

Thus we’ve found a solution to

𝑡1
#»𝑣 1 + · · ·+ 𝑡𝑘

#»𝑣 𝑘 =
#»
0

with 𝑡𝑖 = −1 ̸= 0, which shows that 𝑆 is linearly dependent.

Example 1.3.5 The set {1 + 𝑥, 1} is linearly independent in 𝒫1(C). To see this, set

0 = 𝑡1(1 + 𝑥) + 𝑡2(1) = (𝑡1 + 𝑡2) + 𝑡1𝑥.

Then equating the 𝑥 coefficient gives us 𝑡1 = 0, which then implies 𝑡2 = 0. Therefore the
only solution is 𝑡1 = 𝑡2 = 0, so the set is linearly independent.
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Example 1.3.6 Since in R2,

−1

[︂
1
0

]︂
+

1

2

[︂
1
1

]︂
+

1

2

[︂
1
−1

]︂
=

[︂
0
0

]︂
,

the set

{︂[︂
1
0

]︂
,

[︂
1
1

]︂
,

[︂
1
−1

]︂}︂
is linearly dependent.

Sometimes it’s not so easy to stare at a set of vectors and decide whether or not they are
linearly independent. However, we do have some tools for solving simultaneous equations
from a previous course to help us along the way!

Example 1.3.7 Is {𝑥+ 𝑥2 − 2𝑥3, 2𝑥− 𝑥2 + 𝑥3, 𝑥+ 5𝑥2 + 3𝑥3} linearly independent in 𝒫3(R)?

Solution:

To check, we want to solve the equation

𝑎(𝑥+ 𝑥2 − 2𝑥3) + 𝑏(2𝑥− 𝑥2 + 𝑥3) + 𝑐(𝑥+ 5𝑥2 + 3𝑥3) = 0

for 𝑎, 𝑏, 𝑐. Equating coefficients gives us the system of simultaneous equations

𝑎+ 2𝑏+ 𝑐 = 0

𝑎− 𝑏+ 5𝑐 = 0

−2𝑎+ 𝑏+ 3𝑐 = 0.

To solve such a system of equations, we plug the coefficients into an augmented matrix and
row reduce! We get ⎡⎣ 1 2 1 0

1 −1 5 0
−2 1 3 0

⎤⎦ −→

⎡⎣1 0 0 0
0 1 0 0
0 0 1 0

⎤⎦ .

Therefore the system of equations has exactly one solution, and that solution is 𝑎 = 𝑏 =
𝑐 = 0. Therefore the set is linearly independent.

If we have a spanning set that is linearly independent, then in some sense our spanning set
is not redundant. Such sets are very special and deserve a name.

Definition 1.3.8

Basis

A basis for a vector space 𝑉 is a linearly independent subset that spans 𝑉 .

Theorem 1.3.9 Every vector space 𝑉 has a basis.

This result is mostly of theoretical interest. In practice, almost all of the vector spaces in
this course will have bases that we can easily discover and write down explicitly (see Section
1.3.3). The proof of Theorem 1.3.9 in full generality is actually quite intricate and requires
ideas beyond the scope of our course. On page 25 (see Item 2), we give a proof of this result
in the special case where 𝑉 is known to have a finite spanning set, which will be the case
for the overwhelming majority of our examples.
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Example 1.3.10 Here are some examples of bases:

•

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
1
0
0
...
0

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎣
0
1
0
...
0

⎤⎥⎥⎥⎥⎥⎦ , . . . ,

⎡⎢⎢⎢⎢⎢⎣
0
...
0
0
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
is the standard basis for F𝑛.

• {1, 𝑥, 𝑥2, · · · , 𝑥𝑛} is the standard basis for 𝒫𝑛(F).

• {𝐸11, 𝐸12, . . . , 𝐸𝑖𝑗 , . . . , 𝐸𝑛𝑚}, where 𝐸𝑖𝑗 is the 𝑚× 𝑛 matrix with an entry of 1 in the
(𝑖, 𝑗)th position and 0s elsewhere, is the standard basis for 𝑀𝑚×𝑛(F).

• The empty set ∅ is a basis for the zero vector space { #»
0 }.

Example 1.3.11 Is 𝑆 =

{︂[︂
1 0
0 1

]︂
,

[︂
0 1
1 0

]︂
,

[︂
1 0
0 −1

]︂
,

[︂
0 −1
1 0

]︂}︂
a basis for 𝑀2×2(R)?

Solution:

To check, we want to verify whether 𝑆 is a spanning set for 𝑀2×2(R) and whether 𝑆 is
linearly independent.

First, we check whether Span(𝑆) = 𝑀2×2(R). Certainly, Span(𝑆) ⊆ 𝑀2×2(R), so we only

need to demonstrate the reverse inclusion 𝑀2×2(R) ⊆ Span(𝑆). Let

[︂
𝑎 𝑏
𝑐 𝑑

]︂
be an arbitrary

matrix in 𝑀2×2(R), and consider the equation

𝑎1

[︂
1 0
0 1

]︂
+ 𝑎2

[︂
0 1
1 0

]︂
+ 𝑎3

[︂
1 0
0 −1

]︂
+ 𝑎4

[︂
0 −1
1 0

]︂
=

[︂
𝑎 𝑏
𝑐 𝑑

]︂
.

By adding up the matrices on the left-side and then equating entries with the right-side,
we obtain the system of simultaneous equations

𝑎1 + 𝑎3 = 𝑎

𝑎2 − 𝑎4 = 𝑏

𝑎2 + 𝑎4 = 𝑐

𝑎1 − 𝑎3 = 𝑑.

To solve this system of equations, we plug the coefficients into an augmented matrix and
row reduce. We get ⎡⎢⎢⎣

1 0 1 0 𝑎
0 1 0 −1 𝑏
0 1 0 1 𝑐
1 0 −1 0 𝑑

⎤⎥⎥⎦ −→

⎡⎢⎢⎣
1 0 0 0 𝑎+𝑑

2

0 1 0 0 𝑏+𝑐
2

0 0 1 0 𝑎−𝑑
2

0 0 0 1 𝑐−𝑏
2

⎤⎥⎥⎦ .

We conclude that

𝑎+ 𝑑

2

[︂
1 0
0 1

]︂
+

𝑏+ 𝑐

2

[︂
0 1
1 0

]︂
+

𝑎− 𝑑

2

[︂
1 0
0 −1

]︂
+

𝑐− 𝑏

2

[︂
0 −1
1 0

]︂
=

[︂
𝑎 𝑏
𝑐 𝑑

]︂
,
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which means that 𝑀2×2(R) ⊆ Span(𝑆). Hence 𝑆 is a spanning set for 𝑀2×2(R).

To check that 𝑆 is linearly independent, we consider the equation

𝑎1

[︂
1 0
0 1

]︂
+ 𝑎2

[︂
0 1
1 0

]︂
+ 𝑎3

[︂
1 0
0 −1

]︂
+ 𝑎4

[︂
0 −1
1 0

]︂
=

[︂
0 0
0 0

]︂
which, as can been seen from the RREF above, has exactly one solution, namely 𝑎1 = 𝑎2 =
𝑎3 = 𝑎4 = 0. Hence 𝑆 linearly independent, and so it must be a basis.

In the following subsection we will learn about a more efficient method of checking whether
a particular subset 𝑆 of a vector space 𝑉 is a basis (provided we know the dimension of 𝑉
beforehand); see Example 1.3.17.

Exercise 6 Verify that the sets below are bases for the indicated vector spaces.

(a)

⎧⎨⎩
⎡⎣1
1
1

⎤⎦ ,

⎡⎣1
1
0

⎤⎦ ,

⎡⎣1
0
0

⎤⎦⎫⎬⎭ is a basis for R3.

(b)

⎧⎨⎩
⎡⎣1
1
1

⎤⎦ ,

⎡⎣1
1
0

⎤⎦ ,

⎡⎣1
0
0

⎤⎦⎫⎬⎭ is a basis for C3.

(c)

{︂[︂
2
0

]︂
,

[︂
0
3𝑖

]︂}︂
is a basis for C2.

(d) {1− 𝑥, 1 + 𝑥} is a basis for 𝒫1(R).

1.3.2 Dimension

Just as for F𝑛, we will define the dimension of a vector space 𝑉 to be the number of vectors
in a basis for 𝑉 . For this to make sense, we must first prove that all bases have the same
size. As you examine our proof below, you should compare it to the proof of the same fact
for F𝑛 that you may have seen in a previous course.

Lemma 1.3.12 Let 𝑉 be a vector space over F and suppose that 𝑉 = Span({ #»𝑣 1, . . . ,
#»𝑣 𝑛}). If { #»𝑢 1, . . . ,

#»𝑢 𝑘}
is a linearly independent set in 𝑉 , then 𝑘 ≤ 𝑛.

Proof: Since Span({ #»𝑣 1, . . . ,
#»𝑣 𝑛}) = 𝑉 , we have

#»𝑢 1 = 𝑎11
#»𝑣 1 + · · ·+ 𝑎1𝑛

#»𝑣 𝑛

...
#»𝑢 𝑘 = 𝑎𝑘1

#»𝑣 1 + · · ·+ 𝑎𝑘𝑛
#»𝑣 𝑛



Section 1.3 Bases and Dimension 23

where 𝑎𝑖𝑗 ∈ F for all 𝑖 and 𝑗. We will now aim to show that if 𝑘 > 𝑛, then there is a solution
to 𝑡1

#»𝑢 1 + · · ·+ 𝑡𝑘
#»𝑢 𝑘 =

#»
0 where not all the 𝑡𝑖 are 0. We have

𝑡1
#»𝑢 1 + · · ·+ 𝑡𝑘

#»𝑢 𝑘

= 𝑡1(𝑎11
#»𝑣 1 + · · ·+ 𝑎1𝑛

#»𝑣 𝑛) + · · ·+ 𝑡𝑘(𝑎𝑘1
#»𝑣 1 + · · ·+ 𝑎𝑘𝑛

#»𝑣 𝑘)

= (𝑎11𝑡1 + 𝑎21𝑡2 + · · ·+ 𝑎𝑘1𝑡𝑘)
#»𝑣 1 + · · ·+ (𝑎1𝑛𝑡1 + · · ·+ 𝑎𝑘𝑛𝑡𝑘)

#»𝑣 𝑛.

Now, if 𝑘 > 𝑛 the system of linear equations

𝑎11𝑡1 + · · ·+ 𝑎𝑘1𝑡𝑘 = 0

...

𝑎1𝑛𝑡1 + · · ·+ 𝑎𝑘𝑛𝑡𝑘 = 0

has a solution where not all the 𝑡𝑖 are 0. Consider such a solution. We then have

#»
0 = 0 #»𝑣 1 + · · ·+ 0 #»𝑣 𝑛

= (𝑎11𝑡1 + · · ·+ 𝑎𝑘1𝑡𝑘)
#»𝑣 1 + · · · (𝑎1𝑛𝑡1 + · · ·+ 𝑎𝑘𝑛𝑡𝑘)

#»𝑣 𝑛

= 𝑡1
#»𝑢 1 + · · ·+ 𝑡𝑘

#»𝑢 𝑘

contradicting the assumption that { #»𝑢 1, . . . ,
#»𝑢 𝑘} is linearly independent. So 𝑘 ≤ 𝑛.

Theorem 1.3.13 Suppose ℬ = { #»𝑣 1, . . . ,
#»𝑣 𝑛} and 𝒞 = { #»𝑢 1, . . . ,

#»𝑢 𝑘} are both bases of a vector space 𝑉 . Then
𝑘 = 𝑛.

Proof: Since ℬ spans 𝑉 and 𝒞 is linearly independent, 𝑘 ≤ 𝑛. However, since 𝒞 spans 𝑉
and ℬ is linearly independent, 𝑛 ≤ 𝑘. Thus, 𝑘 = 𝑛.

Definition 1.3.14

Dimension,
Finite-dimensional,
Infinite-dimensional

We say that a vector space 𝑉 is finite-dimensional if it has a finite basis. Otherwise, we
say that 𝑉 is infinite-dimensional.

If 𝑉 is finite-dimensional, we define its dimension to be the size of any finite basis of 𝑉 .
We denote this by dim(𝑉 ).

If 𝑉 is infinite-dimensional, we write dim(𝑉 ) = ∞.

Note that Theorem 1.3.13 shows that dim(𝑉 ) is well-defined if 𝑉 is finite-dimensional:
it doesn’t matter what finite basis of 𝑉 you pick—they all contain the same number of
elements.

With the definition of dimension at our disposal, we can now talk about dimension with
conviction! Here are four important examples:

• dim({ #»
0 }) = 0 since by convention ∅ is a basis for { #»

0 }.

• dim(F𝑛) = 𝑛 since the standard basis has size 𝑛.

• dim(𝒫𝑛(F)) = 𝑛+ 1 since the standard basis has size 𝑛+ 1.

• dim(𝑀𝑚×𝑛(F)) = 𝑚𝑛 since the standard basis has size 𝑚𝑛.
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The vector space 𝒞([0, 1]) is infinite-dimensional, and we would write dim(𝒞([0, 1])) = ∞.
To convince yourself of this, notice that 𝒞([0, 1]) contains all polynomials of arbitrarily high
degree. Since no finite set of polynomials can generate all polynomials of arbitrary degree,
there can be no finite basis.

Example 1.3.15 Let 𝑈 =

{︂[︂
𝑎 𝑏
𝑐 𝑑

]︂
∈ 𝑀2×2(F) : 𝑎+ 𝑏+ 𝑐+ 𝑑 = 0

}︂
. It is an exercise for you to check that 𝑈

is a subspace of 𝑀2×2(F). We will now compute the dimension of 𝑈 by finding a basis for
𝑈 .

Note that every matrix in 𝑈 is of the form

[︂
𝑎 𝑏
𝑐 (−𝑎− 𝑏− 𝑐)

]︂
, so we can write every matrix

in 𝑈 as

𝑎

[︂
1 0
0 −1

]︂
+ 𝑏

[︂
0 1
0 −1

]︂
+ 𝑐

[︂
0 0
1 −1

]︂
.

Thus,

{︂[︂
1 0
0 −1

]︂
,

[︂
0 1
0 −1

]︂
,

[︂
0 0
1 −1

]︂}︂
is a spanning set for 𝑈 .

(Notice that this actually proves that 𝑈 is a subspace of 𝑀2×2(F)! Indeed, we have just
shown that 𝑈 is equal to a span of some vectors in 𝑀2×2(F). Now apply Proposition 1.2.12.)

We now check to see whether the above spanning set is linearly independent. Consider

𝑡1

[︂
1 0
0 −1

]︂
+ 𝑡2

[︂
0 1
0 −1

]︂
+ 𝑡3

[︂
0 0
1 −1

]︂
=

[︂
0 0
0 0

]︂
.

By comparing the top-left entries, we get 𝑡1 = 0; the top-right entries give 𝑡2 = 0; and the

bottom-left give 𝑡3 = 0. Therefore

{︂[︂
1 0
0 −1

]︂
,

[︂
0 1
0 −1

]︂
,

[︂
0 0
1 −1

]︂}︂
is linearly independent

and hence is a basis for 𝑈 .

Thus, dim(𝑈) = 3.

The next theorem is extremely useful in thinking about dimension. It formally proves
things you already know in your heart to be true. Things like “You cannot have 4 linearly
independent vectors in R3, there’s just not enough space!” and “You can’t span 𝑀2×2(C)
with only 3 vectors, that’s not enough because dim(𝑀2×2(C)) = 4!” A sketch of the proof
is provided, and you should fill in the details as an exercise. (If you get stuck, you can look
at the proof in the case of 𝑉 = F𝑛 for inspiration.)

Theorem 1.3.16 Let 𝑉 be an 𝑛-dimensional vector space over F. Then

(a) A set of more than 𝑛 vectors in 𝑉 must be linearly dependent.

(b) A set of fewer than 𝑛 vectors in 𝑉 cannot span 𝑉 .

(c) A set with exactly 𝑛 vectors in 𝑉 is a spanning set for 𝑉 if and only if it is linearly
independent.
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Proof: Parts (a) and (b) are restatements of Lemma 1.3.12. Statement (c) follows from
the two paragraphs in Section 1.3.3.

In view of this result we can now introduce a much more efficient procedure for verifying
whether a given set is a basis of a vector space whose dimension is known.

Example 1.3.17 Let’s revisit Example 1.3.11 and demonstrate a different approach for showing that

𝑆 =

{︂[︂
1 0
0 1

]︂
,

[︂
0 1
1 0

]︂
,

[︂
1 0
0 −1

]︂
,

[︂
0 −1
1 0

]︂}︂
is a basis for 𝑀2×2(R).

Since 𝑀2×2(R) is 4-dimensional, every basis for it must contain exactly 4 vectors. Since this
is the case for 𝑆, it is a potential candidate for being a basis. In view of Theorem 1.3.16
(c), 𝑆 will be a spanning set for 𝑀2×2(R) if and only if it is linearly independent. Thus,
it suffices to check either that Span(𝑆) = 𝑀2×2(R) or that 𝑆 is linearly independent; once
we check one, we get the other one for free.

It’s usually easier to check for linear independence. We’ve already shown in Example
1.3.11 that 𝑆 is linearly independent. It then follows, by what we’ve said in the preceding
paragraph, that 𝑆 must be a basis for 𝑀2×2(R).

Exercise 7 Let 𝑆 = {𝑝0(𝑥), 𝑝1(𝑥), 𝑝2(𝑥)} be a subset of 𝑃2(F). Show that if deg(𝑝𝑖(𝑥)) = 𝑖, then 𝑆 is a
basis for 𝒫2(F).

Finally, we state an unsurprising result relating the dimension of a subspace to the dimension
of the vector space that contains it.

Theorem 1.3.18 Let 𝑉 be a finite-dimensional vector space over F and let 𝑊 be a subspace of 𝑉 . Then 𝑊
is finite-dimensional. Moreover, dim(𝑊 ) ≤ dim(𝑉 ) with equality if and only if 𝑊 = 𝑉 .

Proof: Since any linearly independent set in 𝑊 is linearly independent in 𝑉 as well, it
follows from Lemma 1.3.12 (applied to the case where { #»𝑣 1, . . . ,

#»𝑣 𝑛} is a basis for 𝑉 ) that
there can be no more than 𝑛 = dim(𝑉 ) distinct linearly independent vectors in 𝑊 . In
particular, the size of any basis for 𝑊 cannot exceed dim(𝑉 ). This simultaneously shows
that 𝑊 is finite-dimensional and that dim(𝑊 ) ≤ dim(𝑉 ).

Suppose now that dim(𝑊 ) = dim(𝑉 ). Then according to Theorem 1.3.16(c), a basis ℬ for
𝑊 will automatically be a basis for 𝑉 , since it is a linearly independent set of size dim(𝑉 ).
It follows that 𝑉 = Span(ℬ) = 𝑊 . Conversely, if 𝑊 = 𝑉 then of course dim(𝑊 ) =
dim(𝑉 ).

1.3.3 Obtaining Bases

There are many ways you could find a basis for a finite-dimensional vector space. Here are
a couple of important ways.
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1. Extending a linearly independent subset. Suppose you have a linearly indepen-
dent subset { #»𝑣 1, . . . ,

#»𝑣 𝑘} in a finite dimensional vector space 𝑉 . If it is a spanning set,
then you have a basis. If not, choose a vector #»𝑣 𝑘+1 not in the span of { #»𝑣 1, . . . ,

#»𝑣 𝑘}.
Then { #»𝑣 1, . . . ,

#»𝑣 𝑘+1} must be linearly independent (by Proposition 1.3.4). If this new
set spans, then it’s a basis. If not, then repeat. This process must eventually stop
since our vector space is finite-dimensional, and you will be left with a basis containing
{ #»𝑣 1, . . . ,

#»𝑣 𝑘}.

2. Reducing an arbitrary finite spanning set. Suppose you have a finite span-
ning set { #»𝑣 1, . . . ,

#»𝑣 𝑘} for your vector space, and let’s assume that it doesn’t con-
tain

#»
0 . If it is linearly independent, it is a basis! If not, you can write one of

the vectors in the set, say 𝑣𝑖, as a linear combination of the others (by Propo-
sition 1.3.4). Now Span({ #»𝑣 1, . . . ,

#»𝑣 𝑘}) = Span({ #»𝑣 1, . . . ,
#»𝑣 𝑖−1,

#»𝑣 𝑖+1, . . . ,
#»𝑣 𝑘}), so

{ #»𝑣 1, . . . ,
#»𝑣 𝑖−1,

#»𝑣 𝑖+1, . . . ,
#»𝑣 𝑘} spans our vector space. If this new set is linearly in-

dependent, then it is a basis! If not, repeat to remove another vector. This process
must eventually stop since we started with finitely many vectors in our spanning set.
The final product will be a basis made up entirely out of vectors from our original
spanning set.

Here’s an example of how method 1 above can be applied.

Example 1.3.19 Suppose we wish to find a basis for 𝒫3(R) containing the polynomials 1 + 𝑥 and 1 + 𝑥2.
Notice first of all that 𝑆 = {1 + 𝑥, 1 + 𝑥2} is linearly independent, so we are actually able
to accomplish this.

Since dim(𝒫3(R)) = 4, must need to add two more polynomials to 𝑆 in such a way that the
resulting set is still linearly independent. Where can we find such polynomials? We have
the standard basis vectors 1, 𝑥, 𝑥2 and 𝑥3, so we can try adding them in one at a time and
checking linear independence.

If we add in 1, the resulting set 𝑇 = {1 + 𝑥, 1 + 𝑥2, 1} will be linearly independent, as you
can check (see also the Exercise after Example 1.3.17). So we we just need to add one more
vector to 𝑇 .

If we add in 𝑥, we obtain a linearly dependent set {1+𝑥, 1+𝑥2, 1, 𝑥}, since 𝑥 = (1+𝑥)+(−1)1
is a linear combination of two other vectors in the set. Similarly, 𝑥2 is no good. However, if
we add in 𝑥3, then the resulting set 𝐵 = {1 + 𝑥, 1 + 𝑥2, 1, 𝑥3} is linearly independent, and
hence (because it contains 4 = dim(𝒫3(R)) vectors) is a basis for 𝒫3(R).

In practice, most of our vector spaces will be given to us as subspaces of a familiar vector
space 𝑉 , like in Examples 1.2.5 and 1.3.15, where we were given a subspace 𝑈 of 𝑉 defined
by some conditions. In such situations we can attempt to express the defining conditions
for 𝑈 in terms of a known basis for 𝑉 (such as the “standard basis” in case 𝑉 is one of F𝑛,
𝒫𝑛(F) or 𝑀𝑚×𝑛(F)). This will allow us to determine a spanning set for 𝑈 , after which we
can apply method 2 above (if this spanning set isn’t already a basis).

Example 1.3.20 To give an illustration of how this works, let’s try to find a basis for the subspace

𝑈 = {𝑝 ∈ 𝒫2(F) : 𝑝(2) = 0}



Section 1.3 Bases and Dimension 27

of 𝒫2(F) from Example 1.2.5. First we must express the condition 𝑝(2) = 0 using the
standard basis {1, 𝑥, 𝑥2} of 𝒫2(F). We can write 𝑝 as 𝑝(𝑥) = 𝑎+ 𝑏𝑥+ 𝑐𝑥2, in which case the
condition 𝑝(2) = 0 becomes

𝑎+ 2𝑏+ 4𝑐 = 0.

This is a linear equation in three variables, and we can employ our usual method for solving
it in terms of basic variables and free parameters. We can do this quickly: simply notice
that 𝑎 = −2𝑏− 4𝑐! Consequently,

𝑝(𝑥) = 𝑎+ 𝑏𝑥+ 𝑐𝑥2

= (−2𝑏− 4𝑐) + 𝑏𝑥+ 𝑐𝑥2

= 𝑏(−2 + 𝑥) + 𝑐(−4 + 𝑥2).

This shows that ℬ = {−2+𝑥,−4+𝑥2} is a spanning set for 𝑈 . We’ll leave it as an exercise
for you to check that ℬ is linearly independent, and is therefore a basis for 𝑈 .

Exercise 8 Take another look at Example 1.3.15 and convince yourself that what was done there uses
the same process performed in the above example.

1.3.4 Coordinates with Respect to a Basis

Recall that in R3 you may have seen that the vector

⎡⎣3
2
4

⎤⎦ can be written as 3 #»𝑒 1+2 #»𝑒 2+4 #»𝑒 3,

where { #»𝑒 1,
#»𝑒 2,

#»𝑒 3} is the standard basis for R3. You have seen this to mean that the vector⎡⎣3
2
4

⎤⎦ can be found 3-units in the 𝑥-direction, 2 in the 𝑦, and 4 in the 𝑧.

In fact, once we have a basis for a vector space, we can think of this as a choice of axes, and
we can write every vector as a coordinate vector in much the same way as we think about
vectors in R3.

Example 1.3.21 Consider the vector #»𝑣 = 3 + 5𝑥 − 2𝑥2 in 𝒫2(R), and the bases ℬ = {1, 𝑥, 𝑥2} and 𝒞 =
{1, 1 + 𝑥, 1 + 𝑥+ 𝑥2} (as an exercise, prove that 𝒞 is a basis).

Then #»𝑣 = 3(1) + 5(𝑥) + (−2)(𝑥2) so we think of #»𝑣 as living at the coordinate (3, 5,−2)
with respect to the axes defined by ℬ.
We also have #»𝑣 = −2(1)+7(1+𝑥)+(−2)(1+𝑥+𝑥2) so, with respect to the axes determined
by 𝒞, we can think of #»𝑣 as living at the point (−2, 7,−2).

More formally, we can write the coordinate vectors of #»𝑣 with respect to ℬ and 𝒞 as

[ #»𝑣 ]ℬ =

⎡⎣ 3
5
−2

⎤⎦ and [ #»𝑣 ]𝒞 =

⎡⎣−2
7
−2

⎤⎦ ,

respectively. This gives us two different ways of looking at the same vector.
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A natural question to ask is: does it even make sense to talk about coordinate vectors like
this? Is it possible that the same vector has two different coordinate vectors with respect
to the same basis? The answer is “no.”

Lemma 1.3.22 Let 𝑉 be a vector space, let 𝑆 = { #»𝑣 1, . . . ,
#»𝑣 𝑘} be a subset of 𝑉 , and let 𝑈 = Span(𝑆).

Then every vector in 𝑈 can be expressed in a unique way as a linear combination of the
vectors in 𝑆 if and only if 𝑆 is linearly independent.

Proof: Suppose every vector in 𝑈 is expressed uniquely as a linear combination of the
vectors in 𝑆. Then there is only one way to write

#»
0 = 𝑡1

#»𝑣 1 + · · ·+ 𝑡𝑘
#»𝑣 𝑘,

which is 𝑡1 = · · · = 𝑡𝑘 = 0, so 𝑆 is linearly independent. Conversely, suppose 𝑆 is linearly
independent and

𝑡1
#»𝑣 1 + · · ·+ 𝑡𝑘

#»𝑣 𝑘 = 𝑠1
#»𝑣 1 + · · ·+ 𝑠𝑘

#»𝑣 𝑘.

Rearranging we have (𝑡1 − 𝑠1)
#»𝑣 1 + · · ·+ (𝑡𝑘 − 𝑠𝑘)

#»𝑣 𝑘 =
#»
0 . Since 𝑆 is linearly independent,

this can only be true if 𝑡𝑖 = 𝑠𝑖 for all 𝑖, completing the proof.

If we apply this lemma to a basis of a vector space, we immediately get the following useful
theorem.

Theorem 1.3.23 (Unique Representation Theorem)

Let 𝑉 be a vector space and let ℬ = { #»𝑣 1, . . . ,
#»𝑣 𝑛} be a basis of 𝑉 . Then for all #»𝑣 ∈ 𝑉

there exist unique scalars 𝑥1, . . . , 𝑥𝑛 ∈ F such that

#»𝑣 = 𝑥1
#»𝑣 1 + · · ·+ 𝑥𝑛

#»𝑣 𝑛.

We can thus unambiguously define the set of coordinates of a vector with respect to a given
basis. But if we want to use these coordinates to form a coordinate vector, there is a small
subtlety that must be addressed. The next example illustrates the issue.

Example 1.3.24 Let #»𝑣 = 2 − 𝑖 + 4𝑥 − 𝑖𝑥2 ∈ 𝒫2(C). If ℬ = {1, 𝑥, 𝑥2} and 𝒞 = {1, 𝑥2, 𝑥} are bases for

𝒫2(C), then the coordinates of #»𝑣 with respect to these bases are

⎡⎣2− 𝑖
4
−𝑖

⎤⎦ and

⎡⎣2− 𝑖
−𝑖
4

⎤⎦,
respectively.

That is, the order of the basis vectors matters!

Definition 1.3.25

Ordered Basis

Let 𝑉 be a finite-dimensional vector space over F. An ordered basis for 𝑉 is a basis
ℬ = { #»𝑣1,

#»𝑣2, . . . ,
# »𝑣𝑛} for 𝑉 together with a fixed ordering.
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REMARK

When we refer to the set { #»𝑣1,
#»𝑣2, . . . ,

# »𝑣𝑛} as being ordered, we are indicating that #»𝑣1 is the
first element in the ordering, that #»𝑣2 is the second, and so on.

Thus even though { #»𝑣1,
#»𝑣2} and { #»𝑣2,

#»𝑣1} are the same set, they are different from the point
of view of orderings.

A basis { #»𝑣1,
#»𝑣2, . . . ,

# »𝑣𝑛} gives rise to 𝑛! ordered bases, one for each possible ordering (per-
mutation) of the vectors in the basis.

Definition 1.3.26

Coordinate Vector

Let ℬ = { #»𝑣 1, . . . ,
#»𝑣 𝑛} be an ordered basis for a vector space 𝑉 . If #»𝑥 ∈ 𝑉 is written as

#»𝑥 = 𝑥1
#»𝑣 1 + · · ·+ 𝑥𝑛

#»𝑣 𝑛

then the coordinate vector of #»𝑥 with respect to ℬ is

[ #»𝑥 ]ℬ =

⎡⎢⎣𝑥1
...
𝑥𝑛

⎤⎥⎦ .

Example 1.3.27 Consider the ordered basis

ℬ =

{︂[︂
3 2
2 2

]︂
,

[︂
1 0
1 1

]︂
,

[︂
1 1
1 0

]︂
,

[︂
1 4
0 3

]︂}︂
of 𝑀2×2(R). Let #»𝑥 =

[︂
1 −1
0 3

]︂
. We wish to find [ #»𝑥 ]ℬ. Consider the equation

𝑎

[︂
3 2
2 2

]︂
+ 𝑏

[︂
1 0
1 1

]︂
+ 𝑐

[︂
1 1
1 0

]︂
+ 𝑑

[︂
1 4
0 3

]︂
=

[︂
1 −1
0 3

]︂
.

To get the coordinate vector of #»𝑥 with respect to ℬ, we need to solve for 𝑎, 𝑏, 𝑐, 𝑑. Equating
the entries of the matrices on the left and right hand side of the equals sign gives us the
system of equations

3𝑎+ 𝑏+ 𝑐+ 𝑑 = 1

2𝑎+ 𝑐+ 4𝑑 = −1

2𝑎+ 𝑏+ 𝑐 = 0

2𝑎+ 𝑏+ 3𝑑 = 3.

To solve this equation we create an augmented matrix and row reduce, giving⎡⎢⎢⎣
3 1 1 1 1
2 0 1 4 −1
2 1 1 0 0
2 1 0 3 3

⎤⎥⎥⎦ −→

⎡⎢⎢⎣
1 0 0 0 1
0 1 0 0 1
0 0 1 0 −3
0 0 0 1 0

⎤⎥⎥⎦ .

Therefore
#»𝑥 = 1

[︂
3 2
2 2

]︂
+ 1

[︂
1 0
1 1

]︂
− 3

[︂
1 1
1 0

]︂
+ 0

[︂
1 4
0 1

]︂
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and

[ #»𝑥 ]ℬ =

⎡⎢⎢⎣
1
1
−3
0

⎤⎥⎥⎦ .

Example 1.3.28 Earlier you may have noticed that there is some kind of similarity between R3 and 𝒫2(R),
and we can somehow identify the vectors

#»𝑣 =

⎡⎣𝑎
𝑏
𝑐

⎤⎦ and #»𝑤 = 𝑎+ 𝑏𝑥+ 𝑐𝑥2.

Now we can get a glimpse as to how these two vectors may indeed be viewed as the same
after picking bases for the two vector spaces. Consider the standard (ordered) bases

ℬ =

⎧⎨⎩
⎡⎣1
0
0

⎤⎦ ,

⎡⎣0
1
0

⎤⎦ ,

⎡⎣0
0
1

⎤⎦⎫⎬⎭ and 𝒞 = {1, 𝑥, 𝑥2}

for R3 and 𝒫2(R) respectively. Then we see that

[ #»𝑣 ]ℬ = [ #»𝑤]𝒞 =

⎡⎣𝑎
𝑏
𝑐

⎤⎦ .

Once we have chosen a basis for a vector space 𝑉 , every vector can now be represented as
a column vector. Column vectors, as we know, come with their own addition and scalar
multiplication. A natural question to ask is whether or not the column vector addition
and scalar multiplication agree with the addition and scalar multiplication on 𝑉 . Since
everything so far in this course has worked out so beautifully, it would be a huge surprise
if this wasn’t true! Indeed, it is true.

Theorem 1.3.29 Let 𝑉 be a finite-dimensional vector space over F with ordered basis ℬ. Then

[ #»𝑥 + #»𝑦 ]ℬ = [ #»𝑥 ]ℬ + [ #»𝑦 ]ℬ and [𝑡 #»𝑥 ]ℬ = 𝑡[ #»𝑥 ]ℬ

for all #»𝑥 , #»𝑦 ∈ 𝑉 and all 𝑡 ∈ F.

Proof: This is just a matter of using the definition to determine [ #»𝑥 ]ℬ, [
#»𝑦 ]ℬ, [

#»𝑥 + #»𝑦 ]ℬ and
[𝑡 #»𝑥 ]ℬ. We’ll leave the details as an exercise.

Exercise 9 Prove Theorem 1.3.29.

In this next Chapter, we’ll see how this theorem effectively allows us to replace computations
in an 𝑛-dimensional vector space 𝑉 with computations in the more familiar space F𝑛.
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Linear Transformations

2.1 Linear Transformations Between Abstract Vectors

So far in the course we have studied vector spaces in isolation. That is, we’ve started with
a single vector space and studied it, without looking at how it compares to, or interacts
with, other vector spaces. However, we have seen glimpses that there is something to be
said about comparing vector spaces. For example, R3 and 𝒫2(R) appear to be the same
vector space in some sense, just wrapped up in a different package.

In mathematics in general, when we want to study how objects interact, we usually think
about functions between them. However, when studying functions between two vector
spaces, we don’t want to just take any old function. We’d like to take into account that
we’re working with vector spaces which come with the additional structure of vector addition
and scalar multiplication. Ideally, our functions should respect this structure. This leads
us to the following (hopefully familiar) definition.

Definition 2.1.1

Linear
Transformation,
Linear Map,
Linearity

If 𝑉 and 𝑊 are vector spaces over F, a function 𝐿 : 𝑉 → 𝑊 is called a linear transfor-
mation (or linear map) if it satisfies the linearity properties:

1. 𝐿( #»𝑥 + #»𝑦 ) = 𝐿( #»𝑥 ) + 𝐿( #»𝑦 ), and

2. 𝐿(𝑡 #»𝑥 ) = 𝑡𝐿( #»𝑥 )

for all #»𝑥 , #»𝑦 ∈ 𝑉 , 𝑡 ∈ F.

Said another way, it doesn’t matter if you add two vectors before or after applying the
linear map, and the same with scalar multiplication.

Example 2.1.2 A simple but important linear map is the identity map (or identity transformation)
id : 𝑉 → 𝑉 , which sends each vector to itself: id( #»𝑥 ) = #»𝑥 .

31
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Example 2.1.3 Consider the map 𝐿 : 𝒫3(R) → R defined by 𝐿(𝑝) = 𝑝(2). This is a linear map. In general,
let 𝑡 ∈ F. Define the evaluation map

ev𝑡 : 𝒫𝑛(F) → F

by ev𝑡(𝑝(𝑥)) = 𝑝(𝑡). This is a linear map, and the proof of this claim is left as an exercise.

Exercise 10 Let 𝑡 ∈ F. Prove that the evaluation map ev𝑡 : 𝒫𝑛(F) → F is a linear map.

Example 2.1.4 Let tr : 𝑀𝑛×𝑛(F) → F be the map defined by taking the trace of a matrix. Recall, if

𝐴 =

⎡⎢⎣𝑎11 · · · 𝑎1𝑛
...

. . .
...

𝑎𝑛1 · · · 𝑎𝑛𝑛

⎤⎥⎦
then tr(𝐴) = 𝑎11 + 𝑎22 + · · ·+ 𝑎𝑛𝑛. We will prove that tr is a linear map.

Let 𝐴,𝐵 ∈ 𝑀𝑛×𝑛(F) with 𝐴 =

⎡⎢⎣𝑎11 · · · 𝑎1𝑛
...

. . .
...

𝑎𝑛1 · · · 𝑎𝑛𝑛

⎤⎥⎦ and 𝐵 =

⎡⎢⎣ 𝑏11 · · · 𝑏1𝑛
...

. . .
...

𝑏𝑛1 · · · 𝑏𝑛𝑛

⎤⎥⎦. Then
tr(𝐴+𝐵) = 𝑎11 + 𝑏11 + 𝑎22 + 𝑏22 + · · ·+ 𝑎𝑛𝑛 + 𝑏𝑛𝑛

= 𝑎11 + 𝑎22 + · · ·+ 𝑎𝑛𝑛 + 𝑏11 + 𝑏22 + · · ·+ 𝑏𝑛𝑛

= tr(𝐴) + tr(𝐵).

If 𝑡 ∈ F, then

tr(𝑡𝐴) = 𝑡𝑎11 + 𝑡𝑎22 + · · ·+ 𝑡𝑎𝑛𝑛

= 𝑡(𝑎11 + 𝑎22 + · · ·+ 𝑎𝑛𝑛)

= 𝑡(tr(𝐴))

so tr is a linear map.

Example 2.1.5 By contrast, the determinant function det : 𝑀𝑛×𝑛(F) → F is not linear when 𝑛 > 1. Indeed,
det(2𝐴) = 2𝑛 det(𝐴), so if det(𝐴) ̸= 0, then det(2𝐴) ̸= 2det(𝐴).

An important property of linear maps is that not only do they respect addition and scalar
multiplication, they also respect the zero vector.

Proposition 2.1.6 Let 𝐿 : 𝑉 → 𝑊 be a linear map, and let
#»
0 𝑉 and

#»
0𝑊 denote the zero vectors of 𝑉 and 𝑊 ,

respectively. Then
𝐿(

#»
0 𝑉 ) =

#»
0𝑊 .
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REMARK

Since the notation
#»
0 𝑉 is somewhat cumbersome, going forwards we will only write

#»
0 when

it should be clear from context what the relevant vector space is.

Exercise 11 Prove Proposition 2.1.6. (Hint: Consider 𝐿(𝑡
#»
0 ) with 𝑡 = 0.)

Example 2.1.7 The map 𝐿 : 𝒫𝑛(F) → 𝒫𝑛(F) defined by

𝐿 (𝑝(𝑥)) = 𝑝(𝑥) + 1

is not linear, because it maps the zero polynomial to the polynomial 1.

The converse to Proposition 2.1.6 is false, as the next two Exercises show.

Exercise 12 Show that the following maps are not linear:

(a) 𝐿 : R3 → 𝒫2(R) defined by 𝐿

⎛⎝⎡⎣𝑎
𝑏
𝑐

⎤⎦⎞⎠ = 𝑎2 + 𝑏2𝑥+ 𝑐2𝑥2.

(b) 𝐿 : 𝒫2(R) → R defined by 𝐿(𝑎+ 𝑏𝑥+ 𝑐𝑥2) = 𝑎𝑏𝑐.

Several other natural operations you are familiar with are linear maps. For example, inte-
gration and differentiation of polynomials are both linear maps.

Example 2.1.8 The differentiation map
𝐷 : 𝒫3(R) → 𝒫2(R)

given by 𝐷(𝑝(𝑥)) = 𝑝′(𝑥), or more explicitly by

𝐷(𝑎0 + 𝑎1𝑥+ 𝑎2𝑥
2 + 𝑎3𝑥

3) = 𝑎1 + 2𝑎2𝑥+ 3𝑎3𝑥
2,

can be shown to be a linear map.

Similarly, the integration map
𝐼 : 𝒫3(R) → 𝒫4(R)

given by 𝐼(𝑝) =
∫︀ 𝑥
0 𝑝(𝑡) 𝑑𝑡, or more explicitly by

𝐼(𝑎0 + 𝑎1𝑥+ 𝑎2𝑥
2 + 𝑎3𝑥

3) = 𝑎0𝑥+
1

2
𝑎1𝑥

2 +
1

3
𝑎2𝑥

3 +
1

4
𝑎3𝑥

4,

is also a linear map.
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Exercise 13 Show that the maps 𝐷 and 𝐼 in the previous example are linear maps.

2.2 Rank and Nullity

As we did for linear maps from F𝑛 to F𝑚, we associate two important subspaces to each
linear map 𝐿 : 𝑉 → 𝑊 .

Definition 2.2.1

Kernel, Nullspace,
Range

Let 𝐿 : 𝑉 → 𝑊 be a linear map. The kernel (or nullspace) of 𝐿 is

Ker(𝐿) = { #»𝑥 ∈ 𝑉 : 𝐿( #»𝑥 ) =
#»
0 }.

The range of 𝐿 is
Range(𝐿) = {𝐿( #»𝑥 ) ∈ 𝑊 : #»𝑥 ∈ 𝑉 }.

The kernel of a linear map 𝐿 : 𝑉 → 𝑊 is the set of all the vectors in 𝑉 that are mapped to
#»
0 ∈ 𝑊 . The range of 𝐿 is all the vectors in 𝑊 that are outputs of 𝐿.

Theorem 2.2.2 Let 𝑉 and 𝑊 be vector spaces over F, and let 𝐿 : 𝑉 → 𝑊 be a linear map. Then

(a) Ker(𝐿) is a subspace of 𝑉 , and

(b) Range(𝐿) is a subspace of 𝑊 .

Proof: The same proof that you’ve seen for linear maps from F𝑛 to F𝑚 works here. So we
will only give a proof of part (a) and leave part (b) to you.

Let’s use the Subspace Test. From Proposition 2.1.6, we see that
#»
0 ∈ Ker(𝐿), so Ker(𝐿) is

non-empty. Suppose next that #»𝑣 , #»𝑤 ∈ Ker(𝐿). Then 𝐿( #»𝑣+ #»𝑤) = 𝐿( #»𝑣 )+𝐿( #»𝑤) =
#»
0+

#»
0 =

#»
0

so #»𝑣 + #»𝑤 ∈ Ker(𝐿), and therefore Ker(𝐿) is closed under addition. Finally, let 𝑡 ∈ F. Then
𝐿(𝑡 #»𝑣 ) = 𝑡𝐿( #»𝑣 ) =

#»
0 , so Ker(𝐿) is closed under scalar multiplication. Thus Ker(𝐿) is a

subspace of 𝑉 .

Exercise 14 Prove part (b) of Theorem 2.2.2.

Example 2.2.3 The linear map 𝐿 : R3 → R2 defined by

𝐿

⎛⎝⎡⎣𝑎
𝑏
𝑐

⎤⎦⎞⎠ =

[︂
𝑎
𝑏

]︂
.

has Ker(𝐿) =

⎧⎨⎩
⎡⎣0
0
𝑐

⎤⎦ ∈ R3 : 𝑐 ∈ R

⎫⎬⎭ and Range(𝐿) = R2.
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Example 2.2.4 Let 𝐿 : 𝑀2×2(R) → 𝒫2(R) be defined by

𝐿

(︂[︂
𝑎 𝑏
𝑐 𝑑

]︂)︂
= 𝑏+ 𝑐+ (𝑐− 𝑑)𝑥2.

We leave it to you to check that 𝐿 is linear. We have

Ker(𝐿) =

{︂[︂
𝑎 𝑏
𝑐 𝑑

]︂
∈ 𝑀2×2(R) : 𝑏+ 𝑐 = 𝑐− 𝑑 = 0

}︂
=

{︂[︂
𝑎 −𝑐
𝑐 𝑐

]︂
: 𝑎, 𝑐 ∈ R

}︂
.

It is clear that Range(𝐿) ⊆ Span({1, 𝑥2}). Since 𝐿

(︂[︂
0 1
0 0

]︂)︂
= 1 and 𝐿

(︂[︂
0 0
0 −1

]︂)︂
= 𝑥2,

we see Range(𝐿) ⊇ Span({1, 𝑥2}). Therefore Range(𝐿) = Span({1, 𝑥2}).

If you examine these examples, you’ll notice something interesting about the dimensions
of the vector spaces involved. In the first example, dim(R3) = 3, dim(Range(𝐿)) = 2
and dim(Ker(𝐿)) = 1. In the second we have dim(𝑀2×2(R)) = 4, dim(Ker(𝐿)) = 2 and
dim(Range(𝐿)) = 2. The dimension of the domain of 𝐿 in both cases seems to be equal to
the sum of the dimensions of Range(𝐿) and Ker(𝐿). This is not a coincidence! Let’s gives
these dimensions some names.

Definition 2.2.5

Rank, Nullity

Let 𝑉 and𝑊 be vector spaces over F. The rank of a linear map 𝐿 : 𝑉 → 𝑊 is the dimension
of the range of 𝐿. The nullity of 𝐿 is the dimension of the kernel (nullspace) of 𝐿. That is,

rank(𝐿) = dim(Range(𝐿)) and nullity(𝐿) = dim(Ker(𝐿)).

The key result about the rank and nullity of a linear map is the following theorem.

Theorem 2.2.6 (Rank–Nullity Theorem)

Let 𝑉 and 𝑊 be vector spaces over F with 𝑉 finite-dimensional and dim(𝑉 ) = 𝑛. Let
𝐿 : 𝑉 → 𝑊 be a linear map. Then rank(𝐿) + nullity(𝐿) = 𝑛.

The idea of the proof is as follows. We will start with a basis of Ker(𝐿) of size 𝑘 and we
will extend this to a basis of 𝑉 by adding 𝑚 vectors to it (so dim(𝑉 ) = 𝑘 +𝑚). Then we
prove that the image of the 𝑚 new vectors under 𝐿 give a basis for Range(𝐿), which will
complete the proof.

Proof: Let { #»𝑣 1, . . . ,
#»𝑣 𝑘} be a basis for Ker(𝐿) so nullity(𝐿) = 𝑘. Extend this to a ba-

sis { #»𝑣 1, . . . ,
#»𝑣 𝑘,

#»𝑤1, . . . ,
#»𝑤𝑚} for 𝑉 so dim(𝑉 ) = 𝑘 + 𝑚. It suffices to that show ℬ =

{𝐿( #»𝑤1), . . . , 𝐿(
#»𝑤𝑚)} is a basis for Range(𝐿). We first show Span(ℬ) = Range(𝐿). Clearly

Span(ℬ) ⊆ Range(𝐿), so we must prove the reverse containment Span(ℬ) ⊇ Range(𝐿). Let
#»𝑤 ∈ Range(𝐿). Then #»𝑤 = 𝐿( #»𝑣 ) for some #»𝑣 ∈ 𝑉 , and we may write #»𝑣 as

#»𝑣 = 𝑡1
#»𝑣 1 + · · ·+ 𝑡𝑘

#»𝑣 𝑘 + 𝑠1
#»𝑤1 + · · ·+ 𝑠𝑚

#»𝑤𝑚.
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Then

#»𝑤 = 𝐿( #»𝑣 ) = 𝐿(𝑡1
#»𝑣 1 + · · ·+ 𝑡𝑘

#»𝑣 𝑘 + 𝑠1
#»𝑤1 + · · ·+ 𝑠𝑚

#»𝑤𝑚)

= 𝑡1𝐿(
#»𝑣 1) + · · ·+ 𝑡𝑘𝐿(

#»𝑣 𝑘) + 𝑠1𝐿(
#»𝑤1) + · · ·+ 𝑠𝑚𝐿( #»𝑤𝑚)

= 𝑠1𝐿(
#»𝑤1) + · · ·+ 𝑠𝑚𝐿( #»𝑤𝑚).

So ℬ is a spanning set for Range(𝐿). For linear independence, suppose that

𝑠1𝐿(
#»𝑤1) + · · ·+ 𝑠𝑚𝐿( #»𝑤𝑚) =

#»
0 .

Since 𝐿 is linear, this implies 𝑠1
#»𝑤1 + · · ·+ 𝑠𝑚

#»𝑤𝑚 ∈ Ker(𝐿). Therefore

𝑠1
#»𝑤1 + · · ·+ 𝑠𝑚

#»𝑤𝑚 = 𝑡1
#»𝑣 1 + · · ·+ 𝑡𝑘

#»𝑣 𝑘

for some 𝑡1, . . . , 𝑡𝑘 ∈ F. However, { #»𝑣 1, . . . ,
#»𝑣 𝑘,

#»𝑤1, . . . ,
#»𝑤𝑚} is linearly independent, so we

must conclude 𝑠1 = · · · = 𝑠𝑚 = 𝑡1 = · · · = 𝑡𝑘 = 0. Therefore ℬ is a basis for Range(𝐿) and
so rank(𝐿) = 𝑚. Since nullity(𝐿) = 𝑘 and dim(𝑉 ) = 𝑚+ 𝑘, the proof is complete.

REMARK

You might be familiar with the Rank–Nullity theorem for matrices, which states that if
𝐴 ∈ 𝑀𝑚×𝑛(F) then

𝑛 = rank(𝐴) + nullity(𝐴),

where rank(𝐴) is the dimension of the column space of 𝐴, and nullity(𝐴) is the dimension of
the nullspace of 𝐴. We’ll show below that this theorem is consequence of the Rank–Nullity
theorem for linear maps stated above. See Corollary 2.5.21.

Here are some examples of the kinds of things you can conclude with the Rank–Nullity
theorem in your back pocket.

Example 2.2.7 Let 𝐿 : 𝒫3(R) → R3 be a linear map. Since dim(R3) = 3, it must be that rank(𝐿) ≤ 3.
Since dim(𝒫3(R)) = 4, the Rank–Nullity theorem implies nullity(𝐿) ≥ 1. Therefore without
knowing anything about the linear map, we can conclude that there is at least one non-zero
vector #»𝑣 ∈ 𝒫3(R) such that 𝐿( #»𝑣 ) =

#»
0 .

Example 2.2.8 Let 𝐿 : C4 → 𝑀2×2(C) be a linear map. Then Ker(𝐿) = { #»
0 } if and only if Range(𝐿) =

𝑀2×2(C).

Proof: First note dim(C4) = dim(𝑀2×2(C)) = 4. If Ker(𝐿) = { #»
0 } then nullity(𝐿) = 0

so the Rank–Nullity theorem says rank(𝐿) = 4. Therefore Range(𝐿) is a 4-dimensional
subspace of 𝑀2×2(C) so it must be that Range(𝐿) = 𝑀2×2(C) (why?). Conversely, if
Range(𝐿) = 𝑀2×2(C), then rank(𝐿) = 4. Therefore nullity(𝐿) = 0 so Ker(𝐿) = { #»

0 }.
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2.3 Linear Maps as Matrices

Recall that given an 𝑚× 𝑛 matrix 𝐴 ∈ 𝑀𝑚×𝑛(F), we can define a linear map 𝐿 : F𝑛 → F𝑚

by 𝐿( #»𝑥 ) = 𝐴 #»𝑥 . Conversely, you learned that every linear map 𝐿 : F𝑛 → F𝑚 can be realized
in this form for an appropriate matrix 𝐴. So, in some sense, linear maps between F𝑛 and
F𝑚 and matrices in 𝑀𝑚×𝑛(F) are two sides of the same coin.

Example 2.3.1 Consider the linear map 𝐿 : R2 → R2 given by 𝐿

(︂[︂
𝑎
𝑏

]︂)︂
=

[︂
𝑎+ 2𝑏
𝑎− 2𝑏

]︂
. We can find a matrix

that performs this transformation. Indeed,[︂
1 2
1 −2

]︂ [︂
𝑎
𝑏

]︂
=

[︂
𝑎+ 2𝑏
𝑎− 2𝑏

]︂
.

The fact that a matrix even existed in the previous example was plausible because it’s not
much of a stretch of the imagination to view a vector in R2 as a column vector. But we can
do this in every vector space—once we fix a basis! Recall that if we fix an ordered basis for
a vector space, then every vector can be written as a column vector by simply taking its
coordinate vector.

So, now that we have this, it’s reasonable to ask whether or not every linear map can be
viewed as a matrix transformation on coordinate vectors. Let’s take a look at an example.

Example 2.3.2 Let 𝐿 : 𝒫2(F) → 𝑀2×2(F) be the linear map defined by 𝐿(𝑎+𝑏𝑥+𝑐𝑥2) =

[︂
𝑎− 2𝑏 4𝑐

𝑎+ 𝑏+ 𝑐 𝑏− 𝑐

]︂
.

Fix the standard (ordered) bases

ℬ = {1, 𝑥, 𝑥2} and 𝒞 =

{︂[︂
1 0
0 0

]︂
,

[︂
0 1
0 0

]︂
,

[︂
0 0
1 0

]︂
,

[︂
0 0
0 1

]︂}︂
for 𝒫2(F) and 𝑀2×2(F), respectively. The coordinate vectors of #»𝑣 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 and

𝐿( #»𝑣 ) =

[︂
𝑎− 2𝑏 4𝑐

𝑎+ 𝑏+ 𝑐 𝑏− 𝑐

]︂
are

[ #»𝑣 ]ℬ =

⎡⎣𝑎
𝑏
𝑐

⎤⎦ and [𝐿( #»𝑣 )]𝒞 =

⎡⎢⎢⎣
𝑎− 2𝑏
4𝑐

𝑎+ 𝑏+ 𝑐
𝑏− 𝑐

⎤⎥⎥⎦ .

So, if there is a matrix 𝐴 which performs the linear map for us (by matrix multiplication
of course), it must be such that
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𝐴

⎡⎣𝑎
𝑏
𝑐

⎤⎦ =

⎡⎢⎢⎣
𝑎− 2𝑏
4𝑐

𝑎+ 𝑏+ 𝑐
𝑏− 𝑐

⎤⎥⎥⎦ .

We first note that if 𝐴 is to exist, it must be a 4× 3 matrix. With that in mind, if we stare
at this for a while (we’ll explain how to do this more systematically later on) we can see
that we can take

𝐴 =

⎡⎢⎢⎣
1 −2 0
0 0 4
1 1 1
0 1 −1

⎤⎥⎥⎦ .

For some foreshadowing of notation, we let 𝒞 [𝐿]ℬ = 𝐴.

The previous example is not just a fortunate coincidence. We are always able to find a
matrix that performs any given linear transformation, once we fix bases and work with the
resulting coordinate vectors. This is the content of our next theorem.

Before we state and prove it though, it is worth addressing why we’d care to do this.
Matrices come equipped with machinery to compute many things. It will turn out that
once we turn our linear map into a matrix, we can use this machinery to learn about our
linear map.

Theorem 2.3.3 Let 𝑉 be an 𝑛-dimensional vector space with ordered basis ℬ. Let 𝑊 be an 𝑚-dimensional
vector space with ordered basis 𝒞. Then, for every linear map 𝐿 : 𝑉 → 𝑊 , there exists an
𝑚× 𝑛 matrix 𝐴 such that [𝐿( #»𝑣 )]𝒞 = 𝐴[ #»𝑣 ]ℬ for all #»𝑣 ∈ 𝑉 . Conversely, every 𝑚× 𝑛 matrix
𝐴 defines a linear map 𝐿 : 𝑉 → 𝑊 by [𝐿( #»𝑣 )]𝒞 = 𝐴[ #»𝑣 ]ℬ.

Proof: Since matrix multiplication satisfies 𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶 and 𝑡(𝐴𝐵) = 𝐴(𝑡𝐵)
for all matrices 𝐴,𝐵,𝐶 and all scalars 𝑡 ∈ F, 𝐴 defines a linear map 𝐿 : 𝑉 → 𝑊 by
𝐴[ #»𝑣 ]ℬ = [𝐿( #»𝑣 )]𝒞 .

For the forward direction, let ℬ = { #»𝑣 1, . . . ,
#»𝑣 𝑛} and 𝒞 = { #»𝑤1, . . . ,

#»𝑤𝑚}. Let #»𝑣 ∈ 𝑉 , then
#»𝑣 = 𝑡1

#»𝑣 1 + · · ·+ 𝑡𝑛
#»𝑣 𝑛 and 𝐿( #»𝑣 ) = 𝑠1

#»𝑤1 + · · ·+ 𝑠𝑚
#»𝑤𝑚. Since 𝐿 is linear we have

𝐿( #»𝑣 ) = 𝑡1𝐿(
#»𝑣 1) + · · ·+ 𝑡𝑛𝐿(

#»𝑣 𝑛) = 𝑠1
#»𝑤1 + · · ·+ 𝑠𝑚

#»𝑤𝑚.

For each 𝑖 ∈ {1, . . . , 𝑛}, let 𝐿( #»𝑣 𝑖) = 𝑎1𝑖
#»𝑤1 + · · ·+ 𝑎𝑚𝑖

#»𝑤𝑚. Then

𝐿( #»𝑣 ) = 𝑠1
#»𝑤1 + · · ·+ 𝑠𝑚

#»𝑤𝑚

= 𝑡1(𝑎11
#»𝑤1 + · · ·+ 𝑎𝑚1

#»𝑤𝑚) + · · ·+ 𝑡𝑛(𝑎1𝑛
#»𝑤1 + · · · 𝑎𝑚𝑛

#»𝑤𝑚)

= (𝑎11𝑡1 + 𝑎12𝑡2 + · · ·+ 𝑎1𝑛𝑡𝑛)
#»𝑤1 + · · ·+ (𝑎𝑚1𝑡1 + · · ·+ 𝑎𝑚𝑛𝑡𝑛)

#»𝑤𝑚.

Therefore we have 𝑠𝑖 = 𝑎𝑖1𝑡1 + · · · + 𝑎𝑖𝑛𝑡𝑛 for all 𝑖 ∈ {1, . . . ,𝑚}. This is of course how
matrix multipication works, and we see⎡⎢⎣ 𝑎11 · · · 𝑎1𝑛

...
. . .

...
𝑎𝑚1 · · · 𝑎𝑚𝑛

⎤⎥⎦
⎡⎢⎣ 𝑡1

...
𝑡𝑛

⎤⎥⎦ =

⎡⎢⎣ 𝑠1
...
𝑠𝑚

⎤⎥⎦ .
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Since [ #»𝑣 ]ℬ =

⎡⎢⎣ 𝑡1
...
𝑡𝑛

⎤⎥⎦ and [𝐿( #»𝑣 )]𝒞 =

⎡⎢⎣ 𝑠1
...
𝑠𝑚

⎤⎥⎦, the proof is completed.

Hidden in the proof is the fact that if #»𝑣 𝑖 is the 𝑖th basis vector of ℬ, then [𝐿( #»𝑣 𝑖)]𝒞 is simply
the 𝑖th column of the desired matrix 𝐴. This gives us the following corollary.

Corollary 2.3.4 Let 𝑉 be a vector space with ordered basis ℬ = { #»

𝑏 1, . . . ,
#»

𝑏 𝑛}. Let 𝑊 be a vector space
with ordered basis 𝒞 = { #»𝑐 1, . . . ,

#»𝑐𝑚}. Let 𝐿 : 𝑉 → 𝑊 be a linear map. Then the 𝑚 × 𝑛
matrix 𝐴 such that [𝐿( #»𝑣 )]𝒞 = 𝐴[ #»𝑣 ]ℬ for all #»𝑣 ∈ 𝑉 , which we denote 𝒞 [𝐿]ℬ, is given by

𝒞 [𝐿]ℬ =
[︁
[𝐿(

#»

𝑏 1)]𝒞 · · · [𝐿( #»

𝑏 𝑛)]𝒞

]︁
.

The fact that the matrix contains all the information of 𝐿, and is determined by the images
of the basis vectors, tells us something very interesting about linear maps: They are entirely
determined by where they send a basis.

The matrix 𝐴 for a linear map 𝐿 is determined once you pick ordered bases for each vector
space. We will give this matrix a name.

Definition 2.3.5

Matrix of a Linear
Map

We call the matrix 𝒞 [𝐿]ℬ the matrix of the linear map 𝐿 : 𝑉 → 𝑊 with respect to the
ordered bases ℬ and 𝒞 of 𝑉 and 𝑊 , respectively.

If 𝑉 = 𝑊 , so that 𝐿 : 𝑉 → 𝑉 , and we choose the same basis ℬ for both the domain and
codomain of 𝐿, then we will write [𝐿]ℬ instead of ℬ[𝐿]ℬ.

From Corollary 2.3.4 we know that the matrix 𝒞 [𝐿]ℬ of the linear map 𝐿 : 𝑉 → 𝑊 satisfies
a very important identity:

[𝐿( #»𝑣 )]𝒞 = 𝒞 [𝐿]ℬ[
#»𝑣 ]ℬ for all #»𝑣 ∈ 𝑉 .

Also, the size of 𝒞 [𝐿]ℬ is 𝑚× 𝑛, where 𝑚 = dim(𝑊 ) and 𝑛 = dim(𝑉 ).

Let’s see some examples.

Example 2.3.6 Consider the differentiation map 𝐷 : 𝒫3(R) → 𝒫2(R), and let both vector spaces be endowed
with the standard ordered bases ℬ and 𝒞 respectively. Then 𝐷(1) = 0, 𝐷(𝑥) = 1, 𝐷(𝑥2) =
2𝑥, and 𝐷(𝑥3) = 3𝑥2. Therefore

𝒞 [𝐷]ℬ =
[︀
[𝐷(1)]𝒞 [𝐷(𝑥)]𝒞 [𝐷(𝑥2)]𝒞 [𝐷(𝑥3)]𝒞

]︀
=

⎡⎣0 1 0 0
0 0 2 0
0 0 0 3

⎤⎦ .
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Let’s confirm that this works with a specific example. Let #»𝑣 = 4+2𝑥+(−2)𝑥2+𝑥3. Then

𝐷( #»𝑣 ) = 2 − 4𝑥 + 3𝑥2 so [ #»𝑣 ]ℬ =

⎡⎢⎢⎣
4
2
−2
1

⎤⎥⎥⎦ and [𝐷( #»𝑣 )]𝒞 =

⎡⎣ 2
−4
3

⎤⎦. Indeed, we can check that

the identity [𝐷( #»𝑣 )]𝒞 = 𝒞 [𝐷]ℬ[
#»𝑣 ]ℬ holds:

⎡⎣ 2
−4
3

⎤⎦ =

⎡⎣0 1 0 0
0 0 2 0
0 0 0 3

⎤⎦
⎡⎢⎢⎣

4
2
−2
1

⎤⎥⎥⎦ .

Example 2.3.7 Consider the trace map tr : 𝑀2×2(F) → F defined by tr

(︂[︂
𝑎 𝑏
𝑐 𝑑

]︂)︂
= 𝑎 + 𝑑. If we give

𝑀2×2(F) and F their standard bases ℬ and 𝒞, respectively, then 𝒞 [tr]ℬ will be the 1 × 4
matrix whose columns are the traces of the standard basis matrices in ℬ:

𝒞 [tr]ℬ =

[︂
tr

(︂[︂
1 0
0 0

]︂)︂
tr

(︂[︂
0 1
0 0

]︂)︂
tr

(︂[︂
0 0
1 0

]︂)︂
tr

(︂[︂
0 0
0 1

]︂)︂]︂
=

[︀
1 0 0 1

]︀
.

As a check, if we take 𝐴 =

[︂
1 2
3 4

]︂
, we find that

𝒞 [tr]ℬ [𝐴]ℬ =
[︀
1 0 0 1

]︀ ⎡⎢⎢⎣
1
2
3
4

⎤⎥⎥⎦ = 1 + 4.

Thus, 𝒞 [tr]ℬ [𝐴]ℬ = [tr(𝐴)]𝒞 , as expected.

Exercise 15 Let 𝐿 : R2 → 𝒫2(R) be the linear map given by 𝐿

(︂[︂
𝑎
𝑏

]︂)︂
= 𝑎+ (𝑎+ 𝑏)𝑥+ (𝑎+ 2𝑏)𝑥2.

(a) Find 𝒞 [𝐿]ℬ, where ℬ and 𝒞 are the standard bases for R2 and 𝒫2(R), respectively.

(b) Pick your favorite non-zero vector #»𝑣 ∈ R2 and confirm that [𝐿( #»𝑣 )]𝒞 = 𝒞 [𝐿]ℬ[
#»𝑣 ]ℬ by

computing both sides of the equation separately.

If you dwell on Theorem 2.3.3, it becomes apparent that the theorem only works because of
the way matrix multiplication is defined. In fact, the reason matrix multiplication is defined
the way it is is essentially so that Theorem 2.3.3 is true! Even better, the next fact is also
true, although we will not prove it here. If you feel like a moderately difficult challenge,
you should prove it! You definitely have the tools to do so at this point in the course. The
proof is more a matter of careful bookkeeping.
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Proposition 2.3.8 Let 𝑉 , 𝑈 , and𝑊 be vector spaces over F with bases ℬ, 𝒞, and 𝒟 respectively. Let 𝐿 : 𝑉 → 𝑈
and 𝑀 : 𝑈 → 𝑊 be linear maps. Then 𝒟[𝑀 ∘ 𝐿]ℬ = 𝒟[𝑀 ]𝒞 𝒞 [𝐿]ℬ.

Exercise 16 Prove Proposition 2.3.8.

Now, let’s see some of the computational power of matrices in action. First we recall the
notions of a column space and nullspace for a matrix, and see how they relate to the range
and nullspace of a linear map.

Definition 2.3.9

Column Space,
Rank, Nullspace,

Nullity of a Matrix

Let 𝐴 ∈ 𝑀𝑚×𝑛(F).

The column space of 𝐴, denoted by Col(𝐴), is the span of the columns of 𝐴. The rank
of 𝐴 is the dimension of its column space:

rank(𝐴) = dim(Col(𝐴)).

The nullspace of 𝐴, denoted by Null(𝐴), is the set of all #»𝑣 ∈ F𝑛 such that 𝐴 #»𝑣 =
#»
0 . The

nullity of 𝐴 is the dimension of its nullspace:

nullity(𝐴) = dim(Null(𝐴)).

REMARK

Recall that if we let 𝐿 : F𝑛 → F𝑚 be the linear transformation determined by 𝐴 ∈ 𝑀𝑚×𝑛(F),
namely the one defined by 𝐿( #»𝑥 ) = 𝐴 #»𝑥 , then

Col(𝐴) = Range(𝐿) and Null(𝐴) = Ker(𝐿).

This shows, in particular, that Col(𝐴) and Null(𝐴) are subspaces of F𝑚 and F𝑛, respectively.
We will see below that a similar type of result is true for linear mappings between general
vector spaces.

Let’s quickly review how we can find bases for the column space and nullspace of a given
matrix. For the column space, one row-reduces the matrix and chooses the original columns
corresponding to the the columns with leading ones in them. For the nullspace, one solves
the system of equations given by augmenting the matrix with a column of 0 and then taking
the basic solutions. Let’s see this in an example.

Example 2.3.10 Find bases for Col(𝐴) and Null(𝐴) where 𝐴 =

⎡⎢⎢⎣
1 2 5 −3 −8
−2 −4 −11 2 4
−1 −2 −6 −1 −4
1 2 5 −2 −5

⎤⎥⎥⎦.
Solution:
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First, we put the matrix 𝐴 into row reduced echelon form, which is given by⎡⎢⎢⎣
1 2 0 0 1
0 0 1 0 0
0 0 0 1 3
0 0 0 0 0

⎤⎥⎥⎦ .

So, immediately, we have that a basis for Col(𝐴) is⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣

1
−2
−1
1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
5

−11
−6
5

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
−3
2
−1
−2

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ .

Finding a basis for Null(𝐴) is a little more involved. Finding a vector #»𝑣 =

⎡⎢⎣𝑥1
...
𝑥5

⎤⎥⎦ such that

𝐴 #»𝑣 =
#»
0 is the same as solving the system of equations given by the augmented matrix

[𝐴 | 0]. The row-reduced augmented matrix is given by⎡⎢⎢⎣
1 2 0 0 1 0
0 0 1 0 0 0
0 0 0 1 3 0
0 0 0 0 0 0

⎤⎥⎥⎦ .

If we let the variables for this system be 𝑥1, . . . , 𝑥5, we can write down an entire set of
solutions as follows. For every column not corresponding to a leading 1, we let that variable
be a free variable, and solve for the rest of them. In this example, the free variables are 𝑥2
and 𝑥5, so let 𝑥2 = 𝑠 and 𝑥5 = 𝑡. Then

𝑥1 = −𝑡− 2𝑠

𝑥2 = 𝑠

𝑥3 = 0

𝑥4 = −3𝑡

𝑥5 = 𝑡

so every vector in Null(𝐴) is of the form⎡⎢⎢⎢⎢⎣
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5

⎤⎥⎥⎥⎥⎦ = 𝑡

⎡⎢⎢⎢⎢⎣
−1
0
0
−3
1

⎤⎥⎥⎥⎥⎦+ 𝑠

⎡⎢⎢⎢⎢⎣
−2
1
0
0
0

⎤⎥⎥⎥⎥⎦ .

Finally, we write down a basis for Null(𝐴) as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
−1
0
0
−3
1

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
−2
1
0
0
0

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .
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The next proposition allows us to harness the computational power of matrices to learn
about the range and kernel of a linear map.

Proposition 2.3.11 Let 𝐿 : 𝑉 → 𝑊 be a linear map between finite-dimensional vector spaces, and let 𝐴 = 𝒞 [𝐿]ℬ,
where ℬ and 𝒞 are ordered bases for 𝑉 and 𝑊 respectively.

(a) #»𝑣 ∈ Ker(𝐿) if and only if [ #»𝑣 ]ℬ ∈ Null(𝐴).

(b) #»𝑤 ∈ Range(𝐿) if and only if [ #»𝑤]𝒞 ∈ Col(𝐴).

Proof: (a) Observe that #»𝑣 ∈ 𝑉 will be in Ker(𝐿) if and only if 𝐿( #»𝑣 ) =
#»
0 which is the

case if and only if [𝐿( #»𝑣 )]𝒞 = [
#»
0 ]𝒞 . According to the definition of 𝐴 = 𝒞 [𝐿]ℬ , this last

condition is equivalent to 𝐴[ #»𝑣 ]ℬ =
#»
0 . Thus #»𝑣 ∈ Ker(𝐿) is equivalent to [ #»𝑣 ]ℬ ∈ Null(𝐴).

(b) Exercise.

Exercise 17 Prove part (b) of Proposition 2.3.11.

This proposition tells us that if we want to find a basis for the kernel and range of a linear
map, we just need to pick some bases, find the matrix associated to the linear map and find
bases for the nullspace and column space of the matrix.

Example 2.3.12 Consider the linear map 𝐿 : 𝒫2(R) → 𝑀2×2(R) given by

𝐿(𝑎+ 𝑏𝑥+ 𝑐𝑥2) =

[︂
𝑎+ 𝑏+ 𝑐 𝑎− 𝑏+ 3𝑐
3𝑎+ 𝑏+ 5𝑐 0

]︂
.

Find bases for Ker(𝐿) and Range(𝐿).

Solution:

Let ℬ and 𝒞 be the standard bases for 𝒫2(R) and𝑀2×2(R) respectively. Since 𝐿(1) =
[︂
1 1
3 0

]︂
,

𝐿(𝑥) =

[︂
1 −1
1 0

]︂
, and 𝐿(𝑥2) =

[︂
1 3
5 0

]︂
we have

𝒞 [𝐿]ℬ =

⎡⎢⎢⎣
1 1 1
1 −1 3
3 1 5
0 0 0

⎤⎥⎥⎦ .

Call this matrix 𝐴. We will now find bases for Col(𝐴) and Null(𝐴), and then convert this
information back to find bases for Range(𝐿) and Ker(𝐿). Row reducing 𝐴 gives⎡⎢⎢⎣

1 1 1
1 −1 3
3 1 5
0 0 0

⎤⎥⎥⎦ −→

⎡⎢⎢⎣
1 0 2
0 1 −1
0 0 0
0 0 0

⎤⎥⎥⎦ .
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With a little work we compute bases for Col(𝐴) and Null(𝐴) to be⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣
1
1
3
0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1
−1
1
0

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ and

⎧⎨⎩
⎡⎣−2

1
1

⎤⎦⎫⎬⎭ ,

respectively. If we convert coordinate vectors back to vectors, we obtain the sets

𝒟 =

{︂[︂
1 1
3 0

]︂
,

[︂
1 −1
1 0

]︂}︂
and ℰ = {−2 + 𝑥+ 𝑥2}

which are in Range(𝐿) and Ker(𝐿), respectively, by Proposition 2.3.11. Since the corre-
sponding sets of coordinate vectors were bases for Col(𝐴) and Null(𝐴), we suspect that 𝒟
and ℰ are bases for Range(𝐿) and Ker(𝐿). In fact, this is true. We will prove a general
result later that will give us this for free (see Proposition 2.5.14). For now, let’s prove
directly that ℰ is a basis for Ker(𝐿). We’ll leave the proof that 𝒟 is a basis for Range(𝐿)
as an exercise.

If 𝑝 ∈ Ker(𝐿), then [𝑝]ℬ ∈ Null(𝐴), so

[𝑝]ℬ = 𝑎

⎡⎣−2
1
1

⎤⎦ =

⎡⎣−2𝑎
𝑎
𝑎

⎤⎦
for some 𝑎 ∈ R. Thus, 𝑝 = −2𝑎+ 𝑎𝑥+ 𝑎𝑥2 = 𝑎(−2+𝑥+𝑥2), and so ℰ spans Ker(𝐿). Since
ℰ contains exactly one non-zero vector, ℰ is linearly independent and hence is a basis for
Ker(𝐿).

Exercise 18 Show that 𝒟 given at the end of Example 2.3.12 is a basis for Range(𝐿). [Give a proof
similar to the one we gave for ℰ and Ker(𝐿), by utilizing the coordinates map [ ]𝒞 .]

2.4 Change of Coordinates

We may be faced with a situation where we want to switch bases for the same vector space,
because a particular problem is computationally easier to solve in one of the bases. We do
this all the time in physics when we choose a set of coordinates that is natural with respect
to the problem at hand.

If we are given bases ℬ and 𝒞 of a vector space 𝑉 , it would be handy if we could find a
matrix that takes a coordinate vector with respect to ℬ and transforms it into the coordinate
vector with respect to 𝒞. This can be achieved by simply finding the matrix of the identity
map id: 𝑉 → 𝑉 .

Example 2.4.1 Let 𝒮 = {1, 𝑥, 𝑥2} be the standard basis for 𝒫2(R) and ℬ = {1, 1 + 𝑥, 1 + 𝑥 + 𝑥2} another
basis. We would like a matrix 𝐴 such that 𝐴[ #»𝑣 ]ℬ = [ #»𝑣 ]𝒮 . To find 𝐴, consider the linear
map id: 𝒫2(R) → 𝒫2(R) given by id( #»𝑣 ) = #»𝑣 for all #»𝑣 ∈ 𝒫2(R). We will find 𝒮 [id]ℬ. This
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should be our desired matrix since 𝒮 [id]ℬ[
#»𝑣 ]ℬ = [id( #»𝑣 )]𝒮 = [ #»𝑣 ]𝒮 . We will call this matrix

𝒮ℐℬ. We have

[1]𝒮 =

⎡⎣1
0
0

⎤⎦ , [1 + 𝑥]𝒮 =

⎡⎣1
1
0

⎤⎦ , and [1 + 𝑥+ 𝑥2]𝒮 =

⎡⎣1
1
1

⎤⎦ .

Therefore

𝒮ℐℬ =

⎡⎣1 1 1
0 1 1
0 0 1

⎤⎦ .

If we let #»𝑣 = 1 + 𝑥− 𝑥2, we find that 𝒮ℐℬ[ #»𝑣 ]ℬ = [ #»𝑣 ]𝒮 :⎡⎣1 1 1
0 1 1
0 0 1

⎤⎦⎡⎣ 0
2
−1

⎤⎦ =

⎡⎣ 1
1
−1

⎤⎦ .

So 𝒮ℐℬ behaves as expected.

Example 2.4.2 Continuing from the previous example, let’s try to find the matrix that changes 𝒮-
coordinates to ℬ-coordinates. By the same reasoning as above, this matrix should be ℬ[id]𝒮 ,
and we’ll denote it by ℬℐ𝒮 .
Converting from standard coordinates to non-standard coordinates may take a bit more
time. In our example it is not too difficult to notice that

[id(1)]ℬ = [1]ℬ =

⎡⎣1
0
0

⎤⎦ .

Finding the ℬ-coordinates of 𝑥 amounts to finding scalars 𝑐1, 𝑐2 and 𝑐3 such that

𝑐1(1) + 𝑐2(1 + 𝑥) + 𝑐3(1 + 𝑥+ 𝑥2) = 𝑥,

(𝑐1 + 𝑐2 + 𝑐3) + (𝑐2 + 𝑐3)𝑥+ 𝑐3𝑥
2 = 𝑥.

Equating the coefficients of polynomials on both sides of the above equality, we obtain the
system

𝑐1 + 𝑐2 + 𝑐3 = 0
𝑐2 + 𝑐3 = 1

𝑐3 = 0

The only solution to this system is 𝑐1 = −1, 𝑐2 = 1 and 𝑐3 = 0, meaning that

[id(𝑥)]ℬ = [𝑥]ℬ =

⎡⎣−1
1
0

⎤⎦ .

We can find the ℬ-coordinates of 𝑥2 in a similar way:

[id(𝑥2)]ℬ = [𝑥2]ℬ =

⎡⎣ 0
−1
1

⎤⎦ .
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Therefore

ℬℐ𝒮 =

⎡⎣1 −1 0
0 1 −1
0 0 1

⎤⎦ .

If this matrix does what it should, then we should be able to use it to switch coordinates from
𝒮 to ℬ. Let’s check. As in the preceding example, take #»𝑣 = 0(1)+2(1+𝑥)+(−1)(1+𝑥+𝑥2) =
1 + 𝑥− 𝑥2. Then

[ #»𝑣 ]𝒮 =

⎡⎣ 1
1
−1

⎤⎦ and [ #»𝑣 ]ℬ =

⎡⎣ 0
2
−1

⎤⎦ .

And indeed, ⎡⎣1 −1 0
0 1 −1
0 0 1

⎤⎦⎡⎣ 1
1
−1

⎤⎦ =

⎡⎣ 0
2
−1

⎤⎦
which shows that ℬℐ𝒮 [ #»𝑣 ]𝒮 = [ #»𝑣 ]ℬ.

Definition 2.4.3

Change of
Coordinates

Matrix

Let 𝑉 be a finite dimensional vector space, and let ℬ and 𝒞 be two bases for 𝑉 . The change
of coordinates matrix 𝒞ℐℬ is the matrix 𝒞 [id]ℬ, where id : 𝑉 → 𝑉 is the identity map.

This name makes sense since [ #»𝑣 ]𝒞 = [id( #»𝑣 )]𝒞 = 𝒞ℐℬ [ #»𝑣 ]ℬ for all #»𝑣 ∈ 𝑉 .

Let us address the following natural question: What is the relationship between 𝒞ℐℬ and

ℬℐ𝒞? Notice that

𝒞ℐℬ ℬℐ𝒞 [ #»𝑣 ]𝒞 = [ #»𝑣 ]𝒞 and ℬℐ𝒞 𝒞ℐℬ [ #»𝑣 ]ℬ = [ #»𝑣 ]ℬ

for all #»𝑣 ∈ 𝑉 . With this in mind you are able to write up a proof of the next proposition.

Proposition 2.4.4 Let 𝑉 be a finite dimensional vector space with bases ℬ and 𝒞. Then 𝒞ℐℬ = (ℬℐ𝒞)−1.

Exercise 19 Prove Proposition 2.4.4.

Example 2.4.5 Referring to Examples 2.4.2 and 2.4.1, where we found

ℬℐ𝒮 =

⎡⎣1 −1 0
0 1 −1
0 0 1

⎤⎦ and 𝒮ℐℬ =

⎡⎣1 1 1
0 1 1
0 0 1

⎤⎦ ,

we see that ⎡⎣1 1 1
0 1 1
0 0 1

⎤⎦⎡⎣1 −1 0
0 1 −1
0 0 1

⎤⎦ =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦
which shows that 𝒮ℐℬ and ℬℐ𝒮 are inverses.



Section 2.5 Change of Coordinates 47

To close off this section, let’s consider the following scenario. Suppose we have a linear map
𝐿 : 𝑉 → 𝑊 and suppose we choose bases ℬ and 𝒞 for 𝑉 and 𝑊 , respectively. This allows
us to create the matrix 𝒞 [𝐿]ℬ. If we choose different bases ℬ′ and 𝒞′ for 𝑉 and 𝑊 , then we
are able to create the matrix 𝒞′ [𝐿]ℬ′ . How are 𝒞 [𝐿]ℬ and 𝒞′ [𝐿]ℬ′ related? We will show that

𝒞′ [𝐿]ℬ′ = 𝒞′ℐ𝒞 𝒞 [𝐿]ℬ ℬℐℬ′ ,

since to apply the transformation 𝒞′ [𝐿]ℬ′ we can begin by changing coordinates on the
domain from ℬ′ to ℬ, apply 𝒞 [𝐿]ℬ and then change coordinates from 𝒞 to 𝒞′.

Proposition 2.4.6 Let 𝐿 : 𝑉 → 𝑊 be a linear map between two finite-dimensional vector spaces 𝑉 and 𝑊 .
Suppose that ℬ and ℬ′ are ordered bases for 𝑉 and that 𝒞 and 𝒞′ are ordered bases for 𝑊 .
Then

𝒞′ [𝐿]ℬ′ = 𝒞′ℐ𝒞 𝒞 [𝐿]ℬ ℬℐℬ′ .

Proof: This is just a matter of unpacking the definitions. We have

𝒞′ℐ𝒞 𝒞 [𝐿]ℬ ℬℐℬ′ [ #»𝑣 ]ℬ′ = 𝒞′ℐ𝒞 𝒞 [𝐿]ℬ [ #»𝑣 ]ℬ

= 𝒞′ℐ𝒞 [𝐿( #»𝑣 )]𝒞

= [𝐿( #»𝑣 )]𝒞′

= 𝒞′ [𝐿]ℬ′ [ #»𝑣 ]ℬ′

for all #»𝑣 ∈ 𝑉 . This completes the proof (why?).

Example 2.4.7 Let 𝒮 and ℬ be the bases for 𝒫2(R) from Examples 2.4.2 and 2.4.1, where we had determined

ℬℐ𝒮 and 𝒮ℐℬ.
Consider the linear map 𝐷 : 𝒫2(R) → 𝒫2(R) given by differentiation. We’ll leave it as an

exercise for you to check that [𝐷]𝒮 = 𝒮 [𝐷]𝒮 =

⎡⎣0 1 0
0 0 2
0 0 0

⎤⎦. Let’s find [𝐷]ℬ = ℬ[𝐷]ℬ. We can

do so either directly from the definition or by using Proposition 2.4.6.

For the direct approach, we simply note that [𝐷(1)]ℬ =

⎡⎣0
0
0

⎤⎦, [𝐷(1 + 𝑥)]ℬ =

⎡⎣1
0
0

⎤⎦, and
[𝐷(1 + 𝑥+ 𝑥2)]ℬ =

⎡⎣−1
2
0

⎤⎦. Therefore

[𝐷]ℬ =

⎡⎣0 1 −1
0 0 2
0 0 0

⎤⎦ .

On the other hand, using Proposition 2.4.6, we get

[𝐷]ℬ = ℬℐ𝒮 [𝐷]𝒮 𝒮ℐℬ =

⎡⎣1 −1 0
0 1 −1
0 0 1

⎤⎦⎡⎣0 1 0
0 0 2
0 0 0

⎤⎦⎡⎣1 1 1
0 1 1
0 0 1

⎤⎦ =

⎡⎣0 1 −1
0 0 2
0 0 0

⎤⎦ ,

as expected!
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2.5 Isomorphisms of Vector Spaces

Let’s return to an observation that has come up a few times so far: R3 and 𝒫2(R) are

essentially the same! We could just rename the element
[︀
𝑎 𝑏 𝑐

]︀𝑇
to 𝑎 + 𝑏𝑥 + 𝑐𝑥2 and

everything would work exactly the same. Somehow it feels like these two elements are the
same thing called by different names. We will soon see that the vector spaces R3 and 𝒫2(R),
while technically different objects, have exactly the same structure. More precisely, we will
see that R3 and 𝒫2(R) are isomorphic.

An isomorphism between vector spaces should be thought of like a translator. It’s a linear
map that preserves information perfectly. No information is lost, and no information is
missed. Let’s look at a couple of examples to gain a little more intuition.

Example 2.5.1 Consider the linear map 𝐿 : 𝒫2(R) → R2 given by 𝐿(𝑝) =

[︂
𝑝(0)
𝑝(0)

]︂
. This linear map is not an

isomorphism because somehow it loses information. For example, 𝐿(𝑥 + 2) = 𝐿(𝑥2 + 2) =

𝐿(2) =

[︂
2
2

]︂
so just by looking at the output of 𝐿, we can’t tell the difference between 𝑥+2

and 2 for example. Furthermore, 𝐿 somehow misses information. For example, nothing

maps to the vector

[︂
1
3

]︂
.

Example 2.5.2 On the other hand, consider the linear map 𝐿 : 𝒫2(R) → R3 given by

𝐿(𝑝) =

⎡⎣𝑝(−1)
𝑝(0)
𝑝(1)

⎤⎦ .

There are two very interesting things about this map. First, it turns out that if you know
the value of a polynomial in 𝒫2(R) evaluated at three distinct points, you are able to
recover the polynomial. That is, if 𝐿(𝑝) = 𝐿(𝑞) then 𝑝 = 𝑞. Furthermore, for any three
numbers 𝑎, 𝑏, 𝑐 ∈ R, there is a polynomial 𝑝 ∈ 𝒫2(R) such that 𝑝(−1) = 𝑎, 𝑝(0) = 𝑏, and
𝑝(1) = 𝑐. Therefore, Range(𝐿) = R3. With these two pieces of information, we can see that
𝐿 is a perfect dictionary between 𝒫2(R) and R3 and both vector spaces contain the same
information, just wrapped up in a different package.

Roughly, an isomorphism of vector spaces will be a linear map 𝐿 : 𝑉 → 𝑊 which is a perfect
dictionary between 𝑉 and 𝑊 , that is, no information is lost, and no information is missed,
after applying 𝐿. More formally, it will be a linear map that is injective and surjective,
which we will now define.

Definition 2.5.3

Injective
(One-to-One),

Surjective (Onto)

Let 𝐿 : 𝑉 → 𝑊 be a linear map between vector spaces and let #»𝑣 1,
#»𝑣 2 ∈ 𝑉 .

We say 𝐿 is injective (or one-to-one) if 𝐿( #»𝑣 1) = 𝐿( #»𝑣 2) implies #»𝑣 1 =
#»𝑣 2.

We say 𝐿 is surjective (or onto) if Range(𝐿) = 𝑊 .

Here is a little result that will make checking injectivity that much easier.
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Lemma 2.5.4 A linear map 𝐿 : 𝑉 → 𝑊 is injective if and only if Ker(𝐿) = { #»
0 }.

Proof: Suppose 𝐿 : 𝑉 → 𝑊 is injective and let #»𝑣 ∈ Ker(𝐿). Then 𝐿( #»𝑣 ) = 𝐿(
#»
0 ) =

#»
0 so

#»𝑣 =
#»
0 . Therefore Ker(𝐿) ⊆ { #»

0 }, and since the reverse containment is obvious, it follows
that Ker(𝐿) = { #»

0 }. Conversely, suppose Ker(𝐿) = { #»
0 } and let 𝐿( #»𝑣 ) = 𝐿( #»𝑤). Then

#»
0 = 𝐿( #»𝑣 )− 𝐿( #»𝑤) = 𝐿( #»𝑣 − #»𝑤) so #»𝑣 − #»𝑤 ∈ Ker(𝐿). Since the only vector in Ker(𝐿) is

#»
0 ,

we have #»𝑣 − #»𝑤 =
#»
0 so #»𝑣 = #»𝑤, completing the proof.

We now have all the pieces lined up for the following useful result.

Proposition 2.5.5 Let 𝐿 : 𝑉 → 𝑊 be a linear map between finite-dimensional vector spaces. Then:

(a) 𝐿 is injective if and only if nullity(𝐿) = 0.

(b) 𝐿 is surjective if and only if rank(𝐿) = dim𝑊 .

Exercise 20 Prove Proposition 2.5.5.

Example 2.5.6 Consider the linear map 𝐿 : 𝒫3(R) → R4 given by

𝐿(𝑝(𝑥)) =

⎡⎢⎢⎣
𝑝(0)
𝑝′(0)
𝑝′′(0)
𝑝′′′(0)

⎤⎥⎥⎦ ,

where 𝑝′(0), 𝑝′′(0), and 𝑝′′′(0) are the first, second, and third derivatives of 𝑝, evaluated at
0, respectively.

Now suppose 𝑝(𝑥) = 𝑎+ 𝑏𝑥+ 𝑐𝑥2 + 𝑑𝑥3 ∈ Ker(𝐿). Then 𝑝(0) = 𝑝′(0) = 𝑝′′(0) = 𝑝′′′(0) = 0
which yield the equations 𝑎 = 0, 𝑏 = 0, 2𝑐 = 0, and 6𝑑 = 0. We must conclude that
𝑝(𝑥) = 0. Therefore the only polynomial in Ker(𝐿) is the zero polynomial, so nullity(𝐿) = 0.
By Proposition 2.5.5, we can immediately conclude that 𝐿 is injective.

Since 𝒫3(R) is a 4-dimensional vector space, the Rank–Nullity theorem tells us rank(𝐿) = 4.
Since dim(R4) = 4, we can again exploit Proposition 2.5.5 to conclude 𝐿 is surjective.

The injectivity and surjectivity of 𝐿 in this example is telling us something very interesting
about polynomials of degree at most 3. The injectivity says that such a polynomial 𝑝 is
entirely determined by the 4 numbers 𝑝(0), 𝑝′(0), 𝑝′′(0), and 𝑝′′′(0). The surjectivity of 𝐿
says that given any 4 real numbers, you can find a polynomial 𝑝 of degree at most 3 so that
𝑝(0), 𝑝′(0), 𝑝′′(0), and 𝑝′′′(0) are the desired 4 real numbers.

If 𝑉 and 𝑊 are finite-dimensional, then we can check the injectivity and surjectivity of any
given linear map 𝐿 : 𝑉 → 𝑊 rather easily using the matrices and coordinates, as follows.
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Begin by choosing ordered bases ℬ and 𝒞 for 𝑉 and 𝑊 , respectively, and let 𝐴 = 𝒞 [𝐿]ℬ.
We’ve shown in Proposition 2.3.11 that for all #»𝑣 ∈ 𝑉 ,

#»𝑣 ∈ Ker(𝐿) if and only if [ #»𝑣 ]ℬ ∈ Null(𝐴).

Likewise, for all �⃗� ∈ 𝑊 ,

#»𝑤 ∈ Range(𝐿) if and only if [ #»𝑤]𝒞 ∈ Col(𝐴).

Since we know how to compute the nullspace and column space of a matrix, it follows
that we can easily determine Ker(𝐿) and Range(𝐿), and therefore whether 𝐿 is injective or
surjective.

Example 2.5.7 Let’s re-do Example 2.5.6 and check the injectivity and surjectivity of 𝐿.

First, we need bases for 𝒫3(R) and R4. Let’s use the standard bases ℬ and 𝒞, respectively.
Then the matrix of 𝐿 with respect to these bases is

𝐴 = 𝒞 [𝐿]ℬ =
[︀
[𝐿(1)]𝒞 [𝐿(𝑥)]𝒞 [𝐿(𝑥2)]𝒞 [𝐿(𝑥3)]𝒞

]︀
=

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 6

⎤⎥⎥⎦ .

Using our usual methods, we can quickly determine that Null(𝐴) = { #»
0 } and Col(𝐴) = R4.

From this, we can conclude that 𝑝(𝑥) ∈ 𝒫3(R) will be in the kernel of 𝐿 if and only if
[𝑝(𝑥)]ℬ ∈ Null(𝐴) = { #»

0 }. This can only be case if 𝑝(𝑥) = 0 is the zero polynomial. Thus,
Ker(𝐿) = { #»

0 } and so 𝐿 is injective.

Similarly, #»𝑤 ∈ R4 will be in the range of 𝐿 if and only if [ #»𝑤]𝒞 ∈ Col(𝐴) = R4, which is
always true. Thus, Range(𝐿) = R4 and so 𝐿 is surjective.

Exercise 21 Let 𝐿 : 𝑀2×2(R) → 𝒫2(R) be the linear map defined by

𝐿

(︂[︂
𝑎 𝑏
𝑐 𝑑

]︂)︂
= (𝑎+ 𝑏) + (𝑏+ 𝑐)𝑥+ (𝑐+ 𝑑)𝑥2.

(a) Determine 𝐴 = 𝒞 [𝐿]ℬ, where ℬ and 𝒞 are the standard ordered bases for 𝑀2×2(R)
and 𝒫2(R), respectively.

(b) Determine Null(𝐴) and Col(𝐴).

(c) Conclude whether 𝐿 is injective or surjective (or neither).

If you study the previous discussion carefully, you’ll come away feeling that Ker(𝐿) and
Null(𝒞 [𝐿]ℬ) are almost the same thing; similarly, Range(𝐿) and Col(𝒞 [𝐿]ℬ) seem to contain
the same information. Of course, these vector spaces are not literally equal—since they
can consist of different type of vectors like in the above exercise, where Ker(𝐿) consists of
polynomials in 𝑀2×2(R) while Null(𝒞 [𝐿]ℬ) consists of column vectors in R4.

This type of relationship between vector spaces is similar to the example we gave in the
beginning of this section, where we indicated that 𝒫2(R) and R3 appear to have the same
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structure, since 𝑎+ 𝑏𝑥+ 𝑐𝑥2 and
[︀
𝑎 𝑏 𝑐

]︀𝑇
feel like two different ways of writing down the

same object.

What we appear to be doing is associating vectors of different spaces together. For example,

𝑣 ↔ [𝑣]ℬ is the association between Ker(𝐿) and Null(𝒞 [𝐿]ℬ), and 𝑎+ 𝑏𝑥+ 𝑐𝑥2 ↔

⎡⎣𝑎
𝑏
𝑐

⎤⎦ is the

association between 𝒫2(R) and R3. What we are actually doing, though, is writing down
special linear maps between the various spaces!

Definition 2.5.8

Isomorphism,
Isomorphic to

Let 𝐿 : 𝑉 → 𝑊 be a linear map. If 𝐿 is injective and surjective, we say 𝐿 is an isomor-
phism.

If there is an isomorphism 𝐿 : 𝑉 → 𝑊 , we say that 𝑉 is isomorphic to 𝑊 , and write
𝑉 ∼= 𝑊 .

In Proposition 2.5.23 below, we will prove that if 𝑉 is isomorphic to 𝑊 , then 𝑊 will be
isomorphic to 𝑉 . As such, we can simply say that 𝑉 and 𝑊 are isomorphic. The use of
the symbol ∼= is then apt, because

𝑉 ∼= 𝑊 if and only if 𝑊 ∼= 𝑉.

You should also check for yourself that 𝑉 ∼= 𝑉 ; and if 𝑉 ∼= 𝑊 and 𝑊 ∼= 𝑈 , then 𝑉 ∼= 𝑈
(we say that ∼= is transitive). So isomorphism behaves a lot like equality—but be careful:
they’re not the same thing!

Example 2.5.9 Consider 𝐿 : 𝑀2×2(C) → C3 given by 𝐿

(︂[︂
𝑎 𝑏
𝑐 𝑑

]︂)︂
=

⎡⎣ 𝑎+ 𝑏
𝑏− 2𝑐

𝑎+ 𝑏+ 𝑑

⎤⎦. Then [︂
2 −2
−1 0

]︂
∈ Ker(𝐿)

so 𝐿 is not injective, and is therefore not an isomorphism.

Example 2.5.10 Let 𝐿 : 𝒫2(R) → R3 be given by 𝐿(𝑎+ 𝑏𝑥+ 𝑐𝑥2) =

⎡⎣𝑎
𝑏
𝑐

⎤⎦.
You should check that Ker(𝐿) = { #»

0 }. We can also check directly that Range(𝐿) = R3, but
here is a clever indirect argument: Since nullity(𝐿) = 0, the Rank–Nullity theorem implies
that rank(𝐿) = 3. So Range(𝐿) is a 3-dimensional subspace of R3, and therefore it must
be equal to R3. Thus, 𝐿 is an isomorphism and 𝒫2(R) is isomorphic to R3 (so we can write
𝒫2(R) ∼= R3).

Exercise 22 For 𝐿 as in the previous example, show using the definitions of kernel and range that
Ker(𝐿) = { #»

0 } and Range(𝐿) = R3.

There can be more than one isomorphism between isomorphic vector spaces.
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Example 2.5.11 The linear map 𝐿 : 𝒫2(R) → R3 defined by 𝐿(𝑎+ 𝑏𝑥+ 𝑐𝑥2) =

⎡⎣ 𝑐
𝑏
𝑎

⎤⎦ is also an isomorphism

between 𝒫2(R) and R3. The proof is similar to the one in Example 2.5.10.

Exercise 23

(a) Show that linear map 𝐿 : 𝒫2(R) → R3 defined by 𝐿(𝑎+ 𝑏𝑥+ 𝑐𝑥2) =

⎡⎣ 𝑎
𝑎+ 𝑏

𝑎+ 𝑏+ 𝑐

⎤⎦ is yet

another isomorphism between 𝒫2(R) and R3.

(b) Come up with another isomorphism 𝐿 : 𝒫2(R) → R3.

Be careful to note that just because 𝑉 ∼= 𝑊 , it does not follow that every linear map
𝐿 : 𝑉 → 𝑊 is an isomorphism! Consider, for example, the linear map 𝐿 : 𝒫2(R) → R3 given
by 𝐿(𝑝) =

#»
0 for all 𝑝 ∈ 𝒫2(R). Then nullity(𝐿) = 3 so 𝐿 is not injective, even though

𝒫2(R) ∼= R3. Isomoprhisms are rather special linear maps.

Our next two results give very important examples of isomorphisms. The first is a refor-
mulation of Proposition 2.3.11.

Proposition 2.5.12 Let 𝐿 : 𝑉 → 𝑊 be a linear map between finite-dimensional vector spaces, and let 𝐴 = 𝒞 [𝐿]ℬ,
where ℬ and 𝒞 are ordered bases for 𝑉 and 𝑊 respectively.

(a) Ker(𝐿) is isomorphic to Null(𝐴).

(b) Range(𝐿) is isomorphic to Col(𝐴).

Proof: The coordinate map [ ]ℬ is linear (Theorem 1.3.29) and injective (Theorem 1.3.23),
and Proposition 2.3.11 says it maps Ker(𝐿) surjectively onto Null(𝐴). So it gives an iso-
morphism Ker(𝐿) ∼= Null(𝐴). Similarly, [ ]𝒞 is injective and maps Range(𝐿) surjectively
onto Col(𝐴) hence gives an isomorphism Range(𝐿) ∼= Col(𝐴).

The second result is a generalization of Example 2.5.10.

Proposition 2.5.13 Let 𝑉 be an 𝑛-dimensional space over F. If ℬ is an ordered basis for 𝑉 , then the coordinate
map [ ]ℬ : 𝑉 → F𝑛 defined by sending #»𝑣 to [ #»𝑣 ]ℬ is an isomorphism.

Proof sketch: The fact that [ ]ℬ is injective follows from the Unique Representation The-
orem (Theorem 1.3.23). To show that [ ]ℬ is surjective, we can mimic the Rank–Nullity
argument in Example 2.5.10.

Exercise 24 Fill in the details and complete the proof of Proposition 2.5.13.
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This proposition says that once we pick a basis, we can view any 𝑛-dimensional vector
space 𝑉 as essentially being the same as F𝑛. Before showcasing the power of this result and
the previous one, let’s prove some general facts that will demonstrate how isomorphisms
preserve structure perfectly. For instance, the next proposition shows that isomorphisms
preserve linear independence, spanning sets and bases.

Proposition 2.5.14 Let 𝐿 : 𝑉 → 𝑊 be an isomorphism. Then:

(a) If { #»𝑣 1, . . . ,
#»𝑣 𝑛} is a linearly independent set of vectors in 𝑉 , then {𝐿( #»𝑣 1), . . . , 𝐿(

#»𝑣 𝑛)}
is a linearly independent set of vectors in 𝑊 .

(b) If { #»𝑣 1, . . . ,
#»𝑣 𝑛} is a spanning set for 𝑉 (meaning, 𝑉 = Span{ #»𝑣 1, . . . ,

#»𝑣 𝑛}), then
{𝐿( #»𝑣 1), . . . , 𝐿(

#»𝑣 𝑛)} is a spanning set for 𝑊 (meaning, 𝑊 = Span{𝐿( #»𝑣 1), . . . , 𝐿(
#»𝑣 𝑛)}).

(c) If { #»𝑣 1, . . . ,
#»𝑣 𝑛} is a basis for 𝑉 , then {𝐿( #»𝑣 1), . . . , 𝐿(

#»𝑣 𝑛)} is a basis for 𝑊 .

Proof: To prove (a), consider the equation

𝑡1𝐿(
#»𝑣 1) + · · ·+ 𝑡𝑛𝐿(

#»𝑣 𝑛) =
#»
0 .

By linearity, we can re-write this as

𝐿(𝑡1
#»𝑣 1 + · · ·+ 𝑡𝑛

#»𝑣 𝑛) =
#»
0 .

This shows that 𝑡1
#»𝑣 1 + · · · + 𝑡𝑛

#»𝑣 𝑛 ∈ Ker(𝐿). However, Ker(𝐿) = { #»
0 } since 𝐿 is an

isomorphism. Thus,
𝑡1

#»𝑣 1 + · · ·+ 𝑡𝑛
#»𝑣 𝑛 =

#»
0

and therefore 𝑡1 = · · · = 𝑡𝑛 = 0 since { #»𝑣 1, . . . ,
#»𝑣 𝑛} is linearly independent.

Next, to prove (b), notice that it suffices to show that 𝑊 ⊆ Span{𝐿( #»𝑣 1), . . . , 𝐿(
#»𝑣 𝑛)},

since the containment ⊇ is obvious. Thus, let #»𝑤 ∈ 𝑊 . Since 𝐿 is an isomorphism, hence
surjective, we have that #»𝑤 ∈ Range(𝐿). So there exists a #»𝑣 ∈ 𝑉 such that 𝐿( #»𝑣 ) = #»𝑤.
Since { #»𝑣 1, . . . ,

#»𝑣 𝑛} is a spanning set for 𝑉 , we can write

#»𝑣 = 𝑎1
#»𝑣 1 + · · ·+ 𝑎𝑛

#»𝑣 𝑛

for some 𝑎𝑖 ∈ F. But then

#»𝑤 = 𝐿( #»𝑣 ) = 𝐿(𝑎1
#»𝑣 1 + · · ·+ 𝑎𝑛

#»𝑣 𝑛) = 𝑎1𝐿(
#»𝑣 1) + · · ·+ 𝑎𝑛𝐿(

#»𝑣 𝑛),

which shows that #»𝑤 ∈ Span{𝐿( #»𝑣 1), . . . , 𝐿(
#»𝑣 𝑛)} and completes the proof of (b).

Finally, (c) follows from (a) and (b).

We can apply this proposition to the coordinate map [ ]ℬ.
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Example 2.5.15 In Example 1.3.7, we proved that {𝑥 + 𝑥2 − 2𝑥3, 2𝑥 − 𝑥2 + 𝑥3, 𝑥 + 5𝑥2 + 3𝑥3} is linearly
independent in 𝒫3(R). We can give another proof of this fact by showing that {[𝑥 + 𝑥2 −
2𝑥3]ℬ, [2𝑥 − 𝑥2 + 𝑥3]ℬ, [𝑥 + 5𝑥2 + 3𝑥3]ℬ} is linearly independent in R4, where ℬ is any
ordered basis for 𝒫3(R).

For example, if ℬ is the standard ordered basis of 𝒫3(R), then

{[𝑥+ 𝑥2 − 2𝑥3]ℬ, [2𝑥− 𝑥2 + 𝑥3]ℬ, [𝑥+ 5𝑥2 + 3𝑥3]ℬ} =

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣

0
1
1
−2

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0
2
−1
1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0
1
5
3

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ .

To check for linear independence in R4, we can simply put these vectors in a matrix and
row-reduce: ⎡⎢⎢⎣

0 0 0
1 2 1
1 −1 5
−2 1 3

⎤⎥⎥⎦ −→

⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1
0 0 0

⎤⎥⎥⎦ .

We conclude that the rank of this matrix is 3, and hence its columns must be linearly
independent, which is exactly what we wanted to show.

Exercise 25 Show, using Proposition 2.5.14, that

ℬ =

{︂[︂
1 0
0 1

]︂
,

[︂
0 1
1 0

]︂
,

[︂
1 0
0 −1

]︂
,

[︂
0 −1
1 0

]︂}︂
is a basis for 𝑀2×2(R). (Compare with what we did in Examples 1.3.11 and 1.3.17.)

Our next two results examine the relationship between dimension and isomorphism.

If we are to think of an isomorphism as simply being a renaming of vectors, which we should,
then we should expect two isomorphic vector spaces to have the same structure. At the
very least, it wouldn’t be unreasonable to expect two isomorphic finite-dimensional vector
spaces to have the same dimension. In fact, this follows immediately from Proposition
2.5.14(c). What’s perhaps surprising is that the converse is also true: if 𝑉 and 𝑊 are
finite-dimensional spaces, and if dim(𝑉 ) = dim(𝑊 ), then 𝑉 and 𝑊 must be isomorphic!
Before proving this, let’s record the following related result which can be quite useful.

Proposition 2.5.16 Let 𝐿 : 𝑉 → 𝑊 be a linear map between finite-dimensional vector spaces.

(a) If dim(𝑉 ) < dim(𝑊 ), then 𝐿 cannot be surjective.

(b) If dim(𝑉 ) > dim(𝑊 ), then 𝐿 cannot be injective.

(c) If dim(𝑉 ) = dim(𝑊 ), then 𝐿 is injective if and only if 𝐿 is surjective.

Proof: If dim(𝑉 ) < dim(𝑊 ), then the Rank–Nullity theorem implies that Range(𝐿) cannot
be all of 𝑊 , so 𝐿 cannot be surjective. If dim(𝑉 ) > dim(𝑊 ), the Rank–Nullity theorem
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implies that nullity(𝐿) ≥ 1, so 𝐿 cannot be injective. Finally, if dim(𝑉 ) = dim(𝑊 ), then the
Rank–Nullity theorem says that dim(𝑉 ) = rank(𝐿) + nullity(𝐿) and so our desired result
follows from Proposition 2.5.5:

𝐿 is injective ⇐⇒ nullity(𝐿) = 0

⇐⇒ dim(𝑉 ) = rank(𝐿)

⇐⇒ dim(𝑊 ) = rank(𝐿)

⇐⇒ 𝐿 is surjective.

This completes the proof.

Exercise 26 Give a careful proof of parts (a) and (b) Proposition 2.5.16 by filling in the details in the
above proof.

Theorem 2.5.17 Suppose 𝑉 and 𝑊 are finite dimensional vector spaces over the same field F. Then 𝑉 and
𝑊 are isomorphic if and only if dim(𝑉 ) = dim(𝑊 ).

Proof: Suppose 𝑉 ∼= 𝑊 via an isomorphism 𝐿 : 𝑉 → 𝑊 . Then by Proposition 2.5.14(c),
𝐿 takes a basis for 𝑉 to a basis for 𝑊 . So if 𝑉 has a basis consisting of 𝑛 elements, then so
does 𝐿. Thus, dim(𝑉 ) = dim(𝑊 ).

Conversely, let ℬ = { #»𝑣 1, . . . ,
#»𝑣 𝑛} be a basis for 𝑉 and 𝒞 = { #»𝑤1, . . . ,

#»𝑤𝑛} a basis for 𝑊 .
We want to define an isomorphism 𝐿 : 𝑉 → 𝑊 . The idea is simple: We should send #»𝑣 𝑖 to
#»𝑤𝑖. By linearity, there is only one way to define a linear map that does this. Namely, define
𝐿 : 𝑉 → 𝑊 by

𝐿(𝑡1
#»𝑣 1 + · · ·+ 𝑡𝑛

#»𝑣 𝑛) = 𝑡1
#»𝑤1 + · · ·+ 𝑡𝑛

#»𝑤𝑛.

Note that 𝐿 is linear since

𝐿

(︂
𝑛∑︀

𝑖=1
𝑡𝑖

#»𝑣 𝑖 +
𝑛∑︀

𝑖=1
𝑠𝑖

#»𝑣 𝑖

)︂
= 𝐿

(︂
𝑛∑︀

𝑖=1
(𝑡𝑖 + 𝑠𝑖)

#»𝑣 𝑖

)︂
=

𝑛∑︀
𝑖=1

(𝑡𝑖 + 𝑠𝑖)
#»𝑤𝑖

=
𝑛∑︀

𝑖=1
𝑡𝑖

#»𝑤𝑖 +
𝑛∑︀

𝑖=1
𝑠𝑖

#»𝑤𝑖

= 𝐿

(︂
𝑛∑︀

𝑖=1
𝑡𝑖

#»𝑣 𝑖

)︂
+ 𝐿

(︂
𝑛∑︀

𝑖=1
𝑠𝑖

#»𝑣 𝑖

)︂
and for all 𝛼 ∈ F,

𝐿

(︂
𝛼

𝑛∑︀
𝑖=1

𝑡𝑖
#»𝑣 𝑖

)︂
= 𝐿

(︂
𝑛∑︀

𝑖=1
𝛼𝑡𝑖

#»𝑣 𝑖

)︂
=

𝑛∑︀
𝑖=1

𝛼𝑡𝑖
#»𝑤𝑖

= 𝛼
𝑛∑︀

𝑖=1
𝑡𝑖

#»𝑤𝑖

= 𝛼𝐿

(︂
𝑛∑︀

𝑖=1
𝑡𝑖

#»𝑣 𝑖

)︂
.
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To see that 𝐿 is injective, suppose that 𝐿(𝑡1
#»𝑣 1 + · · · + 𝑡𝑛

#»𝑣 𝑛) = 𝑡1
#»𝑤1 + · · · + 𝑡𝑛

#»𝑤𝑛 =
#»
0 .

Then since { #»𝑤1, . . . ,
#»𝑤𝑛} is linearly independent, we must have 𝑡1 = · · · = 𝑡𝑛 = 0 so

𝑡1
#»𝑣 1 + · · · + 𝑡𝑛

#»𝑣 𝑛 =
#»
0 and so Ker(𝐿) = { #»

0 }. Finally, the Rank–Nullity theorem implies
rank(𝐿) = dim(𝑉 ) = dim(𝑊 ) so 𝐿 is surjective and is therefore an isomorphism.

REMARK

This is an incredibly powerful theorem. It immediately tells us, for example, that any two
7-dimensional vector spaces over C are isomorphic. Furthermore, to find an isomorphism,
we simply have to choose bases for both vector spaces and the map that appears in the
proof of the theorem will be an isomorphism.

Corollary 2.5.18 Let 𝑉 be an 𝑛-dimensional vector space over F. Then 𝑉 ∼= F𝑛.

In fact, an isomorphism is given by the coordinate map [ ]ℬ : 𝑉 → F𝑛, where ℬ is any
ordered basis for F, as we’ve already seen.

Example 2.5.19 The vector spaces 𝑀2×2(R), R4 and 𝑃3(R) are all isomorphic to each other, since they are
each 4-dimensional.

On the other hand, the vector spaces 𝑀2×3(R) and 𝒫4(R) are not isomorphic since the
former is 6-dimensional while the latter is 5-dimensional.

Exercise 27 Give an isomorphism 𝐿 : 𝑀2×2(R) → 𝒫3(R) by following the recipe in the proof of Theorem
2.5.17.

If we apply Theorem 2.5.17 to Proposition 2.5.12, we immediately arrive at the following
handy result.

Proposition 2.5.20 Let 𝐿 : 𝑉 → 𝑊 be a linear map between finite-dimensional vector spaces, and let 𝐴 = 𝒞 [𝐿]ℬ,
where ℬ and 𝒞 are ordered bases for 𝑉 and 𝑊 respectively. Then:

(a) nullity(𝐿) = nullity(𝐴).

(b) rank(𝐿) = rank(𝐴).

Using this proposition, we obtain the Rank–Nullity theorem for matrices as a consequence
of our Rank–Nullity theorem for linear maps (Theorem 2.2.6).

Corollary 2.5.21 (Rank–Nullity Theorem for Matrices)

Let 𝐴 ∈ 𝑀𝑚×𝑛(F). Then
𝑛 = rank(𝐴) + nullity(𝐴).
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Proof: Let 𝐿 : F𝑛 → F𝑚 be the linear map corresponding to 𝐴, that is, the one defined by
𝐿( #»𝑥 ) = 𝐴 #»𝑥 for #»𝑥 ∈ F𝑛. Then with respect to the standard bases ℬ and 𝒞 on F𝑛 and F𝑚,
respectively, we have 𝐴 = 𝒞 [𝐿]ℬ. So, by combining the Rank–Nullity theorem for linear
maps and Proposition 2.5.20, we get

𝑛 = dim(F𝑛) = rank(𝐿) + nullity(𝐿) = rank(𝐴) + nullity(𝐴),

as required.

Example 2.5.22 Consider the linear map 𝐿 : 𝒫3(R) → 𝑀2×2(R) defined by

𝐿(𝑎+ 𝑏𝑥+ 𝑐𝑥2 + 𝑑𝑥3) =

[︂
𝑎− 𝑏 𝑐− 𝑑
𝑏+ 𝑑 𝑎+ 2𝑐

]︂
.

Is 𝐿 injective? Is 𝐿 surjective? Is 𝐿 an isomorphism?

Solution:

We will use Proposition 2.5.20 to compute nullity(𝐿) and rank(𝐿). We begin by determining
𝐴 = 𝒞 [𝐿]ℬ, where ℬ and 𝒞 are the standard ordered bases of 𝒫3(R) and 𝑀2×2(R):

𝐴 =
[︀
[𝐿(1)]𝒞 [𝐿(𝑥)]𝒞 [𝐿(𝑥2)]𝒞 [𝐿(𝑥3)]𝒞

]︀
=

⎡⎢⎢⎣
1 −1 0 0
0 0 1 −1
0 1 0 1
1 0 2 0

⎤⎥⎥⎦ .

If we row-reduce 𝐴, we get ⎡⎢⎢⎣
1 −1 0 0
0 0 1 −1
0 1 0 1
1 0 2 0

⎤⎥⎥⎦ −→

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ .

From this we can immediately conclude that nullity(𝐴) = 0 and rank(𝐴) = 4. Therefore,
nullity(𝐿) = 0 (so 𝐿 is injective) and rank(𝐿) = 4 (so 𝐿 is surjective). In particular, 𝐿 is
an isomorphism.

Finally, if the intuition that an isomorphism is a kind of translator is correct, then there
should be a way to do an isomorphism in reverse, just like you should be able to translate
a word back into English, if you had already translated translated it into Spanish. This is
indeed true, and the next proposition makes it precise.

Proposition 2.5.23 A linear map 𝐿 : 𝑉 → 𝑊 is an isomorphism if and only if there exists a linear map
𝐿−1 : 𝑊 → 𝑉 such that

𝐿 ∘ 𝐿−1( #»𝑤) = #»𝑤 for all #»𝑤 ∈ 𝑊 and 𝐿−1 ∘ 𝐿( #»𝑣 ) = #»𝑣 for all #»𝑣 ∈ 𝑉.

Such a map 𝐿−1, if it exists, is uniquely determined by 𝐿. We call 𝐿−1 the inverse of 𝐿.
It is also an isomorphism.
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Proof sketch: Given an isomorphism 𝐿 : 𝑉 → 𝑊 , define 𝐿−1 : 𝑊 → 𝑉 by 𝐿−1( #»𝑤) = #»𝑣
where #»𝑣 ∈ 𝑉 is the unique vector such that 𝐿( #»𝑣 ) = #»𝑤. Such a vector exists because 𝐿 is
surjective; it is unique because 𝐿 is injective. It is left to you to prove that 𝐿−1 is a linear
map satisfying the desired properties. For the converse direction, you should check that if
such an inverse map exists, then 𝐿 must necessarily be surjective and injective.

For uniqueness, suppose that 𝑇 : 𝑊 → 𝑉 also satisfies the properties 𝐿 ∘ 𝑇 ( #»𝑤) = #»𝑤 for all
#»𝑤 ∈ 𝑊 and 𝑇 ∘𝐿( #»𝑣 ) = #»𝑣 for all #»𝑣 ∈ 𝑉 . Then 𝑇 ( #»𝑤) = 𝑇 (𝐿∘𝐿−1( #»𝑤)) = (𝑇 ∘𝐿)(𝐿−1( #»𝑤)) =
𝐿−1( #»𝑤) for all #»𝑤 ∈ 𝑊 . So 𝑇 = 𝐿−1.

We’ll leave it to you to check that 𝐿−1, if it exists, is an isomorphism.

Exercise 28 Fill in the details and complete the proof of Proposition 2.5.23.

Given an isomorphism, it is sometimes very easy to write down the inverse linear map,
and sometimes not. For example, return to the isomorphism 𝐿 : 𝒫2(R) → R3 given by

𝐿(𝑎+ 𝑏𝑥+ 𝑐𝑥2) =

⎡⎣𝑎
𝑏
𝑐

⎤⎦. Then 𝐿−1 : R3 → 𝒫2(R) is given by 𝐿−1

⎛⎝⎡⎣𝑎
𝑏
𝑐

⎤⎦⎞⎠ = 𝑎+ 𝑏𝑥+ 𝑐𝑥2.

Let’s check this is indeed the inverse. We have

𝐿 ∘ 𝐿−1

⎛⎝⎡⎣𝑎
𝑏
𝑐

⎤⎦⎞⎠ = 𝐿(𝑎+ 𝑏𝑥+ 𝑐𝑥2) =

⎡⎣𝑎
𝑏
𝑐

⎤⎦
and

𝐿−1 ∘ 𝐿(𝑎+ 𝑏𝑥+ 𝑐𝑥2) = 𝐿−1

⎛⎝⎡⎣𝑎
𝑏
𝑐

⎤⎦⎞⎠ = 𝑎+ 𝑏𝑥+ 𝑐𝑥2

so this is the inverse.

On the other hand, what is the inverse to the isomorphism 𝐿 : 𝒫2(R) → R3 given by

𝐿(𝑝) =

⎡⎣𝑝(−1)
𝑝(0)
𝑝(1)

⎤⎦? The next proposition, which is a consequence of Proposition 2.5.23,

gives us a way to find inverses to isomorphisms. It is yet another demonstration of the
power of working with matrices.

Proposition 2.5.24 Let 𝐿 : 𝑉 → 𝑊 be an isomorphism. Let ℬ be a basis for 𝑉 , and 𝒞 a basis for 𝑊 . Then

𝒞 [𝐿]ℬ is an invertible matrix and (𝒞 [𝐿]ℬ)
−1 = ℬ[𝐿

−1]𝒞 .

Proof: We have 𝐿 ∘ 𝐿−1 = id, where id : 𝑊 → 𝑊 is the identity map on 𝑊 . Therefore,

𝒞 [𝐿 ∘ 𝐿−1]𝒞 = 𝒞 [id]𝒞 =

⎡⎢⎢⎢⎣
1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 · · · 0 1

⎤⎥⎥⎥⎦ .

On the other hand, 𝒞 [𝐿 ∘ 𝐿−1]𝒞 = 𝒞 [𝐿]ℬ ℬ[𝐿
−1]𝒞 by Proposition 2.3.8. So we see that

𝒞 [𝐿]ℬ ℬ[𝐿
−1]𝒞 is equal to the identity matrix, hence 𝒞 [𝐿]

−1
ℬ = ℬ[𝐿

−1]𝒞 .
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Let’s see this in action!

Example 2.5.25 Let 𝐿 : 𝒫2(R) → R3 be the isomorphism given by 𝐿(𝑝) =

⎡⎣𝑝(−1)
𝑝(0)
𝑝(1)

⎤⎦. We have already seen

that

𝒞 [𝐿]ℬ =

⎡⎣1 −1 1
1 0 0
1 1 1

⎤⎦ .

Use your favourite method of computing the inverse of a matrix to show that

ℬ[𝐿
−1]𝒞 =

⎡⎣ 0 1 0
−1

2 0 1
2

1
2 −1 1

2

⎤⎦ .

Now, since ⎡⎣ 0 1 0
−1

2 0 1
2

1
2 −1 1

2

⎤⎦⎡⎣𝑎
𝑏
𝑐

⎤⎦ =

⎡⎣ 𝑏
−1

2𝑎+ 1
2𝑐

1
2𝑎− 𝑏+ 1

2𝑐

⎤⎦
we have

𝐿−1

⎛⎝⎡⎣𝑎
𝑏
𝑐

⎤⎦⎞⎠ = 𝑏+

(︂
−1

2
𝑎+

1

2
𝑐

)︂
𝑥+

(︂
1

2
𝑎− 𝑏+

1

2
𝑐

)︂
𝑥2.



Chapter 3

Diagonalizability

3.1 Eigenvectors and Diagonalization

As hinted to before, sometimes the standard basis is not the best basis with which to study
a particular problem, or a linear map. For example, consider the linear map 𝐿 : R3 → R3

given by

𝐿

⎛⎝⎡⎣𝑥
𝑦
𝑧

⎤⎦⎞⎠ =

⎡⎣𝑥
𝑦
𝑧

⎤⎦− 2(𝑥+ 𝑦 + 𝑧)

3

⎡⎣1
1
1

⎤⎦ .

If 𝒮 is the standard basis for R3, then you can check that

[𝐿]𝒮 =

⎡⎣ 1
3 −2

3 −2
3

−2
3

1
3 −2

3
−2

3 −2
3

1
3

⎤⎦ .

Looking at this matrix, it’s not clear what this linear map is doing, geometrically or other-
wise. However, if we look at the basis

ℬ =

⎧⎨⎩
⎡⎣1
1
1

⎤⎦ ,

⎡⎣−1
0
1

⎤⎦ ,

⎡⎣−1
1
0

⎤⎦⎫⎬⎭ ,

then it can be checked that

[𝐿]ℬ =

⎡⎣−1 0 0
0 1 0
0 0 1

⎤⎦ .

The effect of this matrix is easier to understand. It is a reflection! It negates the
[︀
1 1 1

]︀𝑇
direction and keeps the 2-dimensional subspace spanned by

[︀
−1 0 1

]︀𝑇
and

[︀
−1 1 0

]︀𝑇
un-

changed.

This example shows us that sometimes looking at a particular problem with the right set
of coordinates can prove enlightening. So, with this in mind, the following natural question
arises: Given a linear map from a vector space to itself, how can we find an “enlightening”
basis with which to view the linear map?

In this chapter we will restrict our attention to linear maps from a vector space to itself—
and not between two different vector spaces. This is a fairly natural starting point, and
we’ll see that it leads to a reasonably nice theory.

60
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Definition 3.1.1

Linear Operator

A linear map 𝑇 : 𝑉 → 𝑊 is called a linear operator if 𝑉 = 𝑊 .

It would be nice to find vectors that are not rotated, but simply scaled when the linear
map is applied to them. That is, we’d like to find vectors #»𝑣 such that 𝐿( #»𝑣 ) = 𝜆 #»𝑣 for some
𝜆 ∈ F. If we can find a basis ℬ = { #»𝑣 1, . . . ,

#»𝑣 𝑛} of 𝑉 such that 𝐿( #»𝑣 𝑖) = 𝜆𝑖
#»𝑣 𝑖 for every 𝑖,

then with respect to ℬ we would have

[𝐿]ℬ =

⎡⎢⎢⎢⎢⎣
𝜆1 0 · · · 0

0 𝜆2
. . .

...
...

. . .
. . . 0

0 · · · 0 𝜆𝑛

⎤⎥⎥⎥⎥⎦ .

Unfortunately, as well will see, we cannot always find such a basis. Let’s try anyway!

What we’re attempting to do should ring some bells: we are trying to diagonalize the linear
operator 𝐿. The next definitions should come as no surprise. In what follows, we will
assume that 𝑉 is a finite-dimensional vector space over F.

Definition 3.1.2

Eigenvector,
Eigenvalue

Let 𝐿 : 𝑉 → 𝑉 be a linear operator. A non-zero vector #»𝑣 ∈ 𝑉 such that 𝐿( #»𝑣 ) = 𝜆 #»𝑣 for
some 𝜆 ∈ F is called an eigenvector of 𝐿. The number 𝜆 is called an eigenvalue of 𝐿.

Definition 3.1.3

Eigenspace, 𝐸𝜆(𝐿)

Let 𝐿 : 𝑉 → 𝑉 be a linear operator, and let 𝜆 ∈ F be an eigenvalue of 𝐿. The eigenspace
of 𝐿 corresponding to 𝜆 is

𝐸𝜆(𝐿) = { #»𝑣 ∈ 𝑉 : 𝐿( #»𝑣 ) = 𝜆 #»𝑣 }.

These are the same definitions you’ve seen for square matrices, except now #»𝑣 is an element
of a general vector space 𝑉 over F, and are not necessarily in F𝑛.

Since square matrices are essentially linear operators, as we’ve learned in Section 2.3, we will
be able to transport all our results concerning eigenvalues, eigenvectors and the problem of
diagonalizability from the setting of matrices to the setting of linear operators. For instance,
we have the following.

Proposition 3.1.4 Let 𝐿 : 𝑉 → 𝑉 be a linear operator, and let 𝜆 ∈ F be an eigenvalue of 𝐿. The eigenspace of
𝐿 corresponding to 𝜆 is a subspace of 𝑉 .

Exercise 29 Prove Proposition 3.1.4.

The proof of this result is completely identical to the analogous proof about eigenspaces
of matrices. We are going to spend the remainder of this chapter reviewing some of the
theory of diagonalization of matrices, but rephrased in the language of linear operators.
The proofs will be almost word-for-word identical to the matrix proofs, so we will leave
them as exercises for the interested and particularly motivated reader!

To help make this new language a bit more familiar, let’s look at a few examples.
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Example 3.1.5 Let 𝐷 : 𝒫4(R) → 𝒫4(R) be the differentiation map. (Note that although we can view
differentiation as a map from 𝒫4(R) to 𝒫3(R), we’ve chosen the codomain 𝒫4(R) here to
ensure that 𝐷 is a linear operator.) Then 0 is an eigenvalue of 𝐷 since 𝐷(3) = 0 = 0(3),
and 3 is not the zero vector in 𝒫4(R). Furthermore, 0 is the only eigenvalue of 𝐷. You can
see this by noticing that 𝜆𝑝 and 𝑝 have the same degree if and only if 𝜆 ̸= 0. So, since 𝐷(𝑝)
and 𝑝 never have the same degree (unless 𝑝 = 0 of course), then the only way 𝐷(𝑝) = 𝜆𝑝
can be true is if 𝜆 = 0.

Now let’s work out what the eigenspace 𝐸0(𝐷) corresponding to 0 looks like. By definition,

𝐸0(𝐷) = {𝑝 ∈ 𝒫4(R) : 𝐷(𝑝) = 0}

and therefore 𝐸0(𝐷) = {𝑝 ∈ 𝒫4(R) : 𝑝 = 𝑘 for some constant 𝑘 ∈ R} is the subspace of
constant polynomials.

Example 3.1.6 Let 𝑊 be a plane through the origin in R3 and let 𝑃 : R3 → R3 be the projection onto
𝑊 . That is, 𝑃 ( #»𝑣 ) is the vector projection of #»𝑣 ∈ R3 onto 𝑊 . We will study projections
in more detail later in the course, so if they are not familiar to you, you can just use your
intuition for now. In particular, convince yourself that 𝑃 is linear.

𝑊
#»𝑣

𝑃 ( #»𝑣 )
𝑥

𝑦

𝑧

What are the eigenvalues of 𝑃? There’s an obvious one: 𝜆 = 1. Indeed, if #»𝑣 ∈ R3 is in 𝑊 ,
then 𝑃 ( #»𝑣 ) = #»𝑣 = 1 #»𝑣 . This shows that all the vectors in 𝑊 are eigenvectors with eigenvalue
1. In fact, the eigenspace corresponding to 1 is precisely 𝑊 itself. That is, 𝐸1(𝑃 ) = 𝑊 .

There is another geometrically obvious eigenvalue, namely 𝜆 = 0. In the next exercise you
are asked to determine its eigenvectors.

Exercise 30 Let 𝑃 : R3 → R3 be as in the previous example.

(a) Complete the proof that 𝐸1(𝑃 ) = 𝑊 by showing that 𝐸1(𝑃 ) ⊆ 𝑊 .

(b) Determine 𝐸0(𝑃 ).
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It’s all well and good to make definitions like the above, and work out examples where
it’s easy to find eigenvalues and eigenspaces by inspection, but how can we actually find
eigenvalues and eigenspaces in a systematic way? As is becoming a pattern, we will pick a
basis ℬ of 𝑉 , turn our linear operator into the matrix [𝐿]ℬ, and harness the computational
power of matrices!

Once we’ve picked a basis, we can think of these definitions purely as definitions for matrices.
In this case, we can think of a square matrix as a linear map from F𝑛 to itself, and our
vectors are column vectors in F𝑛.

3.1.1 Finding Eigenvectors and Eigenvalues

To find eigenvectors and eigenvalues for a linear operator 𝐿 : 𝑉 → 𝑉 on a finite-dimensional
vector space 𝑉 over F, first pick an ordered basis ℬ for 𝑉 so you have an 𝑛 × 𝑛 matrix
𝐴 = [𝐿]ℬ. Now the problem becomes finding eigenvalues and eigenvectors for 𝐴. Let’s recall
the definitions.

Definition 3.1.7

Eigenvector,
Eigenvalue,

Eigenspace of a
Matrix, 𝐸𝜆(𝐴)

Let 𝐴 ∈ 𝑀𝑛×𝑛(F) be an 𝑛 × 𝑛 matrix. A non-zero vector #»𝑣 ∈ F𝑛 such that 𝐴 #»𝑣 = 𝜆 #»𝑣 for
some 𝜆 ∈ F is called an eigenvector of 𝐴. The number 𝜆 is called an eigenvalue of 𝐴.

The eigenspace of 𝐴 corresponding to 𝜆 is

𝐸𝜆(𝐴) = { #»𝑣 ∈ F𝑛 : 𝐴 #»𝑣 = 𝜆 #»𝑣 }.

Exercise 31 Prove that #»𝑣 ∈ 𝑉 is an eigenvector of 𝐿 with eigenvalue 𝜆 ∈ F if and only if [ #»𝑣 ]ℬ ∈ F𝑛 is
an eigenvector of 𝐴 = [𝐿]ℬ with eigenvalue 𝜆.

To find an eigenvector for 𝐴, we’re looking for a vector #»𝑣 ̸= #»
0 such that

𝐴 #»𝑣 = 𝜆 #»𝑣

for some 𝜆 ∈ F. If we rearrange this equation we get

𝐴 #»𝑣 − 𝜆 #»𝑣 =
#»
0 .

It would be tempting now to factor out the #»𝑣 , which we will do, but we cannot as written.
If we did, we would be left with a term 𝐴 − 𝜆, which makes no sense since 𝐴 is a square
matrix and 𝜆 is an element of F. To get around this, we observe that 𝜆 #»𝑣 = 𝜆𝐼 #»𝑣 where 𝐼
is the identity matrix of the appropriate size. Now our equation takes the form

(𝐴− 𝜆𝐼) #»𝑣 =
#»
0 .

If the matrix 𝐴 − 𝜆𝐼 were invertible, then we could multiply both sides on the left by
the inverse and get #»𝑣 =

#»
0 . Since we’re looking for non-zero vectors #»𝑣 , this means we

are looking for values of 𝜆 that make the matrix 𝐴 − 𝜆𝐼 not invertible. Equivalently, we
want values of 𝜆 such that det(𝐴 − 𝜆𝐼) = 0. Furthermore, once we’ve found such a 𝜆, a
corresponding eigenvector is any non-zero vector such that (𝐴−𝜆𝐼) #»𝑣 =

#»
0 , which must exist

because 𝐴− 𝜆𝐼 is non-invertible. These are precisely the non-zero vectors in Null(𝐴− 𝜆𝐼).
Let’s summarize.
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Proposition 3.1.8 Let 𝐿 : 𝑉 → 𝑉 be a linear operator on a finite-dimensional vector space 𝑉 over F, and let
𝜆 ∈ F be an eigenvalue of 𝐿 (provided that it exists). If ℬ is an ordered basis for 𝑉 and if
𝐴 = [𝐿]ℬ, then the eigenspace of 𝐴 corresponding to 𝜆 is Null(𝐴− 𝜆𝐼):

𝐸𝜆(𝐴) = Null(𝐴− 𝜆𝐼).

Once we determine the eigenspace 𝐸𝜆(𝐴), we can obtain 𝐸𝜆(𝐿) by converting back from
ℬ-coordinate vectors in F𝑛 to vectors in 𝑉 .

Example 3.1.9 Let 𝐷 : 𝒫2(R) → 𝒫2(R) be the differentiation map. If 𝒮 = {1, 𝑥, 𝑥2} is the standard basis
for 𝒫2(R) then as we’ve noted before

[𝐷]𝒮 =

⎡⎣0 1 0
0 0 2
0 0 0

⎤⎦ .

Call this matrix 𝐴. The argument in Example 3.1.5 shows that 0 is an eigenvalue of 𝐷. To
find the corresponding eigenspace, we must compute

𝐸0(𝐴) = Null(𝐴− 0𝐼) = Null

⎛⎝⎡⎣0 1 0
0 0 2
0 0 0

⎤⎦⎞⎠ .

To find the nullspace of a matrix, we simply apply the Gauss–Jordan algorithm and row
reduce. Skipping the easy details, we find that

𝐸0(𝐴) = Null

⎛⎝⎡⎣0 1 0
0 0 2
0 0 0

⎤⎦⎞⎠ = Span

⎧⎨⎩
⎡⎣1
0
0

⎤⎦⎫⎬⎭ .

Translating back to polynomials, the vector
[︀
1 0 0

]︀𝑇
is the polynomial 1 + 0𝑥 + 0𝑥2 = 1.

So we conclude that 𝐸0(𝐷) is Span{1}, the subspace of constant polynomials, perhaps as
expected (and as we saw in Example 3.1.5 for the differentiation operator on 𝒫4).

Exercise 32 Determine 𝐸0(𝐷) for the differentiation operator 𝐷 : 𝒫𝑛(R) → 𝒫𝑛(R).

Thus, we have a computational strategy for finding eigenvectors. What about eigenvalues?
Well, they are the numbers 𝜆 ∈ F that satisfy the equation det(𝐴−𝜆𝐼) = 0. Here is another
(hopefully familiar) definition.

Definition 3.1.10

Characteristic
Polynomial of a

Matrix

Let 𝐴 ∈ 𝑀𝑛×𝑛(F). The characteristic polynomial of 𝐴 is the polynomial in 𝜆 given by
𝐶𝐴(𝜆) = det(𝐴− 𝜆𝐼).

As you may recall, 𝐶𝐴(𝜆) really is a polynomial (see Theorem 3.1.14). Our preceding
discussion proves the next proposition.



Section 3.1 Eigenvectors and Diagonalization 65

Proposition 3.1.11 Let 𝐴 ∈ 𝑀𝑛×𝑛(F). The eigenvalues of 𝐴 are the values of 𝜆 ∈ F that are solutions to the
equation det(𝐴− 𝜆𝐼) = 0. That is, they are the roots of the characteristic polynomial of 𝐴
that lie in F.

Example 3.1.12 Going back to Example 3.1.9, with the differentiation operator 𝐷 : 𝒫2(R) → 𝒫2(R) and its
standard matrix

𝐴 = [𝐷]𝒮 =

⎡⎣0 1 0
0 0 2
0 0 0

⎤⎦ ,

we can compute the characteristic polynomial of 𝐴 to be

𝐶𝐴(𝜆) = det(𝐴− 𝜆𝐼) = det

⎛⎝⎡⎣−𝜆 1 0
0 −𝜆 2
0 0 −𝜆

⎤⎦⎞⎠ = −𝜆3.

The only root is 𝜆 = 0, meaning: the only eigenvalue of 𝐷 is 𝜆 = 0 as we’d already seen.

Example 3.1.13 Let 𝐿 : R2 → R2 be the linear operator defined by 𝐿( #»𝑥 ) = 𝐴 #»𝑥 , where 𝐴 =

[︂
0 1
−1 0

]︂
. Then

𝐴 = [𝐿]𝒮 is the standard matrix of 𝐿. The characteristic polynomial of 𝐴 is

𝐶𝐴(𝜆) = det(𝐴− 𝜆𝐼) = det

(︂[︂
−𝜆 1
−1 −𝜆

]︂)︂
= 𝜆2 + 1.

This has no roots in R, and so the operator 𝐿 has no eigenvalues.

On the other hand, consider the operator 𝑇 : C2 → C2 defined by 𝑇 ( #»𝑥 ) = 𝐴 #»𝑥 , where 𝐴 is
the same matrix above. Then 𝐴 = [𝑇 ]𝒮 is again the standard matrix of 𝑇 , but this time
its characteristic polynomial has two roots in C, namely 𝜆 = ±𝑖. So 𝑇 has two eigenvalues
𝜆 = ±𝑖.

REMARK

The previous example shows that the field of definition plays an important role here. This
can get confusing because we can always view a real matrix as being a complex matrix that
has real entries.

To avoid any potential ambiguity, we will adopt the following convention in the context of
eigenvalues: When we write “𝐴 ∈ 𝑀𝑛×𝑛(R)”, we are specifically viewing 𝐴 as representing
the real operator 𝐿 : R𝑛 → R𝑛 defined by 𝐿( #»𝑥 ) = 𝐴 #»𝑥 . Thus, its eigenvalues will be required
to belong to R. If we wish to view 𝐴 as belonging to𝑀𝑛×𝑛(C), and therefore possibly having
non-real eigenvalues, then we will explicitly state this.

To close this section, let’s recall a few facts about the characteristic polynomial. The
important fact here is that this really is a polynomial.
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Theorem 3.1.14 If 𝐴 is an 𝑛 × 𝑛 matrix with entries in F, then the characteristic polynomial of 𝐴 is a
polynomial of degree 𝑛 with coefficients in F.

This proof is a bit tricky, requiring some finesse with the cofactor expansion definition of
the determinant. We shall not write it down here. If you are motivated to try it yourself,
first try proving the statement when 𝑛 = 2 and 𝑛 = 3.

Example 3.1.15 In Example 3.1.12, we saw that the characteristic polynomial of the matrix 𝐴 = [𝐷]𝒮 in
𝑀3×3(R) is the degree 3 polynomial 𝐶𝐴(𝜆) = −𝜆3.

In Example 3.1.13, we saw that the characteristic polynomial of the matrix 𝐴 =

[︂
0 1
−1 0

]︂
in 𝑀2×2(R) is the degree 2 polynomial 𝐶𝐴(𝜆) = 𝜆2 + 1. Note if we view 𝐴 as belonging
to 𝑀2×2(C) then this still conforms with the above theorem, since real coefficients can be
viewed as being complex coefficients.

Using the fundamental theorem of algebra, i.e., the fact that every degree 𝑛 polynomial
with coefficients in C has 𝑛 (possibly repeated) roots in C, we obtain the next result.

Corollary 3.1.16 Let 𝐴 ∈ 𝑀𝑛×𝑛(C). Then 𝐴 has 𝑛 (possibly repeated) eigenvalues in C.

REMARK

Pay careful attention to the field of definition here. As we saw in Example 3.1.13, if
𝐴 ∈ 𝑀𝑛×𝑛(R), then 𝐴 need not have any eigenvalues in R at all! But viewed as a matrix
in 𝑀𝑛×𝑛(C), it will always have eigenvalues in C.

Example 3.1.17 If our characteristic polynomial is 𝐶𝐴(𝜆) = −𝜆3 = −(𝜆 − 0)3, then the root 0 is repeated
with multiplicity 3.

If instead we had 𝐶𝐴(𝜆) = (𝜆− 1)(𝜆− (1 + 𝑖))2(𝜆+ 5)4, then we would say that the root 1
is not repeated (or repeated with multiplicity 1 ), while the roots 1 + 𝑖 and −5 are repeated
with multiplicities 2 and 4, respectively.

By thinking carefully about polynomials and how the roots relate to the coefficients, you
can prove the following corollary. (We will be able to give a very easy proof in Chapter 5.
See Example 5.3.3.)

Corollary 3.1.18 Let 𝐴 ∈ 𝑀𝑛×𝑛(C). Then

(a) The determinant of 𝐴 is the product of eigenvalues of 𝐴, where each eigenvalue is
repeated according to its multiplicity.

(b) The trace of 𝐴 is the sum of eigenvalues of 𝐴, where each eigenvalue is repeated ac-
cording to its multiplicity.
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REMARK

It’s worth pointing out that the previous result applies to a real matrix 𝐴 if we view it
as lying in 𝑀𝑛×𝑛(C). As we’ve seen, such a matrix can have non-real eigenvalues in C.
However, that det(𝐴) and tr(𝐴) will be real if all of the entries of 𝐴 are real. So we arrive
at the interesting observation that the sum and product of all of the complex eigenvalues
of 𝐴 must both be real numbers! This is illustrated in Examples 3.1.19 and 3.1.21 below.

Example 3.1.19 If 𝐴 =

[︂
0 −1
1 0

]︂
∈ 𝑀2×2(C), then we saw in Example 3.1.13 that the characteristic poly-

nomial of 𝐴 is 𝐶𝐴(𝜆) = 𝜆2 + 1 = (𝜆 + 𝑖)(𝜆 − 𝑖). So the eigenvalues of 𝐴 are 𝑖 and −𝑖
(non-repeated), and indeed we have

det(𝐴) = 𝑖(−𝑖) and tr(𝐴) = 𝑖+ (−𝑖)

since det(𝐴) = 1 and tr(𝐴) = 0. Notice that these two quantities are real, even though the
eigenvalues appearing in the above equations are not!

Example 3.1.20 For

𝐴 = [𝐷]𝒮 =

⎡⎣0 1 0
0 0 2
0 0 0

⎤⎦ ,

where 𝐶𝐴(𝜆) = −𝜆3, we can indeed verify that

det(𝐴) = 0 · 0 · 0

and
tr(𝐴) = 0 + 0 + 0.

This example is particularly trivial because the matrix 𝐴 is upper-triangular, which if you
recall means the diagonal entries of 𝐴 are precisely the eigenvalues of 𝐴 (repeated according
to multiplicity).

It is perhaps more interesting to consider the matrix of 𝐷 with respect to another basis.
For instance, if we take ℬ = {1 + 𝑥2, 𝑥, 1 + 𝑥− 𝑥2}, then we’d find that

𝐵 = [𝐷]ℬ =

⎡⎣0 1
2

1
2

2 −1
2 −5

2
0 1

2
1
2

⎤⎦ .

We’ll leave it to you to check that 𝐶𝐵(𝜆) = −𝜆3, so that the only eigenvalue of 𝐵 is 0
repeated with multiplicity 3, and that

det(𝐵) = 0 = 0 · 0 · 0 and tr(𝐵) = 0 +

(︂
−1

2

)︂
+

1

2
= 0 + 0 + 0.

Notice that the matrices 𝐴 and 𝐵 have the same characteristic polynomial (and therefore
the same determinant and trace). This is not a coincidence! We will explore this in the
next section.
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Exercise 33 Verify the claims about the matrix 𝐵 in the preceding example.

Example 3.1.21 Consider the matrix

𝐴 =

⎡⎣ 1 −1 1
1 0 1
−1 1 0

⎤⎦ .

As a matrix in 𝑀2×2(R) it has only one eigenvalue in R, namely 𝜆1 = 1. However, as a
matrix in 𝑀2×2(C), it has three eigenvalues in C, namely 𝜆1 = 1, 𝜆2 = 𝑖 and 𝜆3 = −𝑖. The
determinant of this matrix is det(𝐴) = 1 and we can verify that it is equal to the product
of the eigenvalues in C:

det(𝐴) = 1 = 1 · 𝑖 · (−𝑖).

We can also verify that the trace of 𝐴 is equal to the sum of the eigenvalues in C:

tr(𝐴) = 1 + 0 + 0 = 1 + 𝑖+ (−𝑖).

3.2 Diagonalization

The fundamental definition in this section is the following.

Definition 3.2.1

Diagonalizable
Operator,

Diagonalizes

Let 𝑉 be a finite-dimensional vector space over F. A linear operator 𝐿 : 𝑉 → 𝑉 is diago-
nalizabile if there exists an ordered basis 𝒟 for 𝑉 such that [𝐿]𝒟 is a diagonal matrix. We
say that the basis 𝒟 diagonalizes 𝐿.

The point being: an operator 𝐿 is diagonalizable if there is some coordinate system in which
the action of 𝐿 is easy to interpret.

Example 3.2.2 As noted in the opening to this chapter, the linear operator 𝐿 : R3 → R3 given by

𝐿

⎛⎝⎡⎣𝑥
𝑦
𝑧

⎤⎦⎞⎠ =

⎡⎣𝑥
𝑦
𝑧

⎤⎦− 2(𝑥+ 𝑦 + 𝑧)

3

⎡⎣1
1
1

⎤⎦ .

is diagonalizable. Indeed, if we take the ordered basis

𝒟 =

⎧⎨⎩
⎡⎣1
1
1

⎤⎦ ,

⎡⎣−1
0
1

⎤⎦ ,

⎡⎣−1
1
0

⎤⎦⎫⎬⎭
for R3, we find that

[𝐿]𝒟 =

⎡⎣−1 0 0
0 1 0
0 0 1

⎤⎦ .

We can use this to interpret 𝐿 as a reflection in the coordinate system provided by the basis
𝒟 for R3.
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How do we determine if a linear operator 𝐿 : 𝑉 → 𝑉 is diagonalizable? And if it is, how do
we diagonalize it? That is, how do we determine a basis 𝒟 for 𝑉 such that [𝐿]𝒟 is diagonal?

To answer these questions we will begin by considering [𝐿]ℬ for an arbitrary basis ℬ. We
would like to understand how these matrices, for the various bases of 𝑉 , are related.

Proposition 3.2.3 Let 𝐿 : 𝑉 → 𝑉 be a linear operator, and let ℬ and 𝒞 be ordered bases for 𝑉 . Then

[𝐿]ℬ = (𝒞ℐℬ)−1 [𝐿]𝒞 𝒞ℐℬ.

Proof: Since (𝒞ℐℬ)−1 = ℬℐ𝒞 (by Proposition 2.4.4), and since [𝐿]𝒞 = 𝒞 [𝐿]𝒞 and [𝐿]ℬ =

ℬ[𝐿]ℬ, the result follows from Proposition 2.4.6. To spell it out,

(𝒞ℐℬ)−1 [𝐿]𝒞 𝒞ℐℬ = (𝒞ℐℬ)−1
𝒞 [𝐿]𝒞 𝒞ℐℬ

= (𝒞ℐℬ)−1
𝒞 [𝐿]ℬ

= ℬℐ𝒞 𝒞 [𝐿]ℬ

= ℬ[𝐿]ℬ

= [𝐿]ℬ.

This proposition motivates our next definition.

Definition 3.2.4

Similar

If 𝐵 and 𝐶 are 𝑛 × 𝑛 matrices such that 𝐵 = 𝑃−1𝐶𝑃 for some invertible matrix 𝑃 in
𝑀𝑛×𝑛(F), then we say 𝐵 is similar to 𝐶 over F.

Proposition 3.2.3 tells us that any two matrix representations [𝐿]ℬ and [𝐿]𝒞 of a fixed
operator are similar, with 𝑃 being the change of basis matrix 𝒞ℐℬ. Conversely, two similar
𝑛 × 𝑛 matrices can be always be viewed as representing the same operator 𝐿 : F𝑛 → F𝑛.
Indeed, if 𝐵 = 𝑃−1𝐶𝑃 , then the columns of 𝑃 form a basis for F𝑛, since 𝑃 is invertible. If
we call this basis 𝒞, and if we let ℬ be the standard basis, then we have 𝑃 = ℬℐ𝒞 . Now let
𝐿 : F𝑛 → F𝑛 be the operator defined by 𝐿( #»𝑥 ) = 𝐵𝑥. Then [𝐿]ℬ = 𝐵 and so, by changing
coordinates to 𝒞, [𝐿]𝒞 = 𝑃−1[𝐿]𝒮𝑃 since 𝑃 = ℬℐ𝒞 and 𝑃−1 = 𝒞ℐℬ.
That was probably confusing. The takeaway is this: two 𝑛×𝑛 matrices are similar over F if
and only if they represent the same operator on F𝑛. This justifies the usage of the adjective
“similar” for such matrices. The next set of exercises and the proposition that follows give
further justification.

Exercise 34 Let 𝐴,𝐵,𝐶 ∈ 𝑀𝑛×𝑛(F).

(a) Show that 𝐴 is similar to 𝐴.

(b) Show that if 𝐴 is similar to 𝐵 then 𝐵 is similar to 𝐴.

(c) Show that if 𝐴 is similar to 𝐵 and if 𝐵 is similar to 𝐶 then 𝐴 is similar to 𝐶.
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The next result shows that similar matrices share a lot of common features, which is to be
expected—since they represent the same operator!

Proposition 3.2.5 Let 𝐴,𝐵 ∈ 𝑀𝑛×𝑛(F). If 𝐴 is similar to 𝐵 over F, then 𝐴 and 𝐵 have the same

(a) characteristic polynomial,

(b) eigenvalues,

(c) determinant,

(d) trace,

(e) rank, and

(f) nullity.

Proof: Let’s begin with part (a). If the 𝑛 × 𝑛 matrices 𝐴 and 𝐵 are similar, then there
exists an invertible matrix 𝑃 ∈ 𝑀𝑛×𝑛(F) such that 𝐴 = 𝑃−1𝐵𝑃 , and therefore

𝐶𝐴(𝜆) = det(𝐴− 𝜆𝐼)

= det
(︀
𝑃−1𝐵𝑃 − 𝑃−1(𝜆𝐼)𝑃

)︀
= det

(︀
𝑃−1(𝐵 − 𝜆𝐼)𝑃

)︀
= det(𝑃−1) det(𝐵 − 𝜆𝐼) det(𝑃 ) (since det is multiplicative)

= det(𝑃 )−1 det(𝐵 − 𝜆𝐼) det(𝑃 )

= det(𝐵 − 𝜆𝐼)

= 𝐶𝐵(𝜆).

This completes the proof of part (a). Parts (b), (c) and (d) follow immediately from this.
(How?)

Finally, for parts (e) and (f), we can assume (by the discussion following Definition 3.2.4)
that 𝐴 and 𝐵 represent the same operator 𝐿 : F𝑛 → F𝑛. That is, we can assume there
are ordered bases 𝒜 and ℬ for F𝑛 such that [𝐿]𝒜 = 𝐴 and [𝐿]ℬ. Then, by Proposition
2.5.20, rank(𝐴) = rank(𝐿) and rank(𝐵) = rank(𝐿). Thus, rank(𝐴) = rank(𝐵). Similarly,
nullity(𝐴) = nullity(𝐿) = nullity(𝐵). This completes the proof.

Now let’s return to the problem of diagonalizing a given operator 𝐿 : 𝑉 → 𝑉 , where we ask
if it’s possible to find a matrix representation [𝐿]𝒟 of 𝐿 that is diagonal. By what we’ve
just learned, this is the same as asking if any matrix representation of 𝐴 is similar to a
diagonal matrix.

Example 3.2.6 If 𝐿 : R3 → R3 is in Example 3.2.2, then with respect to the standard basis 𝒮 of R3 we have

[𝐿]𝒮 =

⎡⎣ 1
3 −2

3 −2
3

−2
3

1
3 −2

3
−2

3 −2
3

1
3

⎤⎦ .



Section 3.2 Diagonalization 71

If 𝒟 is as in Example 3.2.2 then the change of basis matrix from 𝒟 to 𝒮 is given by

𝒮ℐ𝒟 =

⎡⎣1 −1 −1
1 0 1
1 1 0

⎤⎦
and you can check that

(𝒮ℐ𝒟)−1 [𝐿]𝒮 𝒮ℐ𝒟 =

⎡⎣−1 0 0
0 1 0
0 0 1

⎤⎦ .

So [𝐿]𝒮 is similar to a diagonal matrix. The above matrix is, in fact, equal to [𝐿]𝒟 by our
change-of-coordinates formula (Proposition 2.4.6).

With this new perspective, let’s re-frame our diagonalization problem in terms of matrices.

Definition 3.2.7

Diagonalizable
Matrix,

Diagonalizes

A matrix 𝐴 ∈ 𝑀𝑛×𝑛(F) is diagonalizable (over F) if there exists an invertible matrix
𝑃 ∈ 𝑀𝑛×𝑛(F) such that 𝑃−1𝐴𝑃 = 𝐷 where 𝐷 is a diagonal matrix. We say that the matrix
𝑃 diagonalizes 𝐴.

REMARK

You will recall that the field F plays an important role here. For instance, a matrix 𝐴 in
𝑀𝑛×𝑛(R) might not be diagonalizable if we insist on having 𝑃 ∈ 𝑀𝑛×𝑛(R). However, we
might be able to find a suitable 𝑃 in 𝑀𝑛×𝑛(C). The standard example of this is a 2 × 2
rotation matrix, which, if the angle of rotation isn’t a multiple of 𝜋, is not diagonalizable
over R but is diagonalizable over C. (Do you remember why?)

So the question now becomes: When is an 𝑛×𝑛 matrix 𝐴 diagonalizable? This is a problem
that you have studied in a previous course. We will quickly review—without proof—the
solution to this problem.

If we think about how the matrix of a linear map works, then we wish to find a basis of
eigenvectors.

Theorem 3.2.8 An 𝑛 × 𝑛 matrix 𝐴 ∈ 𝑀𝑛×𝑛(F) is diagonalizable over F if and only if there exists a basis
𝒟 = { #»𝑣 1, . . . ,

#»𝑣 𝑛} for F𝑛 such that each #»𝑣 𝑖 is an eigenvector for 𝐴.

If such a basis 𝒟 exists, and if we let 𝑃 =
[︀

#»𝑣 1 · · · #»𝑣 𝑛

]︀
be the matrix whose columns are

the vectors in 𝒟, then

𝑃−1𝐴𝑃 = 𝐷 =

⎡⎢⎢⎢⎢⎣
𝜆1 0 · · · 0

0 𝜆2
. . .

...
...

. . .
. . . 0

0 · · · 0 𝜆𝑛

⎤⎥⎥⎥⎥⎦
where 𝜆𝑖 is the eigenvalue corresponding to the eigenvector #»𝑣 𝑖.
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So, if we are to diagonalize a matrix, we need to find a basis for F𝑛 consisting entirely of
eigenvectors. Let’s take a look at some examples.

Example 3.2.9 Let 𝐿 : 𝒫2(F) → 𝒫2(F) be the differentiation operator defined by 𝐿(𝑝(𝑥)) = 𝑝′(𝑥). If
𝒮 = {1, 𝑥, 𝑥2} is the standard basis of 𝒫2(F) then we have seen in Examples 3.1.9 and
3.1.12 that

𝐴 = [𝐿]𝒮 =

⎡⎣0 1 0
0 0 2
0 0 0

⎤⎦
and that 𝐶𝐴(𝜆) = −𝜆3. So the only eigenvalue of 𝐴 is 𝜆 = 0 and we saw that the corre-
sponding eigenspace is

𝐸0(𝐴) = Span

⎧⎨⎩
⎡⎣1
0
0

⎤⎦⎫⎬⎭ .

So there can be no basis of F3 consisting entirely of eigenvectors of 𝐴, since there is at most
one linearly independent eigenvector of 𝐴 in F3. Thus 𝐴 (and hence 𝐿) is not diagonalizable.

Example 3.2.10 Let 𝐿 : 𝒫1(F) → 𝒫1(F) be defined by 𝐿(𝑎 + 𝑏𝑥) = (𝑎 + 2𝑏) + (2𝑎 + 𝑏)𝑥. Then, using the
standard basis 𝒮 = {1, 𝑥}, we have that

𝐴 = [𝐿]𝒮 =

[︂
1 2
2 1

]︂
.

The characteristic polynomial of 𝐴 is 𝐶𝐴(𝜆) = (1 − 𝜆)2 − 4 = (𝜆 − 3)(𝜆 + 1) and so the
eigenvalues of 𝐴 are 𝜆1 = 3 and 𝜆2 = −1.

Using our usual method for finding nullspaces, we obtain

𝐸𝜆1(𝐴) = Null(𝐴− 3𝐼) = Span

{︂[︂
1
1

]︂}︂
and

𝐸𝜆2(𝐴) = Null(𝐴− (−𝐼)) = Span

{︂[︂
1
−1

]︂}︂
.

Since the two eigenvectors #»𝑣 1 =

[︂
1
1

]︂
and #»𝑣 2 =

[︂
1
−1

]︂
are linearly independent, we can

take 𝒟 = { #»𝑣 1,
#»𝑣 2} as a basis for F2. If we let 𝑃 =

[︀
#»𝑣 1

#»𝑣 2

]︀
=

[︂
1 1
1 −1

]︂
then

𝑃−1𝐴𝑃 =

[︂
3 0
0 −1

]︂
.

So we have diagonalized the matrix 𝐴. We can convert back from coordinate vectors
to polynomials to obtain a basis for 𝒫2(F). Recall that we are using the standard basis

𝒮 = {1, 𝑥}, so #»𝑣 1 =

[︂
1
1

]︂
and #»𝑣 2 =

[︂
1
−1

]︂
correspond to the polynomials 1 + 𝑥 and 1− 𝑥,

respectively. Our work above amounts to the fact that if we let 𝒟 = {1 + 𝑥, 1 − 𝑥} then

[𝐿]𝒟 =

[︂
3 0
0 −1

]︂
.
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In the previous example we could check by inspection that the eigenvectors #»𝑣 1 and #»𝑣 2

corresponding to the two distinct eigenvalues 𝜆1 and 𝜆2 are linearly independent. In fact,
this is a special case of:

Proposition 3.2.11 Suppose 𝜆1, . . . , 𝜆𝑘 ∈ F are distinct eigenvalues of a square matrix 𝐴 ∈ 𝑀𝑛×𝑛(F) with
corresponding eigenvectors #»𝑣 1, . . . ,

#»𝑣 𝑘. Then { #»𝑣 1, . . . ,
#»𝑣 𝑘} is linearly independent.

Combining this with Theorem 3.2.8, we obtain the following useful proposition.

Proposition 3.2.12 If 𝐴 ∈ 𝑀𝑛×𝑛(F) has 𝑛 distinct eigenvalues in F, then 𝐴 is diagonalizable over F.

Warning: The converse of Proposition 3.2.12 is false. There are plenty of diagonalizable
matrices that do not have distinct eigenvalues. For instance, the 𝑛×𝑛 identity matrix when
𝑛 > 1.

Example 3.2.13 Let 𝐿 : 𝑀1×2(F) → 𝑀1×2(F) be defined by 𝐿(
[︀
𝑥 𝑦

]︀
) =

[︀
𝑦 −2𝑥− 3𝑦

]︀
. Then with respect

to the standard basis 𝒮 of 𝑀1×2(F) we have

𝐴 = [𝐿]𝒮 =

[︂
0 1
−2 −3

]︂
.

The characteristic polynomial of 𝐴 is 𝐶𝐴(𝜆) = 𝜆2 + 3𝜆+ 2 = (𝜆+ 1)(𝜆+ 2). Thus, 𝐴 has
distinct eigenvalues, and therefore must be diagonalizable.

Going further, we can show that

{︂[︂
−1
1

]︂}︂
and

{︂[︂
−1
2

]︂}︂
are bases for the eigenspaces

𝐸−1(𝐴) and 𝐸−2(𝐴), respectively, and therefore

{︂[︂
−1
1

]︂
,

[︂
−1
2

]︂}︂
is a basis for F2 consisting

entirely of eigenvectors of 𝐴. So, by Theorem 3.2.8, we must have 𝑃−1𝐴𝑃 = 𝐷 where

𝑃 =

[︂
−1 −1
1 2

]︂
and 𝐷 =

[︂
−1 0
0 −2

]︂
.

Let’s check this. We have

𝐴𝑃 =

[︂
0 1
−2 −3

]︂ [︂
−1 −1
1 2

]︂
=

[︂
1 2
−1 −4

]︂
and

𝑃𝐷 =

[︂
−1 −1
1 2

]︂ [︂
−1 0
0 −2

]︂
=

[︂
1 2
−1 −4

]︂
so 𝑃−1𝐴𝑃 = 𝐷.

Translating back to 𝑀1×2(F), we can conclude that the basis 𝒟 =
{︀[︀

−1 1
]︀
,
[︀
−1 2

]︀}︀
diagonalizes 𝐿.

If the matrix 𝐴 has repeated eigenvalues then, as you might recall, their multiplicities play
an important role in the problem of diagonalizability.
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Definition 3.2.14

Algebraic
Multiplicity,
Geometric
Multiplicity

Let 𝐴 ∈ 𝑀𝑛×𝑛(F) and let 𝜆 ∈ F be an eigenvalue of 𝐴. The algebraic multiplicity of
𝜆 is the multiplicity of 𝜆 as a root of the characteristic polynomial of 𝐴. The geometric
multiplicity of 𝜆 is defined to be the dimension of the eigenspace 𝐸𝜆(𝐴) = Null(𝐴− 𝜆𝐼).

The geometric multiplicity of an eigenvalue is really what we are interested in. It tells us
how many linearly independent eigenvectors an eigenvalue can have. After all, we want to
find a basis consisting entirely of eigenvectors, so we want to be able to find sufficiently
many linearly independent eigenvectors. The obvious thing to do is to find bases for each
of the eigenspaces and then combine them together (i.e. take their union) to form a set 𝒟.
Two potential issues arise:

1. Is the resulting set 𝒟 linearly independent?

2. Are there enough vectors in 𝒟 to span all of F𝑛?

Amazingly, the answer to question 1 is always yes! (Compare to Proposition 3.2.11.)

Proposition 3.2.15 Suppose 𝜆1, . . . , 𝜆𝑘 ∈ F are distinct eigenvalues of a matrix 𝐴 ∈ 𝑀𝑛×𝑛(F), and let
{ #»𝑣 𝑖,1,

#»𝑣 𝑖,2, . . . ,
#»𝑣 𝑖,𝑚𝑖} be a basis for the eigenspace corresponding to 𝜆𝑖 (so the dimension

of the eigenspace corresponding to 𝜆𝑖 is 𝑚𝑖). Then

{ #»𝑣 1,1,
#»𝑣 1,2, . . . ,

#»𝑣 1,𝑚1 ,
#»𝑣 2,1, . . . ,

#»𝑣 2,𝑚2 , . . . ,
#»𝑣 𝑘,1, . . . ,

#»𝑣 𝑘,𝑚𝑘
}

is a linearly independent subset of F𝑛.

The other key fact here is that the algebraic multiplicity acts as an upper bound on the
geometric multiplicity.

Proposition 3.2.16 Let 𝐴 ∈ 𝑀𝑛×𝑛(F) and let 𝜆 ∈ F be an eigenvalue of 𝐴. Then

1 ≤ geometric multiplicity of 𝜆 ≤ algebraic multiplicity of 𝜆 ≤ 𝑛.

Now, if F = R and the sum of algebraic multiplicities is strictly less than 𝑛, then the
characteristic polynomial 𝐶𝐴(𝜆) does not have 𝑛 roots in F, and so we can immediately
conclude that the matrix is not diagonalizable. Otherwise, when the sum of the algebraic
multiplicities is equal to deg𝐶𝐴(𝜆) = 𝑛 = dimF𝑛, we need to check if geometric multiplicity
is equal to algebraic multiplicity for each eigenvalue. If the geometric multiplicity is ever
strictly less than the algebraic multiplicity for any eigenvalue, we immediately know that we
cannot find enough linearly independent eigenvectors to diagonalize the matrix. Conversely,
if the sum of algebraic multiplicities is equal to 𝑛, and if the geometric multiplicity is equal
to the algebraic multiplicity for each eigenvalue, then we will be able to find enough linearly
independent eigenvectors.
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Theorem 3.2.17 (Diagonalizability Test)

Let 𝐴 ∈ 𝑀𝑛×𝑛(F). Suppose that the characteristic polynomial of 𝐴 factors over F as

𝐶𝐴(𝜆) = (𝜆− 𝜆1)
𝑎𝜆1 · · · (𝜆− 𝜆𝑘)

𝑎𝜆𝑘ℎ(𝜆),

where 𝜆1, . . . , 𝜆𝑘 are all of the distinct eigenvalues of 𝐴 in F with corresponding algebraic
multiplicities 𝑎𝜆1 , . . . , 𝑎𝜆𝑘

and ℎ(𝜆) is a polynomial in 𝜆 that has no roots in F. Then 𝐴 is
diagonalizable over F if and only if ℎ(𝜆) is a constant polynomial and for all 𝑖 = 1, . . . , 𝑘,

algebraic multiplicity of 𝜆𝑖 = geometric multiplicity of 𝜆𝑖.

Exercise 35 Supply proofs for as many of the unproved propositions and theorems above as you can.
For those you don’t know how to prove, look up their proofs in the notes from your previous
linear algebra course.

The diagonalizability test completely answers the question of whether or not an 𝑛×𝑛 matrix
is diagonalizable over F. Let us summarize all our previous results.

ALGORITHM (Diagonalization of an Operator)

To diagonalize a linear operator 𝐿 : 𝑉 → 𝑉 :

1. Pick any basis ℬ for 𝑉 and determine the matrix 𝐴 = [𝐿]ℬ.

2. Compute and factor the characteristic polynomial 𝐶𝐴(𝜆) to find all the distinct
eigenvalues 𝜆1, . . . , 𝜆𝑘 ∈ F of 𝐴. Let 𝑎𝑖 denote the algebraic multiplicity of 𝜆𝑖. If
𝑎𝜆1 + · · ·+ 𝑎𝜆𝑘

̸= 𝑛, conclude that 𝐴 is not diagonalizable over F.

3. Otherwise, if 𝑎𝜆1 + · · ·+ 𝑎𝜆𝑘
= 𝑛, determine a basis ℬ𝑖 for the eigenspace 𝐸𝜆𝑖

(𝐴), for
each 𝑖 = 1, . . . , 𝑘. Let 𝑔𝜆𝑖

= dim𝐸𝜆𝑖
denote the geometric multiplicity of 𝜆𝑖.

4. 𝐴 (hence 𝐿) is diagonalizable if and only if 𝑎𝜆𝑖
= 𝑔𝜆𝑖

for all 𝑖 = 1, . . . , 𝑘.

5. If 𝐴 is diagonalizable, then 𝒟 = ℬ1 ∪ · · · ∪ ℬ𝑘 is a basis for F𝑛 (where 𝑛 = dim𝑉 )
consisting of eigenvectors of 𝐴. If 𝑃 is the matrix whose columns are the vectors in
𝒟, then 𝐷 = 𝑃−1𝐴𝑃 is a diagonal matrix. The diagonal entries of 𝐷 are 𝜆1 (listed 𝑎1
times), . . . , 𝜆𝑘 (listed 𝑎𝑘 times). The order of eigenvalues matches the order in which
their corresponding eigenvectors occur as columns in 𝑃 .

6. To determine a basis for 𝑉 that diagonalizes 𝐿, take each of the vectors in 𝒟, view
it as a coordinate vector in F𝑛 with respect to the basis ℬ from Step 1, and thereby
convert it into vector 𝑉 . The set of all these vectors is then the desired basis for 𝑉 .

Example 3.2.18 Let 𝐿 : 𝑀2×2(F) → 𝑀2×2(F) be defined by

𝐿

(︂[︂
𝑎 𝑏
𝑐 𝑑

]︂)︂
=

[︂
5𝑎+ 2𝑏+ 𝑑 −2𝑎+ 𝑏− 𝑑

4𝑎+ 4𝑏+ 3𝑐+ 2𝑑 16𝑎− 8𝑐− 5𝑑

]︂
.
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Using the standard basis 𝒮 of 𝑀2×2(F), we have

𝐴 = [𝐿]𝒮 =

⎡⎢⎢⎣
5 2 0 1
−2 1 0 −1
4 4 3 2
16 0 −8 −5

⎤⎥⎥⎦ .

Then 𝐶𝐴(𝜆) = (𝜆 − 3)3(𝜆 + 5). So the eigenvalues of 𝐴 are 𝜆1 = 3 and 𝜆2 = −5 with
algebraic multiplicities 𝑎𝜆1 = 3 and 𝑎𝜆2 = 1, respectively.

We must now determine the geometric multiplicities. The geometric multiplicity 𝑔𝜆2 is easy:
since 1 ≤ 𝑔𝜆2 ≤ 𝑎𝜆2 = 1, we must have that 𝑔𝜆2 = 1.

For 𝑔𝜆1 , we need to find the dimension of the eigenspace corresponding to 𝜆1 = 3. We have

𝐸𝜆1(𝐴) = Null(𝐴− 3𝐼) = Null

⎛⎜⎜⎝
⎡⎢⎢⎣

2 2 0 1
−2 −2 0 −1
4 4 0 2
16 0 −8 −8

⎤⎥⎥⎦
⎞⎟⎟⎠ .

Row reduction leads to ⎡⎢⎢⎣
2 2 0 1
−2 −2 0 −1
4 4 0 2
16 0 −8 −8

⎤⎥⎥⎦ →

⎡⎢⎢⎣
2 2 0 1
0 16 8 16
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ .

The nullity of these matrices is 2. Hence, 𝑔𝜆1 = dim𝐸𝜆1(𝐴) = nullity(𝐴−3𝐼) = 2. However,
𝑎𝜆1 = 3. So, since 𝑔𝜆1 ̸= 𝑎𝜆1 , we conclude that 𝐴 (and hence 𝐿) is not diagonalizable.

Example 3.2.19 Let 𝐿 : 𝒫3(F) → 𝒫3(F) be defined by

𝐿(𝑎+ 𝑏𝑥+ 𝑐𝑥2 + 𝑑𝑥3) = (−2𝑏+ 2𝑐) + (−2𝑎+ 2𝑑)𝑥+ (2𝑎− 2𝑑)𝑥2 + (2𝑏− 2𝑐)𝑥3.

Using the standard basis 𝒮 of 𝒫3(F), we have

𝐴 = [𝐿]𝒮 =

⎡⎢⎢⎣
0 −2 2 0
−2 0 0 2
2 0 0 −2
0 2 −2 0

⎤⎥⎥⎦ .

Then 𝐶𝐴(𝜆) = 𝜆2(𝜆+ 4)(𝜆− 4). So the eigenvalues of 𝐴 are 𝜆1 = 0, 𝜆2 = −4 and 𝜆3 = 4,
with algebraic multiplicities 𝑎𝜆1 = 2, 𝑎𝜆2 = 𝑎𝜆3 = 1. Just as in the previous example, we
can immediately conclude that 𝑔𝜆2 = 𝑔𝜆3 = 1.

So it remains to determine 𝑔𝜆1 = dim𝐸𝜆1(𝐴) = nullity(𝐴− 0𝐼) = nullity(𝐴). A quick row
reduction of 𝐴 leads to ⎡⎢⎢⎣

0 −2 2 0
−2 0 0 2
2 0 0 −2
0 2 −2 0

⎤⎥⎥⎦ →

⎡⎢⎢⎣
1 0 0 −1
0 1 −1 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ .
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Thus, nullity(𝐴) = 2. So 𝑔𝜆1 = 𝑎𝜆1 = 2 and therefore 𝐴 (hence 𝐿) is diagonalizable.

From this alone we know that 𝐴 must be similar to the diagonal matrix 𝐷 =

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 −4 0
0 0 0 4

⎤⎥⎥⎦.
But let’s actually find a diagonalizing basis. For this, we need to find bases for
𝐸0(𝐴), 𝐸−4(𝐴) and 𝐸4(𝐴).

Going through our usual row reduction process (steps omitted), we find that

𝐸0(𝐴) = Null(𝐴− 0𝐼) = Span

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣
1
0
0
1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0
1
1
0

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ ,

𝐸4(𝐴) = Null(𝐴− 4𝐼) = Span

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣

1
−1
1
−1

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ ,

and

𝐸−4(𝐴) = Null(𝐴+ 4𝐼) = Span

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣

1
1
−1
−1

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ .

Therefore, ⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣
1
0
0
1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0
1
1
0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1
−1
1
−1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1
1
−1
−1

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

is a basis for F4 that diagonalizes 𝐴. If we view these vectors as being coordinate vectors
with respect to the standard basis 𝒮 = {1, 𝑥, 𝑥2, 𝑥3}, we can convert them to obtain the
basis 𝒟 = {1+ 𝑥3, 𝑥+ 𝑥2, 1− 𝑥+ 𝑥2 − 𝑥3, 1+ 𝑥− 𝑥2 − 𝑥3} that diagonalizes 𝐿. Let’s check
directly that

[𝐿]𝒟 =

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 −4 0
0 0 0 4

⎤⎥⎥⎦ .

We have

𝐿(1 + 𝑥3) = 0, so [𝐿(1 + 𝑥3)]𝒟 =

⎡⎢⎢⎣
0
0
0
0

⎤⎥⎥⎦

𝐿(𝑥+ 𝑥2) = 0, so [𝐿(𝑥+ 𝑥2)]𝒟 =

⎡⎢⎢⎣
0
0
0
0

⎤⎥⎥⎦

𝐿(1− 𝑥+ 𝑥2 − 𝑥3) = 4(1− 𝑥+ 𝑥2 − 𝑥3), so [𝐿(1− 𝑥+ 𝑥2 − 𝑥3)]𝒟 =

⎡⎢⎢⎣
0
0
4
0

⎤⎥⎥⎦
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𝐿(1 + 𝑥− 𝑥2 − 𝑥3) = −4(1 + 𝑥− 𝑥2 − 𝑥3), so [𝐿(1 + 𝑥− 𝑥2 − 𝑥3)]𝒟 =

⎡⎢⎢⎣
0
0
0
−4

⎤⎥⎥⎦ .

Example 3.2.20 Let 𝐿 : 𝒫1(F) → 𝒫1(F) be defined by

𝐿(𝑎+ 𝑏𝑥) = (𝑎+ 2𝑏) + (𝑏− 2𝑎)𝑥.

Using the standard basis 𝒮 of 𝒫1(F), we have

𝐴 = [𝐿]𝒮 =

[︂
1 2
−2 1

]︂
.

Then 𝐶𝐴(𝜆) = 𝜆2 − 2𝜆+ 5. If F = R then there are no real eigenvalues, and so no hope for
diagonalization over R!

If F = C then, using the quadratic formula, we find that the roots of 𝐶𝐴(𝜆) are 𝜆1 = 1+2𝑖
and 𝜆2 = 1−2𝑖. Thus, 𝐴 is diagonalizable over C. We leave it to you to find a diagonalizing
basis for 𝐿.

Exercise 36 Complete the previous example and find a basis 𝒟 for 𝒫1(C) such that [𝐿]𝒟 is diagonal.

3.3 Applications of Diagonalization

We now know how to figure out whether or not a linear operator 𝐿 : 𝑉 → 𝑉 is diagonalizable,
and even better, how to find a basis that diagonalizes 𝐿. We have learned that this is
equivalent to the problem of determining whether or not a square matrix is diagonalizable.

There are several practical applications of diagonalization. You might be already familiar
with one: taking powers of matrices. If 𝐴 is diagonalizable, say with 𝐴 = 𝑃𝐷𝑃−1, then we
can quickly compute 𝐴𝑘 as

𝐴𝑘 = (𝑃𝐷𝑃−1)(𝑃𝐷𝑃−1) · · · (𝑃𝐷𝑃−1)

= 𝑃𝐷(𝑃−1𝑃 )𝐷(𝑃−1𝑃 ) · · · (𝑃−1𝑃 )𝐷𝑃−1

= 𝑃𝐷𝑘𝑃−1.

This is useful because if

𝐷 =

⎡⎢⎢⎢⎢⎣
𝜆1 0 · · · 0

0 𝜆2
. . .

...
...

. . .
. . . 0

0 · · · 0 𝜆𝑛

⎤⎥⎥⎥⎥⎦
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then

𝐷𝑘 =

⎡⎢⎢⎢⎢⎣
𝜆𝑘
1 0 · · · 0

0 𝜆𝑘
2
. . .

...
...

. . .
. . . 0

0 · · · 0 𝜆𝑘
𝑛

⎤⎥⎥⎥⎥⎦ .

So, for instance, to compute 𝐴1000 we don’t need to multiply 𝐴 with itself 1000 times. We
can simply perform two matrix multiplications to compute 𝑃𝐷1000𝑃−1 instead.

Example 3.3.1 Suppose 𝐴 =

⎡⎣−1 3 −1
−3 5 −1
−3 3 1

⎤⎦. Then 𝐴 = 𝑃𝐷𝑃−1 where

𝑃 =

⎡⎣1 1 −1
1 1 0
1 0 3

⎤⎦ and 𝐷 =

⎡⎣1 0 0
0 2 0
0 0 2

⎤⎦ .

Therefore

𝐴100 = 𝑃𝐷100𝑃−1

=

⎡⎣1 1 −1
1 1 0
1 0 3

⎤⎦⎡⎣1 0 0
0 2100 0
0 0 2100

⎤⎦⎡⎣ 3 −3 1
−3 4 −1
−1 1 0

⎤⎦
=

⎡⎣3− 2 · 2100 −3 + 3 · 2100 1− 2100

3− 3 · 2100 −3 + 4 · 2100 1− 2100

3 + 3 · 2100 −3− 3 · 2100 1

⎤⎦

Taking powers of matrices like this arises when studying dynamical systems or Markov
chains in probability theory, to name just a couple. In particular, the Google PageRank
algorithm involves these ideas. If you’re interested to learn how, check out the video How
does Google Google? on mathtube.org by Margot Gerritsen.

To close this section, we’ll take a look at another application of diagonalization. We’ll see
some other applications later in this course.

Decoupling Differential Equations

It often comes up when modelling nature that you have a few differential equations where
the variables from each equation appear in every other one. These can be extremely difficult
to solve, but occasionally we can separate out the variables in a process called decoupling. It
turns out that if your differential equations take on a very precise form, we can diagonalize
a matrix and as a result decouple the equations. Let’s see this in an example.

Example 3.3.2 Xavier and Yvonne are in a zombie apocalypse, and they are continuously killing zombies,
and the following things are true about the way they kill zombies.

• Both get better with practice. (A reasonable assumption.)

https://www.mathtube.org/lecture/video/how-does-google-google
https://www.mathtube.org/lecture/video/how-does-google-google
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• Both slow down as the other kills zombies. (They stop to congratulate the other
person, and to give them a high-five if they are within slapping distance.)

• For every zombie Xavier kills, his kill rate goes up by a factor of 5 and Yvonne’s goes
down by a factor of 3.

• For every zombie Yvonne kills, her kill rate increases by a factor of 2 and Xavier’s
decreases by a factor of 6.

So, if we let 𝑥 be the number of zombies killed by Xavier, 𝑦 the number killed by Yvonne and
𝑡 the time since the apocalypse started, we can set up the following system of differential
equations that models the situation at hand.

𝑑𝑥

𝑑𝑡
= 5𝑥− 3𝑦

𝑑𝑦

𝑑𝑡
= −6𝑥+ 2𝑦.

Seemingly out of nowhere, let’s make the substitutions

𝑢 = −2

3
𝑥+

1

3
𝑦 and 𝑤 =

1

3
𝑥+

1

3
𝑦.

We now have

𝑑𝑢

𝑑𝑡
= −2

3

𝑑𝑥

𝑑𝑡
+

1

3

𝑑𝑦

𝑑𝑡

= −2

3
(5𝑥− 3𝑦) +

1

3
(−6𝑥+ 2𝑦)

= −16

3
𝑥+

8

3
𝑦

= 8𝑢

and

𝑑𝑤

𝑑𝑡
=

1

3
(5𝑥− 3𝑦) +

1

3
(−6𝑥+ 2𝑦)

= −1

3
𝑥− 1

3
𝑦

= −𝑤.

These differential equations are much easier to deal with, and can be easily solved, and
then converted back to our 𝑥 and 𝑦 variables. That’s not the important thing here. The
question you should have burning in your mind is, “how did we choose 𝑢 and 𝑤?”

To answer this, we do what we do best: bring matrices into the picture!

Let

#»𝑥 =

[︂
𝑥
𝑦

]︂
,

𝑑 #»𝑥

𝑑𝑡
=

[︂ 𝑑𝑥
𝑑𝑡
𝑑𝑦
𝑑𝑡

]︂
, and 𝐴 =

[︂
5 −3
−6 2

]︂
.

Then
𝑑 #»𝑥

𝑑𝑡
= 𝐴 #»𝑥 .
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Now, it turns out that 𝐴 is diagonalizable. In fact, 𝑃−1𝐴𝑃 = 𝐷 where

𝑃 =

[︂
−1 1
1 2

]︂
and 𝐷 =

[︂
8 0
0 −1

]︂
so

𝑑 #»𝑥

𝑑𝑡
= 𝑃𝐷𝑃−1 #»𝑥 .

If we let
#»𝑣 =

[︂
𝑢
𝑤

]︂
= 𝑃−1 #»𝑥 =

[︂
−2

3𝑥+ 1
3𝑦

1
3𝑥+ 1

3𝑦

]︂
we have #»𝑥 = 𝑃 #»𝑣 . Putting this back into the differential equation gives

𝑑(𝑃 #»𝑣 )

𝑑𝑡
= 𝑃

𝑑 #»𝑣

𝑑𝑡
= 𝑃𝐷 #»𝑣 .

Multiplying on the left by 𝑃−1 gives

𝑑 #»𝑣

𝑑𝑡
= 𝐷 #»𝑣

or [︂
𝑑𝑢
𝑑𝑡
𝑑𝑤
𝑑𝑡

]︂
=

[︂
8 0
0 −1

]︂ [︂
𝑢
𝑤

]︂
=

[︂
8𝑢
−𝑤

]︂
giving us our decoupled differential equations.

The take home message here is that the matrix 𝑃 told us what substitution to make. This
shouldn’t be too surprising because 𝑃 can always be thought of as a change of coordinate
matrix—one that changes coordinates from the ones we started with to a more natural set
of coordinates depending on the problem at hand.

In general, suppose you have a system of differential equations of the form

𝑑𝑥

𝑑𝑡
= 𝑎𝑥+ 𝑏𝑦

𝑑𝑦

𝑑𝑡
= 𝑐𝑥+ 𝑑𝑦.

Here the variables 𝑥 and 𝑦 depend on each other, but it would be great if they didn’t,

since then you could solve two separate differential equations. If the matrix 𝐴 =

[︂
𝑎 𝑏
𝑐 𝑑

]︂
is diagonalizable, then by a simple change of coordinates, we can decouple the differential
equation.

Let #»𝑥 =

[︂
𝑥
𝑦

]︂
and

𝑑 #»𝑥

𝑑𝑡
=

[︂ 𝑑𝑥
𝑑𝑡
𝑑𝑦
𝑑𝑡

]︂
. Then the set of equations above can be written as

𝑑 #»𝑥

𝑑𝑡
= 𝐴 #»𝑥 .

Suppose 𝑃−1𝐴𝑃 = 𝐷 for some diagonal matrix 𝐷 =

[︂
𝜆1 0
0 𝜆2

]︂
. Let #»𝑥 =

[︂
𝑥
𝑦

]︂
and let

#»𝑣 =

[︂
𝑢
𝑤

]︂
= 𝑃−1 #»𝑥 . Then

𝑑 #»𝑥

𝑑𝑡
= 𝐴 #»𝑥 ⇐⇒ 𝑃

𝑑 #»𝑣

𝑑𝑡
= 𝑃𝐷𝑃−1 #»𝑥 ⇐⇒ 𝑑 #»𝑣

𝑑𝑡
= 𝐷 #»𝑣 .
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Rewriting this last equation as a pair of differential equations we get

𝑑𝑢

𝑑𝑡
= 𝜆1𝑢

𝑑𝑤

𝑑𝑡
= 𝜆2𝑤.

Now we have two decoupled equations, each of which can be solved independently of the
other. This process of decoupling is easily generalized to 𝑛 variables and 𝑛 equations.



Chapter 4

Inner Product Spaces

4.1 Inner Products

We have seen that if you have a finite-dimensional real vector space, once you pick a basis,
you may as well think of the vector space as R𝑛 (and indeed, any 𝑛-dimensional real vector
space is isomorphic to R𝑛). This provides us with with plenty of geometric intuition. A
very useful feature of R2 and R3 is that they come with well-defined notions of length and
angle.

In R2, we know that the length of a vector #»𝑣 =
[︀
𝑣1 𝑣2

]︀𝑇
is given by

‖ #»𝑣 ‖ =
√︁

𝑣21 + 𝑣22.

This formula is given to us by the Pythagorean theorem.

To compute the angle 𝜃 between two non-zero vectors #»𝑣 =
[︀
𝑣1 𝑣2

]︀𝑇
and #»𝑤 =

[︀
𝑤1 𝑤2

]︀𝑇
,

we invoke the cosine rule:

cos 𝜃 =
‖ #»𝑣 ‖2 + ‖ #»𝑤‖2 − ‖ #»𝑣 − #»𝑤‖2

2 ‖ #»𝑣 ‖ ‖ #»𝑤‖

=
𝑣21 + 𝑣22 + 𝑤2

1 + 𝑤2
2 − (𝑣1 − 𝑤1)

2 − (𝑣2 − 𝑤2)
2

2 ‖ #»𝑣 ‖ ‖ #»𝑤‖
=

𝑣1𝑤1 + 𝑣2𝑤2

‖ #»𝑣 ‖ ‖ #»𝑤‖ .

#»𝑣

#»𝑤

𝜃

‖ #»𝑤‖

‖ #»𝑣 − #»𝑤‖

‖ #»𝑣 ‖

In R3, a similar thing occurs. Let #»𝑣 =
[︀
𝑣1 𝑣2 𝑣3

]︀𝑇
and #»𝑤 =

[︀
𝑤1 𝑤2 𝑤3

]︀𝑇
be two vectors

in R3. Then the length of #»𝑣 is

‖ #»𝑣 ‖ =
√︁

𝑣21 + 𝑣22 + 𝑣23

(see the exercise below) and the angle 𝜃 between #»𝑣 and #»𝑤 (if they are non-zero) is given by

cos 𝜃 =
𝑣1𝑤1 + 𝑣2𝑤2 + 𝑣3𝑤3

‖ #»𝑣 ‖ ‖ #»𝑤‖ .

83
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Exercise 37

By examining the diagram on the right and applying
the Pythagorean theorem, show that

‖ #»𝑣 ‖ =
√︁

𝑣21 + 𝑣22 + 𝑣23.

Can you similarly derive the expression for cos 𝜃 given
above?

𝑥

𝑦

𝑧

𝑣1

𝑣2

𝑣3

#»𝑣

Just like electricity and magnetism are actually two sides of the same coin, angles and
lengths in R2 and R3 are just two sides of the same coin, and that coin is the dot product.

Recall that the dot product on R𝑛 is defined as⎡⎢⎣ 𝑣1
...
𝑣𝑛

⎤⎥⎦ ·

⎡⎢⎣𝑤1
...
𝑤𝑛

⎤⎥⎦ = 𝑣1𝑤1 + · · ·+ 𝑣𝑛𝑤𝑛.

So it is a function that takes as input two vectors in R𝑛 and produces a real number as
output. Our expressions above for length and angle can be reformulated as

‖ #»𝑣 ‖ =
√

#»𝑣 · #»𝑣 and cos 𝜃 =
#»𝑣 · #»𝑤

‖ #»𝑣 ‖ ‖ #»𝑤‖

where 𝜃 is the angle between #»𝑣 and #»𝑤. Since the dot product is defined on R𝑛 (and not
just R2 and R3), we can use this to define length and angle in R𝑛.

If we are to generalize the dot product to other vector spaces, we would want it to satisfy
certain properties. Whatever our generalization is, it should be a function

⟨ , ⟩ : 𝑉 × 𝑉 → F

that takes as input two vectors #»𝑣 , #»𝑤 ∈ 𝑉 and produces a real number ⟨ #»𝑣 , #»𝑤⟩ as output.
We would then like to use this to define the length of a vector #»𝑣 as ‖ #»𝑣 ‖ =

√︀
⟨ #»𝑣 , #»𝑣 ⟩.

This expression should behave the same way the length does in R2 and R3. For example,
we would like the length of a vector to be a positive real number, that is ‖ #»𝑣 ‖ ≥ 0. We
would also want the length of a vector to be zero if and only if the vector itself is the zero
vector.

We would then like to define the angle 𝜃 between two non-zero vectors #»𝑣 , #»𝑤 ∈ 𝑉 via

cos 𝜃 =
⟨ #»𝑣 , #»𝑤⟩
‖ #»𝑣 ‖ ‖ #»𝑤‖

just as we did above. For this to make sense, we need to know that the number on the
right-side lies in the interval [−1, 1]. That is, we would like to have

|⟨ #»𝑣 , #»𝑤⟩|
‖ #»𝑣 ‖ ‖ #»𝑤‖ ≤ 1.
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Furthermore, in R2 and R3 we know the shortest path between two points is a straight line,
which is reflected in the triangle inequality. That is, we would like it to be true if

‖ #»𝑣 + #»𝑤‖ ≤ ‖ #»𝑣 ‖+ ‖ #»𝑤‖ .

Finally, the length of a vector ought to behave nicely under scalar multiplication. That is,
would like to have ‖𝛼 #»𝑣 ‖ = |𝛼| ‖ #»𝑣 ‖.
With these desires in mind, let’s define an inner product on an arbitrary vector space. Our
definition will produce a notion of length and angle that will meet all of our requirements
above!

Definition 4.1.1

Inner Product,
Conjugate
Symmetry,

Linearity in First
Argument,

Positive-Definite

Let 𝑉 be a vector space over F. An inner product on 𝑉 is a function

⟨ , ⟩ : 𝑉 × 𝑉 → F

such that for all #»𝑢 , #»𝑣 , #»𝑤 ∈ 𝑉 and 𝛼 ∈ F,

1. ⟨ #»𝑣 , #»𝑤⟩ = ⟨ #»𝑤, #»𝑣 ⟩.

2. ⟨𝛼 #»𝑣 , #»𝑤⟩ = 𝛼 ⟨ #»𝑣 , #»𝑤⟩.

3. ⟨ #»𝑢 + #»𝑣 , #»𝑤⟩ = ⟨ #»𝑢 , #»𝑤⟩+ ⟨ #»𝑣 , #»𝑤⟩.

4. (a) ⟨ #»𝑣 , #»𝑣 ⟩ ≥ 0.

(b) If ⟨ #»𝑣 , #»𝑣 ⟩ = 0 then #»𝑣 =
#»
0 .

A vector space 𝑉 equipped with an inner product ⟨ , ⟩ is called an inner product space.

Property 1 is called conjugate symmetry. Properties 2 and 3 together are called linearity
in the first argument. Property 4 is called positive definiteness, and we say that ⟨ , ⟩
is positive definite.

Note that if F = R, then 𝑎 = 𝑎 for all 𝑎 ∈ R so the first property becomes ⟨ #»𝑣 , #»𝑤⟩ = ⟨ #»𝑤, #»𝑣 ⟩.
Let’s see some examples.

Example 4.1.2 Of course, the dot product on R𝑛 satisfies properties 1–4, and so it defines an inner product
on R𝑛. The dot product on C𝑛, however, is not an inner product.

Exercise 38
(a) Carefully check that the dot product is indeed an inner product on R𝑛.

(b) Show that the dot product on C2 is not an inner product by finding a vector #»𝑧 ∈ C2

such that #»𝑧 · #»𝑧 is a negative real number.



86 Chapter 4 Inner Product Spaces

Example 4.1.3 (Standard inner product on C𝑛)

Let #»𝑣 , #»𝑤 ∈ C𝑛 where

#»𝑣 =

⎡⎢⎣ 𝑣1
...
𝑣𝑛

⎤⎥⎦ and #»𝑤 =

⎡⎢⎣𝑤1
...
𝑤𝑛

⎤⎥⎦ .

We define the standard inner product on C𝑛 by

⟨ #»𝑣 , #»𝑤⟩ = 𝑣1𝑤1 + · · ·+ 𝑣𝑛𝑤𝑛.

Let’s prove that the standard inner product is indeed an inner product.

Proof: Let #»𝑣 =

⎡⎢⎣ 𝑣1
...
𝑣𝑛

⎤⎥⎦, #»𝑤 =

⎡⎢⎣𝑤1
...
𝑤𝑛

⎤⎥⎦, #»𝑢 =

⎡⎢⎣𝑢1
...
𝑢𝑛

⎤⎥⎦ ∈ 𝑉 and 𝛼 ∈ C. Then

⟨ #»𝑣 , #»𝑤⟩ = 𝑣1𝑤1 + · · ·+ 𝑣𝑛𝑤𝑛

= 𝑤1𝑣1 + · · ·+ 𝑤𝑛𝑣𝑛

= 𝑤1𝑣1 + · · ·+ 𝑤𝑛𝑣𝑛

= ⟨ #»𝑤, #»𝑣 ⟩

so property 1 holds. We have

⟨𝛼 #»𝑣 , #»𝑤⟩ = 𝛼𝑣1𝑤1 + · · ·+ 𝛼𝑣𝑛𝑤𝑛

= 𝛼(𝑣1𝑤1 + · · ·+ 𝑣𝑛𝑤𝑛)

= 𝛼 ⟨ #»𝑣 , #»𝑤⟩

and

⟨ #»𝑢 + #»𝑣 , #»𝑤⟩ = (𝑢1 + 𝑣1)𝑤1 + · · ·+ (𝑢𝑛 + 𝑣𝑛)𝑤𝑛

= 𝑢1𝑤1 + 𝑣1𝑤1 + · · ·+ 𝑢𝑛𝑤𝑛 + 𝑣𝑛𝑤𝑛

= (𝑢1𝑤1 + · · ·+ 𝑢𝑛𝑤𝑛) + (𝑣1𝑤1 + · · ·+ 𝑣𝑛𝑤𝑛)

= ⟨ #»𝑢 , #»𝑤⟩+ ⟨ #»𝑣 , #»𝑤⟩

so properties 2 and 3 hold. For 4(a) we have

⟨ #»𝑣 , #»𝑣 ⟩ = 𝑣1𝑣1 + · · ·+ 𝑣𝑛𝑣𝑛 = |𝑣1|2 + · · ·+ |𝑣𝑛|2 ≥ 0.

Finally, suppose ⟨ #»𝑣 , #»𝑣 ⟩ = |𝑣1|2+· · ·+|𝑣𝑛|2 = 0. Since each |𝑣𝑖|2 is a postive real number, the
only way this can be true is if |𝑣1| = · · · = |𝑣𝑛| = 0. This in turn implies 𝑣1 = · · · = 𝑣𝑛 = 0
so #»𝑣 =

#»
0 .

Thus, the standard inner product on C𝑛 is indeed an inner product.
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In summary, for #»𝑣 , #»𝑤 ∈ F𝑛, where

#»𝑣 =

⎡⎢⎣ 𝑣1
...
𝑣𝑛

⎤⎥⎦ and #»𝑤 =

⎡⎢⎣𝑤1
...
𝑤𝑛

⎤⎥⎦ ,

we define the standard inner product on F𝑛 by

⟨ #»𝑣 , #»𝑤⟩ = 𝑣1𝑤1 + · · ·+ 𝑣𝑛𝑤𝑛.

If F = R, this gives the dot product, and if F = C this gives the standard inner product on
C𝑛 defined in the previous example.

Before we move on to other examples of inner products, let’s state a few of their important
properties.

Proposition 4.1.4 Let 𝑉 be an inner product space. For all #»𝑣 , #»𝑢 , #»𝑤 ∈ 𝑉 and 𝛼 ∈ F the following properties
are true.

(a) ⟨ #»
0 , #»𝑣 ⟩ = ⟨ #»𝑣 ,

#»
0 ⟩ = 0.

(b) ⟨ #»𝑣 , 𝛼 #»𝑤⟩ = 𝛼 ⟨ #»𝑣 , #»𝑤⟩.

(c) ⟨ #»𝑣 , #»𝑢 + #»𝑤⟩ = ⟨ #»𝑣 , #»𝑢 ⟩+ ⟨ #»𝑣 , #»𝑤⟩.

Proof: We will prove part (a). There are a couple of ways to do this. Perhaps the slickest
is to note that

#»
0 = 0 · #»

0 . So linearity in the first argument gives

⟨ #»
0 , #»𝑣 ⟩ = ⟨0 · #»

0 , #»𝑣 ⟩ = 0⟨ #»
0 , #»𝑣 ⟩ = 0.

This proves half of part (a). For the second half, we use conjugate-symmetry:

⟨ #»𝑣 ,
#»
0 ⟩ = ⟨ #»

0 , #»𝑣 ⟩ = 0 = 0.

Parts (b) and (c) can be proved quickly by appealing to conjugate symmetry. We’ll leave
the details as an exercise.

Exercise 39 Prove parts (b) and (c) of Proposition 4.1.4.

Now let’s explore some examples of inner products on other vector spaces.

Example 4.1.5 For 𝑝, 𝑞 ∈ 𝒫𝑛(R), define

⟨𝑝, 𝑞⟩ =
∫︁ 1

−1
𝑝(𝑥)𝑞(𝑥) 𝑑𝑥.

This is an inner product on 𝒫𝑛(R). We will check property 4 and leave the rest as an
exercise.
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If 𝑝 ∈ 𝒫𝑛(R) then

⟨𝑝, 𝑝⟩ =
∫︁ 1

−1
(𝑝(𝑥))2 𝑑𝑥

is non-negative because it is the integral of a non-negative function. Moreover, as we know
from calculus, the integral of a non-negative continuous function (such as a polynomial)
over an interval is zero if and only if that function is itself zero on the interval. This shows
that ⟨𝑝, 𝑝⟩ = 0 if and only if 𝑝(𝑥) = 0 for all 𝑥 ∈ [−1, 1]. Any polynomial which evaluates
to 0 at infinitely many distinct points is the zero polynomial (why?), so we can conclude
𝑝 = 0.

Exercise 40 Check that ⟨ , ⟩ defined in the previous example satisfies properties 1–3 and therefore is
an inner product on 𝒫3(R).

Example 4.1.6 (Frobenius inner product on 𝑀𝑚×𝑛(R))

For 𝐴,𝐵 ∈ 𝑀𝑚×𝑛(R), define
⟨𝐴,𝐵⟩ = tr(𝐵𝑇𝐴).

This is an inner product on 𝑀𝑚×𝑛(R). It is called the Frobenius inner product.

If 𝐴 = [𝑎𝑖𝑗 ] and 𝐵 = [𝑏𝑖𝑗 ], then the above expression can be expanded as

⟨𝐴,𝐵⟩ =
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑎𝑖𝑗𝑏𝑖𝑗 .

This makes it easy to compute the Frobenius inner product: simply multiply the (𝑖, 𝑗)th
entries of 𝐴 and 𝐵 together and then add up all these products. For instance,⟨[︂

1 2
3 4

]︂
,

[︂
1 −1
0 5

]︂⟩
= 1(1) + 2(−1) + 3(0) + 4(5) = 19.

Exercise 41
(a) Verify that ⟨ , ⟩ defined in the preceding example is an inner product on 𝑀𝑚×𝑛(R).

(b) What does this inner product give if 𝑛 = 1 (so that 𝑀𝑚×𝑛(R) = R𝑚)?

Exercise 42 (Frobenius inner product on 𝑀𝑚×𝑛(C))

For a matrix 𝐴 ∈ 𝑀𝑚×𝑛(C), we define its adjoint (or conjugate-transpose) to be the
matrix 𝐴* = 𝐴𝑇 in 𝑀𝑛×𝑚(C). We will return to this notion in Chapter 5.

(a) Show that ⟨𝐴,𝐵⟩ = tr(𝐵*𝐴) defines an inner product, called the Frobenius inner
product, on 𝑀𝑚×𝑛(C).

(b) Show that ⟨𝐴,𝐵⟩ = tr(𝐴*𝐵) does not define an inner product on 𝑀𝑚×𝑛(C).
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In summary, the Frobenius inner product on 𝑀𝑚×𝑛(F) can be defined as ⟨𝐴,𝐵⟩ = tr(𝐵*𝐴).
While this may seem like a rather strange way to define an inner product, in reality it is
nothing but the inner product in C𝑚×𝑛 between two coordinate vectors [𝐴]𝒮 and [𝐵]𝒮 with
respect to the standard basis 𝒮 of 𝑀𝑚×𝑛(F). For example, if

𝐴 =

[︂
𝑎11 𝑎12
𝑎21 𝑎22

]︂
and 𝐵 =

[︂
𝑏11 𝑏12
𝑏21 𝑏22

]︂
,

then

⟨𝐴,𝐵⟩ =
⟨⎡⎢⎢⎣

𝑎11
𝑎12
𝑎21
𝑎22

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
𝑎11
𝑎12
𝑎21
𝑎22

⎤⎥⎥⎦
⟩

= 𝑎11𝑏11 + 𝑎12𝑏12 + 𝑎21𝑏21 + 𝑎22𝑏22.

It may be natural to ask at this point whether or not every vector space can be turned into
an inner product space. Let’s answer that now.

Proposition 4.1.7 Every finite-dimensional vector space admits an inner product.

Proof: Let 𝑉 be a vector space with basis ℬ = { #»𝑣 1, . . . ,
#»𝑣 𝑛}. Let #»𝑣 = 𝑡1

#»𝑣 1 + · · ·+ 𝑡𝑛
#»𝑣 𝑛

and #»𝑤 = 𝑠1
#»𝑣 1 + · · ·+ 𝑠𝑛

#»𝑣 𝑛. Then it is left as an exercise to check

⟨ #»𝑣 , #»𝑤⟩ = 𝑡1𝑠1 + · · ·+ 𝑡𝑛𝑠𝑛

is an inner product on 𝑉 .

Exercise 43 Complete the proof of Proposition 4.1.7.

It is true that every infinite-dimensional vector space also admits an inner product, but we
won’t be proving that here.

Since the inner product of a vector with itself is always a positive real number, it now makes
sense to define the length of a vector.

Definition 4.1.8

Norm, Length

Let #»𝑣 be a vector in an inner product space 𝑉 . The norm (or length) of #»𝑣 is defined by

‖ #»𝑣 ‖ =
√︀
⟨ #»𝑣 , #»𝑣 ⟩.

This definition of “length” satisfies many of the properties one would expect length to
satisfy. See the following exercise and Proposition 4.2.7.

Exercise 44 Prove that, in any inner product space, ‖ #»
0 ‖ = 0.
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Example 4.1.9 On 𝒫2(C) consider
⟨𝑝, 𝑞⟩ = 𝑝(𝑖)𝑞(𝑖) + 𝑝(−𝑖)𝑞(−𝑖) + 𝑝(1)𝑞(1).

This is an inner product. Indeed, it is left as an exercise to check properties 1, 2, and 3.
For 4a,

⟨𝑝, 𝑝⟩ = |𝑝(𝑖)|2 + |𝑝(−𝑖)|2 + |𝑝(1)|2 ≥ 0.

For 4b, suppose ⟨𝑝, 𝑝⟩ = 0. Then

|𝑝(𝑖)|2 + |𝑝(−𝑖)|2 + |𝑝(1)|2 = 0

so 𝑝(𝑖) = 𝑝(−𝑖) = 𝑝(1) = 0. Since 𝑝 is a polynomial of degree at most 2 that evaluates to
0 at three distinct points, we must have 𝑝 = 0. Alternatively, suppose 𝑝 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐.
Then 𝑝(𝑖) = 𝑝(−𝑖) = 𝑝(1) = 0 gives the system of equations

−𝑎+ 𝑏𝑖+ 𝑐 = 0

−𝑎− 𝑏𝑖+ 𝑐 = 0

𝑎+ 𝑏+ 𝑐 = 0.

Plugging this into an augmented matrix and row-reducing, we get⎡⎣−1 𝑖 1 0
−1 −𝑖 1 0
1 1 1 0

⎤⎦ →

⎡⎣1 0 0 0
0 1 0 0
0 0 1 0

⎤⎦ ,

so 𝑎 = 𝑏 = 𝑐 = 0 and therefore 𝑝 = 0.

So this is an inner product. With respect to this inner product, let’s compute the norm of
some vectors. We have

‖1‖ =
√︀

⟨1, 1⟩ =
√
3, ‖𝑥‖ =

√︀
⟨𝑥, 𝑥⟩ =

√︁
|𝑖|2 + |−𝑖|2 + |1|2 =

√
3

and
‖1 + 𝑥‖ =

√︀
⟨1 + 𝑥, 1 + 𝑥⟩ =

√︀
|1 + 𝑖|2 + |1− 𝑖|2 + |1 + 1|2 =

√
8.

Notice that ‖1 + 𝑥‖ ≠ ‖1‖+ ‖𝑥‖.

In the next section, we’ll explore the properties of the norm more extensively.

4.2 Orthogonality and Norm

Recall in R𝑛 that the angle 𝜃 between two non-zero vectors #»𝑣 and #»𝑤 is given by

cos 𝜃 =
#»𝑣 · #»𝑤

‖ #»𝑣 ‖ ‖ #»𝑤‖ .

Therefore if the dot product of two vectors is 0, we know they are perpendicular. The
notion of being perpendicular (or orthogonal as we will call it) turns out to be an extremely
useful notion in inner product spaces.
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Definition 4.2.1

Orthogonal, ⊥
Let 𝑉 be an inner product space. We say #»𝑣 is orthogonal to #»𝑤, and write #»𝑣 ⊥ #»𝑤, if
⟨ #»𝑣 , #»𝑤⟩ = 0.

Notice that ⟨ #»𝑣 , #»𝑤⟩ = 0 if and only if ⟨ #»𝑤, #»𝑣 ⟩ = 0 (why?) so the definition is symmetric in #»𝑣
and #»𝑤. That is, we’re safe to say that #»𝑣 and #»𝑤 are orthogonal, instead of #»𝑣 is orthogonal
to #»𝑤 or vice versa.

Example 4.2.2 Consider 𝒫2(R) with the inner product

⟨𝑝, 𝑞⟩ =
∫︁ 1

−1
𝑝(𝑥)𝑞(𝑥) 𝑑𝑥.

Then

⟨1, 𝑥⟩ =
∫︁ 1

−1
𝑥 𝑑𝑥 = 0

so 1 and 𝑥 are orthogonal. However,

⟨︀
1, 𝑥2

⟩︀
=

∫︁ 1

−1
𝑥2 𝑑𝑥 =

2

3

so 1 and 𝑥2 are not orthogonal.

One thing we know from geometry is that if we have a right-angled triangle, then Pythago-
ras’ theorem holds. So, if we are to believe that being orthogonal really means that two
vectors are at right angles to each other, we should expect the Pythagorean theorem to
hold. Indeed it does!

Proposition 4.2.3 (Pythagorean Theorem)

Let 𝑉 be an inner product space. Suppose #»𝑣 ⊥ #»𝑤. Then ‖ #»𝑣 + #»𝑤‖2 = ‖ #»𝑣 ‖2 + ‖ #»𝑤‖2.

Proof: Since #»𝑣 ⊥ #»𝑤, we have ⟨ #»𝑣 , #»𝑤⟩ = 0 and ⟨ #»𝑤, #»𝑣 ⟩ = 0. Consequently,

‖ #»𝑣 + #»𝑤‖2 = ⟨ #»𝑣 + #»𝑤, #»𝑣 + #»𝑤⟩
= ⟨ #»𝑣 , #»𝑣 + #»𝑤⟩+ ⟨ #»𝑤, #»𝑣 + #»𝑤⟩
= ⟨ #»𝑣 , #»𝑣 ⟩+ ⟨ #»𝑣 , #»𝑤⟩+ ⟨ #»𝑤, #»𝑣 ⟩+ ⟨ #»𝑤, #»𝑤⟩
= ⟨ #»𝑣 , #»𝑣 ⟩+ 0 + 0 + ⟨ #»𝑤, #»𝑤⟩
= ‖ #»𝑣 ‖2 + ‖ #»𝑤‖2 .

This completes the proof.

Our short term goal is to prove the Cauchy–Schwarz inequality (Theorem 4.2.5 below),
which will allow us to define the angle between two vectors in an arbitrary inner product
space. To do that we first need the following technical lemma.
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Lemma 4.2.4 Let 𝑉 be an inner product space and let #»𝑣 , #»𝑤 ∈ 𝑉 such that #»𝑤 ̸= #»
0 . Then #»𝑤 is orthogonal

to #»𝑣 − ⟨ #»𝑣 , #»𝑤⟩
⟨ #»𝑤, #»𝑤⟩

#»𝑤.

Proof: We simply need to take the inner product between these two vectors and show it
is zero. We have ⟨

#»𝑣 − ⟨ #»𝑣 , #»𝑤⟩
⟨ #»𝑤, #»𝑤⟩

#»𝑤, #»𝑤

⟩
= ⟨ #»𝑣 , #»𝑤⟩ − ⟨ #»𝑣 , #»𝑤⟩

⟨ #»𝑤, #»𝑤⟩ ⟨
#»𝑤, #»𝑤⟩

= ⟨ #»𝑣 , #»𝑤⟩ − ⟨ #»𝑣 , #»𝑤⟩
= 0,

as desired.

You may have come across the orthogonal projection of a vector #»𝑣 onto #»𝑤 in R𝑛 before,
and the vector is given by

#»𝑣 · #»𝑤
#»𝑤 · #»𝑤

#»𝑤. This expression appeared in the previous proof, and we
will revisit it later (see Section 4.4). Phrased in this language, Lemma 4.2.4 proves that the
perpendicular component of #»𝑣 when projected onto #»𝑤 is indeed perpendicular to #»𝑤.

Theorem 4.2.5 (Cauchy–Schwarz Inequality)

Let 𝑉 be an inner product space. Then

|⟨ #»𝑣 , #»𝑤⟩| ≤ ‖ #»𝑣 ‖ ‖ #»𝑤‖ for all #»𝑣 , #»𝑤 ∈ 𝑉,

with equality if and only if #»𝑣 and #»𝑤 are scalar multiples of each other.

Proof: If #»𝑤 =
#»
0 we have |⟨ #»𝑣 , #»𝑤⟩| = ‖ #»𝑣 ‖ ‖ #»𝑤‖ = 0 so the statement is true. Assume now

that #»𝑤 ̸= #»
0 . We have

‖ #»𝑣 ‖2 =
⃦⃦⃦⃦

#»𝑣 − ⟨ #»𝑣 , #»𝑤⟩
⟨ #»𝑤, #»𝑤⟩

#»𝑤 +
⟨ #»𝑣 , #»𝑤⟩
⟨ #»𝑤, #»𝑤⟩

#»𝑤

⃦⃦⃦⃦2
=

⃦⃦⃦⃦
#»𝑣 − ⟨ #»𝑣 , #»𝑤⟩

⟨ #»𝑤, #»𝑤⟩
#»𝑤

⃦⃦⃦⃦2
+

⃦⃦⃦⃦⟨ #»𝑣 , #»𝑤⟩
⟨ #»𝑤, #»𝑤⟩

#»𝑤

⃦⃦⃦⃦2
(by Proposition 4.2.3 and Lemma 4.2.4)

≥ 0 +

⃦⃦⃦⃦⟨ #»𝑣 , #»𝑤⟩
⟨ #»𝑤, #»𝑤⟩

#»𝑤

⃦⃦⃦⃦2
=

|⟨ #»𝑣 , #»𝑤⟩|2

‖ #»𝑤‖4
‖ #»𝑤‖2

=
|⟨ #»𝑣 , #»𝑤⟩|2

‖ #»𝑤‖2
.

Since ‖ #»𝑤‖2 is positive, this implies

‖ #»𝑣 ‖2 ‖ #»𝑤‖2 ≥ |⟨ #»𝑣 , #»𝑤⟩|2 .

Since norms are always positive real numbers we can take square roots to obtain

‖ #»𝑣 ‖ ‖ #»𝑤‖ ≥ |⟨ #»𝑣 , #»𝑤⟩| ,
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giving us the desired inequality. Tracing back our steps, we see that the inequality will be
an equality if and only if⃦⃦⃦⃦

#»𝑣 − ⟨ #»𝑣 , #»𝑤⟩
⟨ #»𝑤, #»𝑤⟩

#»𝑤

⃦⃦⃦⃦2
=

⟨
#»𝑣 − ⟨ #»𝑣 , #»𝑤⟩

⟨ #»𝑤, #»𝑤⟩
#»𝑤, #»𝑣 − ⟨ #»𝑣 , #»𝑤⟩

⟨ #»𝑤, #»𝑤⟩
#»𝑤

⟩
= 0

which, by definition of the inner product, happens if and only if

#»𝑣 − ⟨ #»𝑣 , #»𝑤⟩
⟨ #»𝑤, #»𝑤⟩

#»𝑤 =
#»
0 .

This completes the proof.

There is actually a geometric interpretation of the Cauchy–Schwarz inequality, at least in
R2. It turns out that the inequality is a rephrasing of the following fact from geometry: If
you have a parallelogram with side lengths 𝑥 and 𝑦, then the area of that parallelogram is
maximized exactly when the parallelogram is a rectangle. It’s a fun exercise to try and see
how this fact relates to the Cauchy–Schwarz inequality for the dot product on R2!

Because of the Cauchy–Schwarz inequality, we can now sensibly define the angle between
two non-zero vectors, at least when our vector space is over the field R.

Definition 4.2.6

Angle

Let 𝑉 be a real inner product space. The angle 𝜃 between two non-zero vectors #»𝑣 and #»𝑤
in 𝑉 is defined by

cos(𝜃) =
⟨ #»𝑣 , #»𝑤⟩
‖ #»𝑣 ‖ ‖ #»𝑤‖ ,

that is, 𝜃 is the unique real number in the interval [0, 𝜋] given by

𝜃 = cos−1

(︂ ⟨ #»𝑣 , #»𝑤⟩
‖ #»𝑣 ‖ ‖ #»𝑤‖

)︂
.

We do not define the angle between #»𝑣 and #»𝑤 if one of them is the zero vector.

There are various ways to define the angle between vectors in a complex inner product space,
each serving a different purpose. We won’t be talking about the angle between vectors in a
complex vector space in this course, except for the case when vectors are orthogonal.

We will finish this section by returning to one of our motivations for defining an inner
product: a sensible notion of length. The next proposition shows us that our definition of
norm provides such a notion.

Proposition 4.2.7 (Properties of Norm)

Let 𝑉 be an inner product space. For all #»𝑣 , #»𝑤 ∈ 𝑉 and 𝛼 ∈ F, the following properties are
true.

(a) ‖𝛼 #»𝑣 ‖ = |𝛼| ‖ #»𝑣 ‖.

(b) ‖ #»𝑣 + #»𝑤‖ ≤ ‖ #»𝑣 ‖+ ‖ #»𝑤‖ (this is called the Triangle Inequality).

(c) ‖ #»𝑣 ‖ ≥ 0, and ‖ #»𝑣 ‖ = 0 if and only if #»𝑣 =
#»
0 .
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Proof: Properties (a) and (c) are left as an exercise. For the triangle inequality we will
make use of the Cauchy–Schwarz inequality. We have

‖ #»𝑣 + #»𝑤‖2 = ⟨ #»𝑣 + #»𝑤, #»𝑣 + #»𝑤⟩
= ‖ #»𝑣 ‖2 + ‖ #»𝑤‖2 + ⟨ #»𝑣 , #»𝑤⟩+ ⟨ #»𝑣 , #»𝑤⟩
= ‖ #»𝑣 ‖2 + ‖ #»𝑤‖2 + 2Re(⟨ #»𝑣 , #»𝑤⟩)
≤ ‖ #»𝑣 ‖2 + ‖ #»𝑤‖2 + 2 |Re(⟨ #»𝑣 , #»𝑤⟩)|
≤ ‖ #»𝑣 ‖2 + ‖ #»𝑤‖2 + 2 |⟨ #»𝑣 , #»𝑤⟩|
≤ ‖ #»𝑣 ‖2 + ‖ #»𝑤‖2 + 2 ‖ #»𝑣 ‖ ‖ #»𝑤‖
= (‖ #»𝑣 ‖+ ‖ #»𝑤‖)2.

Since both sides are positive we have ‖ #»𝑣 + #»𝑤‖ ≤ ‖ #»𝑣 ‖+ ‖ #»𝑤‖ completing the proof.

Exercise 45
(a) Prove properties (a) and (c) in Proposition 4.2.7.

(b) Determine when the Triangle Inequality is in fact an equality.

There is an abstract notion of a norm on an arbitrary vector space 𝑉 that is not necessarily
an inner product space. It’s a function ‖ ‖ : 𝑉 → F that satisfies the three properties of
Proposition 4.2.7. So what we have proved is that what we are calling the norm on an inner
product space 𝑉 is in fact an example of an abstract norm. It is true that there are norms
that do not arise this way (i.e. norms that are not built from an inner product), but we
will not be concerned with such norms in this course.

Finally, once we have a notion of length, we can speak about the distance between vectors.

Definition 4.2.8

Distance

Let 𝑉 be an inner product space, and let #»𝑣 , #»𝑤 ∈ 𝑉 . The distance between #»𝑣 and #»𝑤 is
defined as

dist( #»𝑣 , #»𝑤) = ‖ #»𝑣 − #»𝑤‖.

This definition agrees with our usual no-
tion of distance in R2 and R3.

Notice that the norm of a vector #»𝑣 can
now be interpreted to be the distance be-
tween #»𝑣 and

#»
0 :

‖ #»𝑣 ‖ = ‖ #»𝑣 − #»
0 ‖ = dist( #»𝑣 ,

#»
0 ).

#»𝑣

#»𝑤

‖ #»𝑤‖ = dist( #»𝑤,
#»
0 )

‖ #»𝑣 − #»𝑤‖ = dist( #»𝑣 , #»𝑤)

‖ #»𝑣 ‖ = dist( #»𝑣 ,
#»
0 )



Section 4.3 Orthonormal Bases 95

Example 4.2.9 In 𝒫2(R) with ⟨𝑝, 𝑞⟩ =
∫︁ 1

−1
𝑝(𝑥)𝑞(𝑥) 𝑑𝑥, the distance between 1− 𝑥 and 1 + 𝑥2 is given by

dist(1− 𝑥, 1 + 𝑥2) =
⃦⃦
(1− 𝑥)− (1 + 𝑥2)

⃦⃦
=

⃦⃦
−𝑥− 𝑥2

⃦⃦
= | − 1|

⃦⃦
𝑥+ 𝑥2

⃦⃦
=

√︀
⟨𝑥+ 𝑥2, 𝑥+ 𝑥2⟩

=

√︃∫︁ 1

−1
(𝑥+ 𝑥2)2 𝑑𝑥

=

√︂
16

15
.

Exercise 46 (Properties of Distance)

Let 𝑉 be an inner product space. Show that the following properties are true for all
#»𝑥 , #»𝑦 , #»𝑧 ∈ 𝑉 .

(a) dist( #»𝑥 , #»𝑦 ) ≥ 0, and dist( #»𝑥 , #»𝑦 ) = 0 if and only if #»𝑥 = #»𝑦 .

(b) dist( #»𝑥 , #»𝑦 ) = dist( #»𝑦 , #»𝑥 ).

(c) dist( #»𝑥 , #»𝑧 ) ≤ dist( #»𝑥 , #»𝑦 ) + dist( #»𝑦 , #»𝑧 ) (Triangle Inequality).

4.3 Orthonormal Bases

Consider the standard basis in R𝑛 equipped with the dot product. Each vector in this basis
has length 1, and even better, any two vectors in the basis are orthogonal. This will be our
gold standard to head towards.

Definition 4.3.1

Orthogonal Set

A set { #»𝑣 1, . . . ,
#»𝑣 𝑘} in an inner product space is called orthogonal if ⟨ #»𝑣 𝑖,

#»𝑣 𝑗⟩ = 0 whenever
𝑖 ̸= 𝑗.

Definition 4.3.2

Unit Vector

A vector #»𝑣 in an inner product space is a unit vector if ‖ #»𝑣 ‖ = 1 (or, equivalently, if
⟨ #»𝑣 , #»𝑣 ⟩ = 1).

Definition 4.3.3

Orthonormal Set

A set { #»𝑣 1, . . . ,
#»𝑣 𝑘} in an inner product space is an orthonormal set if it is an orthogonal

set and if each vector #»𝑣 𝑖 in the set is a unit vector.



96 Chapter 4 Inner Product Spaces

Example 4.3.4 Consider 𝑀2×2(R) with inner product ⟨𝐴,𝐵⟩ = tr(𝐵𝑇𝐴) from Example 4.1.6.

Define the matrices

𝐴 =

[︂
1
2

1
2

1
2

1
2

]︂
, 𝐵 =

[︂
1
2 −1

2
−1

2
1
2

]︂
, and 𝐶 =

[︂
0 0
0 0

]︂
.

Then

⟨𝐴,𝐵⟩ = tr(𝐵𝑇𝐴) = tr

(︂[︂
0 0
0 0

]︂)︂
= 0

⟨𝐴,𝐴⟩ = tr(𝐴𝑇𝐴) = tr

(︂[︂
1
2

1
2

1
2

1
2

]︂)︂
= 1

⟨𝐵,𝐵⟩ = tr(𝐵𝑇𝐵) = tr

(︂[︂
1
2 −1

2
−1

2
1
2

]︂)︂
= 1.

Since ⟨𝐴,𝐶⟩ = ⟨𝐵,𝐶⟩ = 0, it follows that {𝐴,𝐵,𝐶} is an orthogonal set, but it is not
orthonormal (since ‖𝐶‖ = 0). However, {𝐴,𝐵} is an orthonormal set.

Example 4.3.5 The set

{︃[︃
1√
2
1√
2

]︃
,

[︃
− 1√

2
1√
2

]︃}︃
is orthonormal in R2 with respect to the dot product.

Example 4.3.6 (Legendre polynomials in 𝒫3(R))
There are special polynomials called Legendre polynomials which arise in physics (specif-
ically when solving Laplace’s equation in spherical coordinates), and also in some special
trigonometric identities!

The first four Legendre polynomials are the polynomials
{︀
1, 𝑥, 32𝑥

2 − 1
2 ,

5
2𝑥

3 − 3
2𝑥

}︀
in 𝒫3(R).

You can check that this is an orthogonal set in 𝒫3(R) with respect to the inner product

⟨𝑝, 𝑞⟩ =
∫︁ 1

−1
𝑝(𝑥)𝑞(𝑥) 𝑑𝑥.

However, it is not an orthonormal set because

‖1‖ =

√︃∫︁ 1

−1
1 𝑑𝑥 =

√
2

‖𝑥‖ =

√︃∫︁ 1

−1
𝑥2 𝑑𝑥 =

√︂
2

3⃦⃦⃦⃦
3

2
𝑥2 − 1

2

⃦⃦⃦⃦
=

√︂
2

5⃦⃦⃦⃦
5

2
𝑥3 − 3

2
𝑥

⃦⃦⃦⃦
=

√︂
2

7
.

So none of these Legendre polynomials are unit vectors. If we divide each by its norm, the
resulting set {︃

1√
2
,

√︂
3

2
𝑥,

√︂
5

2

(︂
3

2
𝑥2 − 1

2

)︂
,

√︂
7

2

(︂
5

2
𝑥3 − 3

2
𝑥

)︂}︃
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would then be orthonormal. See the next exercise.

Given a non-zero vector #»𝑣 , it is always possible to produce a vector of ̂︀𝑣 that points in the
same direction of #»𝑣 and has norm equal to one. We refer to this process as normalization.

Definition 4.3.7

Normalization

Let #»𝑣 be a non-zero vector in an inner product space. The normalization of #»𝑣 is the

vector ̂︀𝑣 =
#»𝑣

‖ #»𝑣 ‖ .

Exercise 47
(a) Prove that ̂︀𝑣 is a unit vector.

(b) Suppose that 𝑆 = { #»𝑣 1, . . . ,
#»𝑣 𝑘} is an orthogonal set. Prove that 𝑇 = {̂︀𝑣1, · · · , ̂︀𝑣𝑘} is

an orthonormal set.

If our model for an orthogonal set is the standard basis in R𝑛, we should expect an orthog-
onal set to be linearly independent. Indeed that is the case—at least if none of the vectors
is the zero vector.

Proposition 4.3.8 Suppose { #»𝑣 1, . . . ,
#»𝑣 𝑘} is orthogonal and #»𝑣 𝑖 ̸= #»

0 for all 𝑖. Then { #»𝑣 1, . . . ,
#»𝑣 𝑘} is linearly

independent.

Proof: Suppose 𝑡1
#»𝑣 1 + · · ·+ 𝑡𝑘

#»𝑣 𝑘 =
#»
0 . Fix 𝑖 ∈ {1, . . . , 𝑘}. Then

0 = ⟨𝑡1 #»𝑣 1 + · · ·+ 𝑡𝑘
#»𝑣 𝑘,

#»𝑣 𝑖⟩
= 𝑡1 ⟨ #»𝑣 1,

#»𝑣 𝑖⟩+ · · ·+ 𝑡𝑖 ⟨ #»𝑣 𝑖,
#»𝑣 𝑖⟩+ · · ·+ 𝑡𝑘 ⟨ #»𝑣 𝑘,

#»𝑣 𝑖⟩
= 𝑡𝑖 ‖ #»𝑣 𝑖‖2 .

Since #»𝑣 𝑖 ̸= #»
0 , we must have 𝑡𝑖 = 0. Since this is true for all 𝑖, we conclude { #»𝑣 1, . . . ,

#»𝑣 𝑘}
is linearly independent.

We now make a special definition for the case that we have an orthonormal set which forms
a basis for an inner product space.

Definition 4.3.9

Orthogonal Basis,
Orthonormal Basis

A set { #»𝑣 1, . . . ,
#»𝑣 𝑛} in an inner product space 𝑉 is an orthogonal basis (resp. orthonor-

mal basis) if it is a basis for 𝑉 and it is an orthogonal set (resp. an orthonormal set).

Example 4.3.10 The following are orthonormal bases, as you can easily check.

1. The standard basis of R𝑛 with respect to the dot product.

2. The standard basis of C𝑛 with respect to the standard inner product on C𝑛.
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3. The standard basis of 𝑀𝑚×𝑛(R) with respect to the Frobenius inner product ⟨𝐴,𝐵⟩ =
tr(𝐵𝑇𝐴).

4. The standard basis of 𝑀𝑚×𝑛(C) with respect to the Frobenius inner product ⟨𝐴,𝐵⟩ =
tr(𝐵*𝐴).

Example 4.3.11 The standard basis of 𝒫𝑛(R) with respect to the inner product

⟨𝑝, 𝑞⟩ =
∫︁ 1

−1
𝑝(𝑥)𝑞(𝑥) 𝑑𝑥

is not an orthonormal basis. In fact, it is not even an orthogonal set if 𝑛 > 1. (See Example
4.2.2.)

In Example 4.3.6 we showed that the set{︃
1√
2
,

√
3√
2
𝑥,

√︂
5

2

(︂
3

2
𝑥2 − 1

2

)︂
,

√︂
7

2

(︂
5

2
𝑥3 − 3

2
𝑥

)︂}︃

is an orthonormal basis for 𝒫3(R) with respect to the above inner product. In Section 4.5
we’ll see how to create an orthonormal basis for 𝒫𝑛(R) for all 𝑛 ≥ 1.

Example 4.3.12 In C2, with the inner product ⟨[︂
𝑎
𝑏

]︂
,

[︂
𝑐
𝑑

]︂⟩
= 2𝑎𝑐+ 𝑏𝑑,

the set

{︃[︃
1√
2

0

]︃
,

[︂
0
1

]︂}︃
is an orthonormal basis, as you can check.

Exercise 48 Check that the sets given in Examples 4.3.10 and 4.3.12 are orthonormal bases.

We close this section by giving a result that might explain why we sometimes prefer to
work with an orthonormal (or even orthogonal) basis: it makes it very easy to find the
coordinates of any given vector.

Proposition 4.3.13 (Coordinates Relative to an Orthogonal Basis)

Let 𝑉 be an inner product space and let ℬ = { #»𝑣 1, . . . ,
#»𝑣 𝑛} be a basis for 𝑉 . If #»𝑥 ∈ 𝑉 is

given by #»𝑥 = 𝑥1
#»𝑣 1 + · · ·+ 𝑥𝑛

#»𝑣 𝑛, then:

(a) If ℬ is an orthogonal basis, then 𝑥𝑖 =
⟨ #»𝑥 , #»𝑣 𝑖⟩
⟨ #»𝑣 𝑖,

#»𝑣 𝑖⟩
for 1 ≤ 𝑖 ≤ 𝑛.

(b) If ℬ is an orthonormal basis, then 𝑥𝑖 = ⟨ #»𝑥 , #»𝑣 𝑖⟩ for 1 ≤ 𝑖 ≤ 𝑛.
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Proof: If ℬ is orthogonal, then by taking the inner product of #»𝑥 and #»𝑣 𝑖 we obtain

⟨ #»𝑥 , #»𝑣 𝑖⟩ = ⟨𝑥1 #»𝑣 1 + · · ·+ 𝑥𝑛
#»𝑣 𝑛,

#»𝑣 𝑖⟩
= 𝑥1 ⟨ #»𝑣 1,

#»𝑣 𝑖⟩+ · · ·+ 𝑥𝑖 ⟨ #»𝑣 𝑖,
#»𝑣 𝑖⟩+ · · ·+ 𝑥𝑛 ⟨ #»𝑣 𝑛,

#»𝑣 𝑖⟩
= 𝑥10 + · · ·+ 𝑥𝑖−10 + 𝑥𝑖 ⟨ #»𝑣 𝑖,

#»𝑣 𝑖⟩+ 𝑥𝑖+10 + · · ·+ 𝑥𝑛0

= 𝑥𝑖 ⟨ #»𝑣 𝑖,
#»𝑣 𝑖⟩ .

Now since ⟨ #»𝑣 𝑖,
#»𝑣 𝑖⟩ ≠ 0 (why?), we can divide through by ⟨ #»𝑣 𝑖,

#»𝑣 𝑖⟩ to obtain

𝑥𝑖 =
⟨ #»𝑥 , #»𝑣 𝑖⟩
⟨ #»𝑣 𝑖,

#»𝑣 𝑖⟩
.

This proves (a). Part (b) follows immediately since if ℬ is orthonormal then ⟨ #»𝑣 𝑖,
#»𝑣 𝑖⟩ = 1

for all 𝑖.

Example 4.3.14 In R𝑛 with the standard basis 𝒮 = { #»𝑒 1, . . . ,
#»𝑒 𝑛} (which is orthonormal with respect to

the dot product), the above proposition says that we can obtain the 𝑖th component of
#»𝑥 =

[︀
𝑥1 · · · 𝑥𝑛

]︀𝑇
as #»𝑥 · #»𝑒 𝑖. And indeed we can:

#»𝑥 · #»𝑒 𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥1
...
𝑥𝑖
...
𝑥𝑛

⎤⎥⎥⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎢⎢⎣
0
...
1
...
0

⎤⎥⎥⎥⎥⎥⎥⎦ = 𝑥𝑖.

Example 4.3.15 In 𝑀2×2(R), let ℬ =

{︂[︂
1 1
1 1

]︂
,

[︂
1 0
−1 0

]︂
,

[︂
2 −1
2 −3

]︂}︂
and 𝑊 = Span(ℬ). You can check that ℬ

is an orthogonal basis for𝑊 with respect to the inner product ⟨𝐴,𝐵⟩ = tr(𝐵𝑇𝐴). Supposing

we know that 𝐴 =

[︂
3 −2
−1 −4

]︂
is in 𝑊 , we can find its coordinate vector [𝐴]ℬ =

⎡⎣𝑎1
𝑎2
𝑎3

⎤⎦ quickly

as follows. We have

𝑎1 =

⟨
𝐴,

[︂
1 1
1 1

]︂⟩
⃦⃦⃦⃦[︂

1 1
1 1

]︂⃦⃦⃦⃦2 =
3(1) + (−2)(1) + (−1)(1) + (−4)(1)

12 + 12 + 12 + 12
= −1

𝑎2 =

⟨
𝐴,

[︂
1 0
−1 0

]︂⟩
⃦⃦⃦⃦[︂

1 0
−1 0

]︂⃦⃦⃦⃦2 =
3(1) + (−2)(0) + (−1)(−1) + (−4)(0)

12 + (−1)2 + 02 + 02
= 2

𝑎3 =

⟨
𝐴,

[︂
2 −1
2 −3

]︂⟩
⃦⃦⃦⃦[︂

2 −1
2 −3

]︂⃦⃦⃦⃦2 =
3(2) + (−2)(−1) + (−1)(2) + (−4)(−3)

22 + (−1)2 + 22 + (−3)2
= 1.
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Thus, [𝐴]ℬ =

⎡⎣−1
2
1

⎤⎦.

Our goal now is to show that every finite-dimensional inner product space admits an or-
thonormal basis. As a fun exercise, try to see if you can prove the following special case.

Exercise 49 Let 𝑉 be an inner product space and let 𝑊 = Span({ #»𝑣 , #»𝑤}), where { #»𝑣 , #»𝑤} is a linearly
independent subset of 𝑉 . Obtain an orthonormal basis for 𝑊 . [Hint: Start by trying to
find a vector 𝑎 #»𝑣 + 𝑏 #»𝑤 in 𝑊 that is orthogonal to #»𝑣 .]

4.4 Projections

You may have seen the projection of a vector onto another vector in a previous course, and
we have seen hints of it in the proof of the Cauchy–Schwarz inequality. We now shift our
attention to fleshing out the details in full.

Let’s think about what projection looks like in R2. Suppose #»𝑣 and #»𝑤 are two non-zero
vectors in R2, and we wish to project #»𝑣 onto #»𝑤. We can think of this as shining a light
perpendicular to #»𝑤, and drawing a vector proj #»𝑤(

#»𝑣 ) representing the shadow of #»𝑣 .

#»𝑤

#»𝑣

proj #»𝑤(
#»𝑣 )𝜃

Suppose 𝜃 is the angle between #»𝑣 and #»𝑤. Then by drawing out a right triangle, we see the
length of the projection must be ‖ #»𝑣 ‖ cos 𝜃. The direction we wish the vector to go in is
the direction #»𝑤 is pointing, so we can obtain the projection by scalar multiplying the unit
vector in the direction of #»𝑤 by ‖ #»𝑣 ‖ cos 𝜃. Since cos 𝜃 =

#»𝑣 · #»𝑤
‖ #»𝑣 ‖‖ #»𝑤‖ , this gives the projection as

proj #»𝑤(
#»𝑣 ) = ‖ #»𝑣 ‖ cos 𝜃 1

‖ #»𝑤‖
#»𝑤 =

#»𝑣 · #»𝑤

‖ #»𝑤‖2
#»𝑤.

We will use this as motivation for defining projections in inner product spaces in general.
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Definition 4.4.1

Projection onto a
Vector, proj #»𝑤 ,
Perpendicular
Vector with
respect to a
Vector, perp #»𝑤

Let 𝑉 be an inner product space, and let #»𝑤, #»𝑣 ∈ 𝑉 with #»𝑤 ̸= #»
0 . The projection of #»𝑣

onto #»𝑤 is defined to be the vector

proj #»𝑤(
#»𝑣 ) =

⟨ #»𝑣 , #»𝑤⟩
‖ #»𝑤‖2

#»𝑤.

We also define the perpendicular vector of #»𝑣 with respect to #»𝑤 by

perp #»𝑤(
#»𝑣 ) = #»𝑣 − ⟨ #»𝑣 , #»𝑤⟩

‖ #»𝑤‖2
#»𝑤.

We already saw in Lemma 4.2.4 that perp #»𝑤(
#»𝑣 ) is orthogonal to #»𝑤, which is what we’d

expect to be true if these definitions imitate the situation in R2. Furthermore, notice that
according to the definition

#»𝑣 = proj #»𝑤(
#»𝑣 ) + perp #»𝑤(

#»𝑣 )

for all #»𝑣 , #»𝑤 ∈ 𝑉 with #»𝑤 ̸= #»
0 .

Example 4.4.2 Let #»𝑣 =

⎡⎣ 4
1 + 𝑖
2

⎤⎦ ∈ C3. Let #»𝑤1 =

⎡⎣0
0
1

⎤⎦ and #»𝑤2 =

⎡⎣0
1
0

⎤⎦. With respect to the standard

inner product we have

proj #»𝑤1
( #»𝑣 ) =

2

1

⎡⎣0
0
1

⎤⎦ =

⎡⎣0
0
2

⎤⎦
proj #»𝑤2

( #»𝑣 ) =
𝑖+ 1

1

⎡⎣0
1
0

⎤⎦ =

⎡⎣ 0
1 + 𝑖
0

⎤⎦
These computations are what we’d expect if we are to project onto the 𝑧 and 𝑦 axes of C3.

Another way to think about a projection is as finding the closest vector on a subspace to
a given vector. More specifically, the projection of #»𝑣 onto #»𝑤 is the closest vector in the
subspace spanned by { #»𝑤} to #»𝑣 . (See Proposition 4.6.10 below.) Remember—since we’re in
an inner product space, we have a notion of length and distance, so asking for the closest
vector makes sense.

With this in mind, what we’re really doing when we’re projecting onto a vector is we’re
projecting onto the one-dimensional subspace spanned by that vector. It’s natural to now
ask how we can project onto a general subspace. Let’s look at an example.

Example 4.4.3 Consider R3 with the dot product. Let #»𝑣 =

⎡⎣1
2
3

⎤⎦, #»𝑒 1 =

⎡⎣1
0
0

⎤⎦, and #»𝑒 2 =

⎡⎣0
1
0

⎤⎦. The

subspace 𝑊 = Span({ #»𝑒 1,
#»𝑒 2}) is the 𝑥𝑦-plane in R3. So the projection of #»𝑣 onto 𝑊 , let’s

call it proj𝑊 ( #»𝑣 ), should be the vector

⎡⎣1
2
0

⎤⎦.
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𝑊

#»𝑣

proj𝑊 ( #»𝑣 )

𝑥

𝑦

𝑧

If we compute the projections of #»𝑣 onto #»𝑒 1 and #»𝑒 2, we find that

proj #»𝑒 1
( #»𝑣 ) =

⎡⎣1
0
0

⎤⎦ and proj #»𝑒 2
( #»𝑣 ) =

⎡⎣0
2
0

⎤⎦ .

The sum of these two vector projections is what we believe proj𝑊 ( #»𝑣 ) should be. That is,
it appears that

proj𝑊 ( #»𝑣 ) = proj #»𝑒 1
( #»𝑣 ) + proj #»𝑒 2

( #»𝑣 ).

From this example, it may be tempting to guess the following: The projection of a vector
#»𝑣 onto a subspace 𝑊 is simply obtained by choosing a basis for 𝑊 , projecting #»𝑣 onto each
basis vector, and summing up the resulting vectors.

Unfortunately this does not work all the time, but we will see that it does work when we
have an orthogonal basis for 𝑊 . So it may be tempting to refine our initial guess and define
the projection of #»𝑣 onto 𝑊 as follows. Let { #»𝑤1, . . . ,

#»𝑤𝑘} be an orthogonal basis for 𝑊 .
Then

proj𝑊 ( #»𝑣 ) = proj #»𝑤1
( #»𝑣 ) + · · ·+ proj #»𝑤𝑘

( #»𝑣 ).

For this to be a usable definition, there are two issues that must be addressed.

1. Does 𝑊 even have an orthogonal basis? If so, how do we find one?

2. Does the above definition of proj𝑊 ( #»𝑣 ) depend on the chosen orthogonal basis for 𝑊?
That is, if { #»𝑢 1, . . . ,

#»𝑢 𝑘} is another orthogonal basis for 𝑊 , how can we be sure that

proj #»𝑤1
( #»𝑣 ) + · · ·+ proj #»𝑤𝑘

( #»𝑣 ) = proj #»𝑢 1
( #»𝑣 ) + · · ·+ proj #»𝑢 𝑘

( #»𝑣 )

so that our definition of proj𝑊 ( #»𝑣 ) is well-defined?

We will address both these issues in the next two sections.
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4.5 The Gram–Schmidt Orthogonalization Procedure

In this section we will show that every finite-dimensional inner product space has an or-
thonormal basis. In fact, we will describe a procedure that allows us to take an arbitrary
basis and create an orthonormal basis from it. Let’s see how this works in an example.

Example 4.5.1 In R3 equipped with the dot product, suppose we have

#»𝑣 1 =

⎡⎣1
1
0

⎤⎦ , #»𝑣 2 =

⎡⎣1
0
1

⎤⎦ , and #»𝑣 3 =

⎡⎣0
1
1

⎤⎦ .

It turns out that { #»𝑣 1,
#»𝑣 2,

#»𝑣 3} is a basis for R3. However, #»𝑣 1 · #»𝑣 2 = 1 so it is not an
orthogonal set (or an orthonormal one for that matter). We will now create an orthogonal
basis starting form this one, and then scale the vectors to obtain an orthonormal basis.

Let’s first create an orthogonal set { #»𝑤1,
#»𝑤2,

#»𝑤3}. We may as well start with

#»𝑤1 =
#»𝑣 1.

Now, whatever we make #»𝑤2, it needs to be orthogonal to #»𝑤1. We have proved earlier that
perp #»𝑤1

( #»𝑣 2) is orthogonal to
#»𝑤1, so let’s use that. We have

perp #»𝑤1
( #»𝑣 2) =

#»𝑣 2 −
⟨ #»𝑣 2,

#»𝑤1⟩
‖ #»𝑤1‖2

#»𝑤1

=

⎡⎣1
0
1

⎤⎦− 1

2

⎡⎣1
1
0

⎤⎦
=

⎡⎣ 1
2
−1

2
1

⎤⎦ .

So that we don’t have to deal with fractions, set

#»𝑤2 =

⎡⎣ 1
−1
2

⎤⎦ .

So far we’ve obtained two orthogonal vectors #»𝑤1 and #»𝑤2. To create #»𝑤3, we do the same
thing except we will want to take

perp𝑊 ( #»𝑣 3) =
#»𝑣 3 − proj𝑊 ( #»𝑣 3), where 𝑊 = Span({ #»𝑤1,

#»𝑤2}),

which will give us a vector orthogonal to both #»𝑤1 and #»𝑤2. Of course, the problem here
is that we haven’t formally defined perp𝑊 ( #»𝑣 3) or proj𝑊 ( #»𝑣 3), but based on Example 4.4.3
and the discussion that followed it, we suspect that

perp𝑊 ( #»𝑣 3) =
#»𝑣 3 − proj #»𝑤1

#»𝑣 3 − proj #»𝑤2

#»𝑣 3.

Let’s just take #»𝑤3 to be this vector! That is, let

#»𝑤3 =
#»𝑣 3 − proj #»𝑤1

#»𝑣 3 − proj #»𝑤2

#»𝑣 3
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= #»𝑣 3 −
⟨ #»𝑣 3,

#»𝑤1⟩
‖ #»𝑤1‖2

#»𝑤1 −
⟨ #»𝑣 3,

#»𝑤2⟩
‖ #»𝑤2‖2

#»𝑤2

=

⎡⎣0
1
1

⎤⎦− 1

2

⎡⎣1
1
0

⎤⎦− 1

6

⎡⎣ 1
−1
2

⎤⎦
=

⎡⎣−2
3

2
3
2
3

⎤⎦ .

Again, to make our lives easier, set

#»𝑤3 =

⎡⎣−2
2
2

⎤⎦ .

We have to confirm that #»𝑤3 behaves as expected and is in fact orthogonal to both #»𝑤1 and
#»𝑤2. Indeed, this is the case! We have

#»𝑤1 · #»𝑤3 =

⎡⎣1
1
0

⎤⎦ ·

⎡⎣−2
2
2

⎤⎦ = −2 + 2 = 0

and

#»𝑤2 · #»𝑤3 =

⎡⎣ 1
−1
2

⎤⎦ ·

⎡⎣−2
2
2

⎤⎦ = −2− 2 + 4 = 0.

Now we have three vectors that are orthogonal to each other, so ℬ = { #»𝑤1,
#»𝑤2,

#»𝑤3} is an
orthogonal set. Since

#»
0 ̸∈ ℬ, it follows that ℬ linearly independent and thus a basis for R3.

To create an orthonormal basis for R3 we simply normalize the vectors in 𝑆. Therefore

𝒞 =

⎧⎨⎩ 1√
2

⎡⎣1
1
0

⎤⎦ ,
1√
6

⎡⎣ 1
−1
2

⎤⎦ ,
1√
3

⎡⎣−1
1
1

⎤⎦⎫⎬⎭
is an orthonormal basis of R3 with respect to the dot product.

The method we illustrated in this example works in general, and it is called the Gram–
Schmidt orthogonalization procedure. Here it is in detail.

ALGORITHM (Gram–Schmidt Orthogonalization Procedure)

Let 𝑉 be an inner product space with basis { #»𝑣 1, . . . ,
#»𝑣 𝑛}. To obtain an orthogonal basis

for 𝑉 , define #»𝑤1, . . . ,
#»𝑤𝑛 as follows:

#»𝑤1 =
#»𝑣 1

#»𝑤2 =
#»𝑣 2 −

⟨ #»𝑣 2,
#»𝑤1⟩

‖ #»𝑤1‖2
#»𝑤1
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#»𝑤3 =
#»𝑣 3 −

⟨ #»𝑣 3,
#»𝑤1⟩

‖ #»𝑤1‖2
#»𝑤1 −

⟨ #»𝑣 3,
#»𝑤2⟩

‖ #»𝑤2‖2
#»𝑤2

...

#»𝑤𝑛 = #»𝑣 𝑛 − ⟨ #»𝑣 𝑛,
#»𝑤1⟩

‖ #»𝑤1‖2
#»𝑤1 − · · · − ⟨ #»𝑣 𝑛,

#»𝑤𝑛−1⟩
‖ #»𝑤𝑛−1‖2

#»𝑤𝑛−1.

Then ℬ = { #»𝑤1, . . . ,
#»𝑤𝑛} is an orthogonal basis for 𝑉 .

To obtain an orthonormal basis, set #»𝑢 𝑖 = ̂︁𝑤𝑖 = 1
‖ #»𝑤𝑖‖

#»𝑤𝑖 for all 𝑖 = 1, . . . , 𝑛, and take

𝒞 = { #»𝑢 1, . . . ,
#»𝑢𝑛}.

To prove that this procedure actually works, we need to ensure that at each step we actually
get a non-zero vector. This amounts to proving the following statement.

Exercise 50 Let { #»𝑣 1, . . . ,
#»𝑣 𝑛} be a basis for an inner product space 𝑉 . Let { #»𝑤1, . . . ,

#»𝑤𝑖} be the
first 𝑖 vectors obtained from the Gram–Schmidt orthogonalization procedure. Prove
Span({ #»𝑣 1, . . . ,

#»𝑣 𝑖}) = Span({ #»𝑤1, . . . ,
#»𝑤𝑖}). Use this to prove that the resulting basis

{ #»𝑤1, . . . ,
#»𝑤𝑛} is an orthogonal basis for 𝑉 .

REMARK

You may have noticed that the algorithm described above does not exactly match the
procedure that we followed in Example 4.5.1. Indeed, notice that at each stage of the
Gram-Schmidt procedure we can pick 𝑐�⃗�𝑖 instead of �⃗�𝑖 for some non-zero scalar 𝑐, which
is exactly what we did in the example. This little modification of the algorithm can make
calculations a bit nicer, and is especially useful when doing calculations by hand. We
recommend that you take time to reflect as to why it works.

As a consequence of the Gram–Schmidt procedure, we get the following corollary.

Corollary 4.5.2 Every finite-dimensional inner product space has an orthonormal basis.

If 𝑉 = { #»
0 } is the zero vector space, then we agree to consider its basis (the empty set) as

being an orthogonal basis. This makes sense because the condition for the empty set to be
an orthogonal set is vacuously true.

Example 4.5.3 Let’s apply the Gram–Schmidt process to find an orthogonal basis for 𝑃3(R) with respect to

the inner product ⟨𝑝, 𝑞⟩ =
∫︁ 1

−1
𝑝(𝑥)𝑞(𝑥) 𝑑𝑥. Starting from the standard basis {1, 𝑥, 𝑥2, 𝑥3},

we take #»𝑤1 = 1, and then

#»𝑤2 = 𝑥− ⟨𝑥, 1⟩
‖1‖2

1 = 𝑥− 0

2
1 = 𝑥.
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(Recall that we’d already seen in Example 4.2.2 that 1 ⊥ 𝑥, so this is a promising start.)
Next,

#»𝑤3 = 𝑥2 −
⟨︀
𝑥2, 1

⟩︀
‖1‖2

1−
⟨︀
𝑥2, 𝑥

⟩︀
‖𝑥‖2

𝑥 = 𝑥2 − (2/3)

2
1− 0

(2/3)
𝑥 = 𝑥2 − 1

3
.

To avoid having to deal with fractions, let’s multiply by 3 and take #»𝑤3 = 3𝑥2 − 1 instead.
Finally,

#»𝑤4 = 𝑥3 −
⟨︀
𝑥3, 1

⟩︀
‖1‖2

1−
⟨︀
𝑥3, 𝑥

⟩︀
‖𝑥‖2

𝑥−
⟨︀
𝑥3, 3𝑥2 − 1

⟩︀
‖3𝑥2 − 1‖2

(3𝑥2 − 1) = 𝑥3 − 3

5
𝑥.

Let’s multiply by 5 and take #»𝑤4 = 5𝑥3 − 3𝑥 instead.

So now we have an orthogonal basis {1, 𝑥, 3𝑥2 − 1, 5𝑥3 − 3𝑥} for 𝒫3(R) with respect to

⟨𝑝, 𝑞⟩ =
∫︁ 1

−1
𝑝(𝑥)𝑞(𝑥) 𝑑𝑥. If we normalize this, we obtain the orthonormal basis

𝒞 =

{︃
1√
2
,

√︂
3

2
𝑥,

√︂
5

8

(︀
3𝑥2 − 1

)︀
,

√︂
7

8

(︀
5𝑥3 − 3𝑥

)︀}︃

which is exactly the same as the basis we’d seen in Example 4.3.6.

Exercise 51 Find an orthonormal basis for 𝒫4(R) with respect to ⟨𝑝, 𝑞⟩ =
∫︀ 1
−1 𝑝(𝑥)𝑞(𝑥) 𝑑𝑥.

Example 4.5.4 Let’s find an orthogonal basis for the subspace

𝑊 = Span

⎧⎨⎩
⎡⎣1
1
1

⎤⎦ ,

⎡⎣ 1
−1
0

⎤⎦ ,

⎡⎣2
0
1

⎤⎦ ,

⎡⎣1
0
1

⎤⎦⎫⎬⎭
of R3 with respect to the dot product.

Our first step should be to find a basis for𝑊 , which means we must eliminate any redundant
vectors in the given spanning set. (We know for sure that at least one of them must be
redundant, since 𝑊 cannot be a 4-dimensional subspace of R3!) But let’s not do this, and
let’s see what happens if we apply the Gram–Schmidt procedure to the given spanning set
of 𝑊 .

So take #»𝑤1 =
[︀
1 1 1

]︀𝑇
, and then

#»𝑤2 =

⎡⎣ 1
−1
0

⎤⎦−

⎡⎣ 1
−1
0

⎤⎦ ·

⎡⎣1
1
1

⎤⎦
⃦⃦⃦⃦
⃦⃦
⎡⎣1
1
1

⎤⎦⃦⃦⃦⃦⃦⃦
2

⎡⎣1
1
1

⎤⎦ =

⎡⎣ 1
−1
0

⎤⎦ .
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Next, we are supposed to take

#»𝑤3 =

⎡⎣2
0
1

⎤⎦−

⎡⎣2
0
1

⎤⎦ ·

⎡⎣1
1
1

⎤⎦
⃦⃦⃦⃦
⃦⃦
⎡⎣1
1
1

⎤⎦⃦⃦⃦⃦⃦⃦
2

⎡⎣1
1
1

⎤⎦−

⎡⎣2
0
1

⎤⎦ ·

⎡⎣ 1
−1
0

⎤⎦
⃦⃦⃦⃦
⃦⃦
⎡⎣ 1
−1
0

⎤⎦⃦⃦⃦⃦⃦⃦
2

⎡⎣ 1
−1
0

⎤⎦ =

⎡⎣0
0
0

⎤⎦ ,

but we cannot have the zero vector in a basis! Did the Gram–Schmidt procedure fail?
No, of course not. In fact, the procedure was able to detect the linear dependence present

in the spanning set of 𝑊 . Indeed, the above shows that the vector
[︀
2 0 1

]︀𝑇
is a linear

combination of
[︀
1 1 1

]︀𝑇
and

[︀
1 −1 0

]︀𝑇
. So that means we toss it aside and move on to

the next vector in the spanning set. Hence, we now take

#»𝑤3 =

⎡⎣1
0
1

⎤⎦−

⎡⎣1
0
1

⎤⎦ ·

⎡⎣1
1
1

⎤⎦
⃦⃦⃦⃦
⃦⃦
⎡⎣1
1
1

⎤⎦⃦⃦⃦⃦⃦⃦
2

⎡⎣1
1
1

⎤⎦−

⎡⎣1
0
1

⎤⎦ ·

⎡⎣ 1
−1
0

⎤⎦
⃦⃦⃦⃦
⃦⃦
⎡⎣ 1
−1
0

⎤⎦⃦⃦⃦⃦⃦⃦
2

⎡⎣ 1
−1
0

⎤⎦ =
1

6

⎡⎣−1
−1
2

⎤⎦ .

We can scale this vector by 6 and then arrive at the following orthogonal basis for 𝑊 :⎧⎨⎩
⎡⎣1
1
1

⎤⎦ ,

⎡⎣ 1
−1
0

⎤⎦ ,

⎡⎣−1
−1
2

⎤⎦⎫⎬⎭ .

What occurred in the previous example will always occur. The Gram–Schmidt process will
automatically locate linear dependency in a given spanning set. This is formalized in the
next exercise.

Exercise 52 Let 𝑆 = { #»𝑣 1, . . . ,
#»𝑣 𝑘} be linearly independent vectors in an inner product space, and let

#»𝑤1, . . . ,
#»𝑤𝑘 be the vectors produced by the Gram–Schmidt procedure applied to 𝑆. Show

that if #»𝑣 𝑘+1 ∈ Span(𝑆), and if we take

#»𝑤𝑘+1 =
#»𝑣 𝑘+1 −

⟨ #»𝑣 𝑘+1,
#»𝑤1⟩

‖ #»𝑤1‖2
#»𝑤1 − · · · − ⟨ #»𝑣 𝑘+1,

#»𝑤𝑘⟩
‖ #»𝑤𝑘‖2

#»𝑤𝑘

then necessarily #»𝑤𝑘+1 = 0.

4.6 Projection onto a Subspace and Orthogonal Complements

Let’s now return to the problem of determining the projection of a vector onto a subspace
of an inner product space, which we discussed at the end of Section 4.4. This is a problem
that has many important practical and theoretical implications. For instance, if the vectors
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in our inner product space somehow encode the data of an MRI image, one might have
a subspace of images that are known to be associated with a certain condition or disease.
Then it would be highly desirable to determine how close a given image is to this subspace,
and this is something that can be easily done with projections. We will see another, very
widely-used, application in Section 4.7.

Here is the basic problem. Let 𝑊 be a subspace of an inner product space 𝑉 and let #»𝑣 ∈ 𝑉 .
We would like to define vectors proj𝑊 ( #»𝑣 ) and perp𝑊 ( #»𝑣 ) so that (i) proj𝑊 ( #»𝑣 ) is in 𝑊 , (ii)
perp𝑊 ( #»𝑣 ) is orthogonal to 𝑊 , and (iii) #»𝑣 can be expressed as

#»𝑣 = proj𝑊 ( #»𝑣 ) + perp𝑊 ( #»𝑣 ).

In a sense, we would like proj𝑊 ( #»𝑣 ) to be the vector in 𝑊 that is closest to #»𝑣 . See the
diagram below.

𝑊
#»𝑣

perp𝑊 ( #»𝑣 )

proj𝑊 ( #»𝑣 )

We saw in Example 4.4.3 how to do this if 𝑊 was the 𝑥𝑦-plane in R3. The case of a general
plane 𝑊 in R3 can be made to look exactly the same: simply choose a new set of orthogonal
axes for R3, two of which lie in 𝑊 , and the third of which is orthogonal to 𝑊 . Then 𝑊 will
effectively look like “the horizontal plane” in this coordinate system, and so we can easily
project onto it.

The case of an arbitrary subspace of an inner product space can be handled in the same
fashion. It all boils down to being able to pick out the correct orthogonal basis. Here is the
key result.

Proposition 4.6.1 Let 𝑊 be a subspace of a finite-dimensional inner product space 𝑉 . Then we can find an
orthogonal basis { #»𝑤1, . . . ,

#»𝑤𝑘,
#»𝑛 1, . . . ,

#»𝑛 𝑙} for 𝑉 such that { #»𝑤1, . . . ,
#»𝑤𝑘} is an orthogonal

basis for 𝑊 .

Proof: Let { #»𝑢 1, . . . ,
#»𝑢 𝑘} be a basis for 𝑊 . Apply the Gram–Schmidt procedure to it to

obtain an orthogonal basis { #»𝑤1, . . . ,
#»𝑤𝑘} for 𝑊 and then extend this to a basis { #»𝑤1, . . . ,

#»𝑤𝑘,
#»𝑣 1, . . . ,

#»𝑣 𝑙} for 𝑉 . Apply the Gram–Schmidt procedure to this basis. The first 𝑘 vectors
#»𝑤1, . . . ,

#»𝑤𝑘 will be unchanged (why?), and #»𝑣 1, . . . ,
#»𝑣 𝑙 will be refined to give us our desired

#»𝑛 1, . . . ,
#»𝑛 𝑙.
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Notice that the proof of Proposition 4.6.1 shows that we can extend any orthogonal basis
for the subspace 𝑊 to an orthogonal basis of the whole space 𝑉 . In fact, more is true: we
can also extend any orthonormal basis for the subspace 𝑊 to an orthonormal basis of the
whole space 𝑉 . We strongly encourage you to think how this can be done!

Example 4.6.2 Let 𝑊 be the plane in R3 with scalar equation 𝑥+ 𝑦 + 2𝑧 = 0. (Let’s also note in passing
that any vector orthogonal to this plane will have to be a scalar multiple of [1 1 2]𝑇 .) A
basis for 𝑊 will consist of any two linear independent vectors lying in this plane, e.g.,

#»𝑢 1 =

⎡⎣ 1
−1
0

⎤⎦ and #»𝑢 2 =

⎡⎣ 2
0
−1

⎤⎦ .

If we apply the Gram–Schmidt procedure to { #»𝑢 1,
#»𝑢 2} we obtain #»𝑤1 =

#»𝑢 1 and

#»𝑤2 =

⎡⎣ 2
0
−1

⎤⎦−

⎡⎣ 2
0
−1

⎤⎦ ·

⎡⎣ 1
−1
0

⎤⎦
⎡⎣ 1
−1
0

⎤⎦ ·

⎡⎣ 1
−1
0

⎤⎦
⎡⎣ 1
−1
0

⎤⎦ =

⎡⎣ 1
1
−1

⎤⎦ .

This gives us the orthogonal basis { #»𝑤1,
#»𝑤2} for 𝑊 . To extend this to a basis for R3, we

need one more vector. We can either find this vector by inspection, or (and this is what
we’ll do) we can apply the Gram–Schmidt procedure to { #»𝑤1,

#»𝑤2,
#»𝑒 1,

#»𝑒 2,
#»𝑒 3}. Indeed, the

procedure will return the first two vectors unchanged, and then will eliminate any linear
dependencies presented by adding in #»𝑒 1,

#»𝑒 2,
#»𝑒 3, while simultaneously producing for us an

orthogonal basis for R3. We obtain the vector

#»𝑛 = #»𝑒 1 −
#»𝑒 1 · #»𝑤1
#»𝑤1 · #»𝑤1

#»𝑤1 −
#»𝑒 1 · #»𝑤2
#»𝑤2 · #»𝑤2

#»𝑤2 =
1

6

⎡⎣1
1
2

⎤⎦ .

And indeed, this is a normal vector for the plane 𝑊 .

Now that we have an orthogonal basis { #»𝑤1,
#»𝑤2,

#»𝑛} for R3, Proposition 4.3.13 tells us that
every vector #»𝑣 ∈ R3 can be expressed as

#»𝑣 = proj #»𝑤1
( #»𝑣 ) + proj #»𝑤2

( #»𝑣 ) + proj #»𝑛 (
#»𝑣 ).

The sum of the first two projections above gives us the component of #»𝑣 that lies in 𝑊
while the third gives us the component of #»𝑣 that is orthogonal to 𝑊 , i.e., these should be
proj𝑊 ( #»𝑣 ) and perp𝑊 ( #»𝑣 ), respectively.

We will now generalize what we did in the previous example. First, let’s identify the
significance of the vectors #»𝑛 1, . . . ,

#»𝑛 𝑙 in Proposition 4.6.1: they are each orthogonal to all
the vectors in 𝑊 . In general, every subspace 𝑊 of an inner product space 𝑉 determines
a “complementary” subspace that consists of all the vectors in 𝑉 that are orthogonal to
every vector in 𝑊 . This is analogous to how a plane in R3 determines a normal line.



110 Chapter 4 Inner Product Spaces

Definition 4.6.3

Orthogonal
Complement

Let 𝑉 be an inner product space and let 𝑊 ⊆ 𝑉 be a subspace. The orthogonal com-
plement of 𝑊 is the set

𝑊⊥ = { #»𝑣 ∈ 𝑉 : ⟨ #»𝑣 , #»𝑤⟩ = 0 for all #»𝑤 ∈ 𝑊}.

Here are two basic properties of 𝑊⊥ whose proofs are left as an exercise.

Proposition 4.6.4 Let 𝑉 be an inner product space and 𝑊 ⊆ 𝑉 a subspace. Then:

(a) 𝑊⊥ is a subspace of 𝑉 .

(b) 𝑊 ∩𝑊⊥ = { #»
0 }.

Exercise 53 Prove Proposition 4.6.4.

Example 4.6.5 Consider R3 with the dot product and let 𝑊 = Span

⎛⎝⎧⎨⎩
⎡⎣1
0
0

⎤⎦ ,

⎡⎣0
1
0

⎤⎦⎫⎬⎭
⎞⎠. We would expect

𝑈 = Span

⎛⎝⎧⎨⎩
⎡⎣0
0
1

⎤⎦⎫⎬⎭
⎞⎠ to be equal to 𝑊⊥. Let’s prove this.

Proof: We want to show 𝑈 = 𝑊⊥. Let #»𝑢 ∈ 𝑈 . Then #»𝑢 =

⎡⎣0
0
𝑡

⎤⎦ for some 𝑡 ∈ R. Let #»𝑤

be an arbitrary vector in 𝑊 , so #»𝑤 =

⎡⎣𝑎
𝑏
0

⎤⎦ for some 𝑎, 𝑏 ∈ R. Then #»𝑢 · #»𝑤 = 0 so #»𝑢 ∈ 𝑊⊥

and therefore 𝑈 ⊆ 𝑊⊥. Conversely, suppose #»𝑢 =

⎡⎣𝑢1
𝑢2
𝑢3

⎤⎦ ∈ 𝑊⊥. Then since #»𝑢 ·

⎡⎣1
0
0

⎤⎦ = 0,

we must have 𝑢1 = 0. Similarly we must have 𝑢2 = 0. Therefore #»𝑢 ∈ 𝑈 and 𝑊⊥ ⊆ 𝑈 . We
can now conclude 𝑊⊥ = 𝑈 , completing the proof.

Example 4.6.6 We saw earlier that {︂
1, 𝑥,

3

2
𝑥2 − 1

2
,
5

2
𝑥3 − 3

2
𝑥

}︂
is an orthogonal basis for 𝒫3(R) with respect to the inner product ⟨𝑝, 𝑞⟩ =

∫︁ 1

−1
𝑝(𝑥)𝑞(𝑥) 𝑑𝑥.

Therefore if 𝑊 = Span
(︀{︀

1, 32𝑥
2 − 1

2

}︀)︀
then 𝑊⊥ = Span

(︀{︀
𝑥, 52𝑥

3 − 3
2𝑥

}︀)︀
. We can prove

this as we did in the previous example.
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However, if we stop and think for a moment, we might suspect that there is a gen-
eral result along the lines of: If { #»𝑣 1, . . . ,

#»𝑣 𝑛} is an orthogonal basis for 𝑉 , and if
𝑊 = Span{ #»𝑣 1, . . . ,

#»𝑣 𝑘}, then 𝑊⊥ = Span{ #»𝑣 𝑘+1, . . . ,
#»𝑣 𝑛}. This is indeed true and the

proof conceptually is identical to what we did in the previous example.

Exercise 54 Prove the claim in the final paragraph of Example 4.6.6.

There is a sort-of converse to this exercise. We record it together with a few other basic
properties of the orthogonal complement in the next proposition. Part (b) of this proposition
can be viewed as a more refined version of Proposition 4.6.1.

Proposition 4.6.7 Let 𝑉 be a finite-dimensional inner product space and 𝑊 ⊆ 𝑉 a subspace. Then:

(a) If { #»𝑤1, . . . ,
#»𝑤𝑘} is a spanning set for 𝑊 then #»𝑣 ∈ 𝑊⊥ if and only if ⟨ #»𝑣 , #»𝑤𝑖⟩ = 0 for all

𝑖 = 1, . . . , 𝑘.

(b) If ℬ = { #»𝑤1, . . . ,
#»𝑤𝑘} is an orthogonal basis for 𝑊 , then there exists an orthogonal basis

𝒞 = { #»𝑛 1, . . . ,
#»𝑛 𝑙} for 𝑊⊥ such that ℬ ∪ 𝒞 = { #»𝑤1, . . . ,

#»𝑤𝑘,
#»𝑛 1, . . . ,

#»𝑛 𝑙} is an orthogonal
basis for 𝑉 .

(c) dim(𝑉 ) = dim(𝑊 ) + dim(𝑊⊥).

(d) (𝑊⊥)⊥ = 𝑊 .

Proof: (a) If #»𝑣 ∈ 𝑊⊥, then ⟨ #»𝑣 , #»𝑤⟩ = 0 for all #»𝑤 ∈ 𝑊 , so in particular for all #»𝑤𝑖.
Conversely, assume that ⟨ #»𝑣 , #»𝑤𝑖⟩ = 0 for all #»𝑤𝑖. To show that #»𝑣 ∈ 𝑊⊥, we must prove
that ⟨ #»𝑣 , #»𝑤⟩ = 0 for all #»𝑤 ∈ 𝑊 . Given #»𝑤 ∈ 𝑊 , we can write it as #»𝑤 =

∑︀𝑘
𝑖=1 𝑎𝑖

#»𝑤𝑖. Then

⟨ #»𝑣 , #»𝑤⟩ =
⟨

#»𝑣 ,

𝑘∑︁
𝑖=1

𝑎𝑖
#»𝑤𝑖

⟩
=

𝑘∑︁
𝑖=1

𝑎𝑖 ⟨ #»𝑣 , #»𝑤𝑖⟩ =
𝑘∑︁

𝑖=1

𝑎𝑖0 = 0,

as desired.

(b) The proof of Proposition 4.6.1 shows that we can find an orthogonal set of vectors
𝒞 = { #»𝑛 1, . . . ,

#»𝑛 𝑙} such that ℬ∪𝒞 is a orthogonal basis for 𝑉 . Since #»𝑛 1, . . . ,
#»𝑛 𝑙 are each

orthogonal to all the vectors in ℬ, they must all lie in 𝑊⊥, by part (a). It remains to
show that 𝒞 = { #»𝑣 1, . . . ,

#»𝑣𝑚} is a basis for 𝑊⊥. Since 𝒞 is linearly independent (being
a subset of a basis), it suffices to show that 𝒞 spans 𝑊⊥.

So suppose #»𝑣 ∈ 𝑊⊥. Then since ℬ ∪ 𝒞 is a basis for 𝑉 , we can write #»𝑣 as

#»𝑣 =

𝑘∑︁
𝑖=1

𝑎𝑖
#»𝑤𝑖 +

𝑚∑︁
𝑗=1

𝑏𝑗
#»𝑛 𝑗 .

Taking inner product of both sides with #»𝑤 𝑙, we obtain

⟨ #»𝑣 , #»𝑤 𝑙⟩ =
𝑘∑︁

𝑖=1

𝑎𝑖 ⟨ #»𝑤𝑖,
#»𝑤 𝑙⟩+

𝑚∑︁
𝑗=1

𝑏𝑗 ⟨ #»𝑛 𝑗 ,
#»𝑤 𝑙⟩
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0 = 𝑎𝑙 ⟨ #»𝑤 𝑙,
#»𝑤 𝑙⟩+

𝑚∑︁
𝑗=1

𝑏𝑗0

since #»𝑣 , #»𝑛 𝑗 ∈ 𝑊⊥ for all 𝑗 and since #»𝑤𝑖 ⊥ #»𝑤 𝑙 for 𝑖 ̸= 𝑙 (because ℬ is orthogonal).
This leaves us with the equation 𝑎𝑙 ⟨ #»𝑤 𝑙,

#»𝑤 𝑙⟩ = 0 which shows that 𝑎𝑙 = 0 for all 𝑙 (since
#»𝑤 𝑙 ̸=

#»
0 ), hence

#»𝑣 =

𝑚∑︁
𝑗=1

𝑏𝑗
#»𝑛 𝑗 .

This proves that 𝒞 is a spanning set of 𝑊⊥, as desired.

(c) This follows from part (b).

(d) If we apply part (c) to the subspace 𝑊⊥ (instead of 𝑊 ), we obtain

dim(𝑉 ) = dim(𝑊⊥) + dim((𝑊⊥)⊥).

On the other hand, by part (c) applied to 𝑊 , we have

dim(𝑉 ) = dim(𝑊 ) + dim(𝑊⊥).

Equating both expressions, we obtain dim(𝑊 ) = dim((𝑊⊥)⊥). However, 𝑊 is a sub-
space of (𝑊⊥)⊥, since all the vectors in 𝑊 are orthogonal to all the vectors in 𝑊⊥.
This forces 𝑊 = (𝑊⊥)⊥ by Theorem 1.3.18.

REMARK

Part (a) of the previous proposition remains true if 𝑉 were infinite-dimensional, but the
remaining parts fail. While it is always true that 𝑊 ⊆ (𝑊⊥)⊥, there are examples where
𝑊 ̸= (𝑊⊥)⊥ in an infinite-dimensional inner product space.

We’re going to show that every vector #»𝑣 ∈ 𝑉 can be decomposed as the sum of a vector in
𝑊 and a vector in 𝑊⊥. The idea here is that we can write #»𝑣 as the sum of proj𝑊 ( #»𝑣 ) and
perp𝑊 ( #»𝑣 ), but we don’t want to use this terminology just yet (since we’re going to use this
result to define proj𝑊 and perp𝑊 ).

Theorem 4.6.8 (Orthogonal Decomposition)

Let 𝑊 be a subspace of a finite-dimensional inner product space 𝑉 . Then every #»𝑣 ∈ 𝑉 can
be written as #»𝑣 = #»𝑝 + #»𝑟 where #»𝑝 ∈ 𝑊 and #»𝑟 ∈ 𝑊⊥ are uniquely determined by #»𝑣 .

Moreover, if ℬ = { #»𝑤1, . . . ,
#»𝑤𝑘} is an orthogonal basis for 𝑊 , then #»𝑝 is given by

#»𝑝 =
𝑘∑︁

𝑖=1

proj #»𝑤𝑖
( #»𝑣 ).
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Proof: Let { #»𝑤1, . . . ,
#»𝑤𝑘,

#»𝑛 1, . . . ,
#»𝑛 𝑙} be a basis for 𝑉 as in Proposition 4.6.1. Then we can

write #»𝑣 as

#»𝑣 =
𝑘∑︁

𝑖=1

𝑎𝑖
#»𝑤𝑖 +

𝑙∑︁
𝑗=1

𝑏𝑗
#»𝑛 𝑗 .

We can take #»𝑝 =
∑︀𝑘

𝑖=1 𝑎𝑖
#»𝑤𝑖 and

#»𝑟 =
∑︀𝑙

𝑗=1 𝑏𝑗
#»𝑛 𝑗 .

To prove uniqueness, suppose that we have #»𝑣 = #»𝑝 1 +
#»𝑟 1 with #»𝑝 1 ∈ 𝑊 and #»𝑟 1 ∈ 𝑊⊥.

Then
#»
0 = #»𝑣 − #»𝑣 = ( #»𝑝 + #»𝑟 )− ( #»𝑝 1 +

#»𝑟 1) = ( #»𝑝 − #»𝑝 1) + ( #»𝑟 − #»𝑟 1)

hence #»𝑝 − #»𝑝 1 = −( #»𝑟 − #»𝑟 1). Now,
#»𝑝 − #»𝑝 1 ∈ 𝑊 and −( #»𝑟 − #»𝑟 1) ∈ 𝑊⊥ since 𝑊 and 𝑊⊥ are

subspaces. So these identical vectors are in 𝑊 ∩𝑊⊥ hence they are both
#»
0 by Proposition

4.6.4(b). Thus, #»𝑝 = #»𝑝 1 and #»𝑟 = #»𝑟 1.

If we apply Proposition 4.3.13 to #»𝑝 , we find that 𝑎𝑖 =
⟨ #»𝑣 , #»𝑤𝑖⟩
‖ #»𝑤𝑖‖2

, and so

#»𝑝 =

𝑘∑︁
𝑖=1

𝑎𝑖
#»𝑤𝑖 =

𝑘∑︁
𝑖=1

⟨ #»𝑣 , #»𝑤𝑖⟩
‖ #»𝑤𝑖‖2

#»𝑤𝑖 =

𝑘∑︁
𝑖=1

proj #»𝑤𝑖
( #»𝑣 ),

completing the proof.

With this result, we are now finally able to properly define the projection onto a subspace
𝑊 of an inner product space 𝑉 .

Definition 4.6.9

Projection onto a
Subspace, proj𝑊 ,
Perpendicular
Vector with
Respect to a

Subspace, perp𝑊

Let 𝑉 be an inner product space and let 𝑊 ⊆ 𝑉 be a subspace. Let { #»𝑤1, . . . ,
#»𝑤𝑘} be an

orthogonal basis for𝑊 . Let #»𝑣 ∈ 𝑉 . The projection of #»𝑣 onto 𝑊 and the perpendicular
vector of #»𝑣 with respect to 𝑊 are defined to be

proj𝑊 ( #»𝑣 ) = proj #»𝑤1
( #»𝑣 ) + · · ·+ proj #»𝑤𝑘

( #»𝑣 ) and perp𝑊 ( #»𝑣 ) = #»𝑣 − proj𝑊 ( #»𝑣 ),

respectively.

The Orthogonal Decomposition Theorem shows that proj𝑊 ( #»𝑣 ) and hence perp𝑊 ( #»𝑣 ) are
well-defined—that is, they do not depend on the choice of orthogonal basis for 𝑊 ; they are,
respectively, the unique vectors #»𝑝 and #»𝑟 associated to #»𝑣 by the theorem.

The next result provides us with the alternative characterization of proj𝑊 ( #»𝑣 ) as being the
unique vector in 𝑊 that is closest to #»𝑣 .

Proposition 4.6.10 Let 𝑉 be a finite-dimensional inner product space, 𝑊 a subspace of 𝑉 and #»𝑣 ∈ 𝑉 . Let
#»𝑝 = proj𝑊 ( #»𝑣 ).

(a) For all #»𝑤 ∈ 𝑊 , ‖ #»𝑣 − #»𝑝 ‖ ≤ ‖ #»𝑣 − #»𝑤‖. That is, among all vectors in 𝑊 , the vector
#»𝑝 = proj𝑊 ( #»𝑣 ) is the closest to #»𝑣 .

(b) If ‖ #»𝑣 − #»𝑝 ‖ = ‖ #»𝑣 − #»𝑤‖ for some #»𝑤 ∈ 𝑊 , then #»𝑤 = #»𝑝 . That is, among all vectors in
𝑊 , the vector that is closest to #»𝑣 is unique.
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Proof: (a) Notice that #»𝑣 − #»𝑤 = ( #»𝑣 − #»𝑝 ) + ( #»𝑝 − #»𝑤). Now, #»𝑟 = #»𝑣 − #»𝑝 is in 𝑊⊥ and
#»𝑝 − #»𝑤 is in 𝑊 since 𝑊 is a subspace. So #»𝑣 − #»𝑝 ⊥ #»𝑝 − #»𝑤, and thus the Pythagorean
theorem yields

‖ #»𝑣 − #»𝑤‖2 = ‖ #»𝑣 − #»𝑝 ‖2 + ‖ #»𝑝 − #»𝑤‖2 ≥ ‖ #»𝑣 − #»𝑝 ‖2 .

𝑊

#»𝑣

‖ #»𝑣 − #»𝑝 ‖

#»𝑝
#»𝑤 ‖ #»𝑤 − #»𝑝 ‖

‖ #»𝑣 − #»𝑤‖

(b) The only way we have equality in (a) is if ‖ #»𝑝 − #»𝑤‖2 = 0, or equivalently, if #»𝑤 = #»𝑝 , as
required.

It is important to keep in mind that our definition of proj𝑊 ( #»𝑣 ) requires an orthogonal basis
for 𝑊 .

Exercise 55 Let { #»𝑧 1, . . . ,
#»𝑧 𝑘} be a basis for 𝑊 that is not orthogonal. Show that there exists a vector

#»𝑣 ∈ 𝑉 such that proj #»𝑧 1
( #»𝑣 ) + · · ·+ proj #»𝑧 𝑘

( #»𝑣 ) ̸= proj𝑊 ( #»𝑣 ).

Example 4.6.11 Consider the vector space 𝒫3(R) with the inner product ⟨𝑝, 𝑞⟩ =
∫︀ 1
−1 𝑝(𝑥)𝑞(𝑥) 𝑑𝑥. We know

from an earlier example that 1 ⊥ 𝑥, so {1, 𝑥} is an orthogonal basis for 𝑊 = Span({1, 𝑥}).
Let’s find the projection of 𝑥2 onto 𝑊 .

We have

proj𝑊 (𝑥2) =

⟨︀
𝑥2, 1

⟩︀
‖1‖2

1 +

⟨︀
𝑥2, 𝑥

⟩︀
‖𝑥‖2

𝑥.

It can be checked that
⟨︀
𝑥2, 1

⟩︀
= 2

3 ,
⟨︀
𝑥2, 𝑥

⟩︀
= 0, and ‖1‖2 = 2. Therefore

proj𝑊 (𝑥2) =
1

2

2

3
1 =

1

3

and

perp𝑊 (𝑥2) = 𝑥2 − 1

3
.

This tells us that the closest vector in 𝑊 to 𝑥2 is the vector 1
3 . Go figure!

We close this section with a neat example of projection.
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Example 4.6.12 (Fourier expansion)

Consider the vector space 𝑉 = 𝒞([−𝜋, 𝜋]) of continuous functions 𝑓 : [−𝜋, 𝜋] → R equipped
with the inner product ⟨𝑓, 𝑔⟩ =

∫︀ 𝜋
−𝜋 𝑓(𝑥)𝑔(𝑥) 𝑑𝑥. You can check that 𝑆 = {1, sin𝑥, cos𝑥} is

an orthogonal subset of 𝑉 .

Let 𝑊 = Span(𝑆). Let’s find the projection of the function 𝑓(𝑥) = 𝑥 onto 𝑊 . We have

proj𝑊 (𝑓) = proj1(𝑥) + projsin𝑥(𝑥) + projcos𝑥(𝑥).

We leave it to you to show that

proj1(𝑥) = 0, projsin𝑥(𝑥) = 2 and projcos𝑥(𝑥) = 0.

Hence proj𝑊 (𝑥) = 2 sin𝑥. This is the beginning of the so-called Fourier expansion of
𝑓(𝑥) = 𝑥 on the interval [−𝜋, 𝜋], which is a way of approximating 𝑓 with sinusoidal functions.

We can project onto the subspace 𝑊𝑛 spanned by the orthogonal set

{1, cos(𝑥), sin(𝑥), cos(2𝑥), sin(2𝑥), . . . , cos(𝑛𝑥), sin(𝑛𝑥)}

to obtain more terms of the Fourier expansion of 𝑓 . This is an entry point to a very rich
area of mathematics that has broad applications to physics, computer science, engineering,
finance, and so on. Matters become much more interesting once we allow ourselves to
dabble in infinite-dimensional vector spaces, which will grant us access to infinite Fourier
expansions.

Exercise 56 Let 𝑉 be the inner product space from the previous example.

(a) Show that, for all 𝑛 ≥ 1, the set

𝑆𝑛 = {1, cos(𝑥), sin(𝑥), cos(2𝑥), sin(2𝑥), . . . , cos(𝑛𝑥), sin(𝑛𝑥)}

is an orthogonal set in 𝑉 .

(b) Let 𝑊𝑛 = Span(𝑆𝑛), where 𝑆𝑛 is as in part (a). Find proj𝑊𝑛
(𝑓), where 𝑓 ∈ 𝑉 is the

function 𝑓(𝑥) = |𝑥|.

(c) On the same set of axes, plot the graphs of 𝑓(𝑥) = |𝑥| and proj𝑊𝑛
(𝑓) for 𝑛 = 1, 3, 9.

What do you notice?

4.7 Application: Method of Least Squares

In this section we will work over F = R.

Suppose we have a system of equations expressed in matrix form as 𝐴 #»𝑥 =
#»

𝑏 . We know
that this system has a solution if and only if

#»

𝑏 ∈ Col(𝐴). If
#»

𝑏 ̸∈ Col(𝐴), then there is a
way to obtain an approximate solution to this system. We first define #»𝑝 = projCol(𝐴)(

#»

𝑏 )

to be the vector in Col(𝐴) closest to
#»

𝑏 . Then we know that the system 𝐴 #»𝑥 = #»𝑝 has a
solution.
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Definition 4.7.1

Least Squares
Solution

Let 𝐴 ∈ 𝑀𝑚×𝑛(R) and
#»

𝑏 ∈ R𝑚. The vector #»𝑠 ∈ R𝑛 is called a least squares solution to
𝐴 #»𝑥 =

#»

𝑏 if it is a solution to the system 𝐴 #»𝑥 = #»𝑝 , where #»𝑝 = projCol(𝐴)(
#»

𝑏 ).

We think of least squares solutions as being approximate solutions to the system 𝐴 #»𝑥 =
#»

𝑏 .
The reason for the name stems from the fact that a least squares solution #»𝑥 = #»𝑠 minimizes
the quantity ‖𝐴 #»𝑥 − #»

𝑏 ‖2, which is a sum of squares. Indeed, since 𝐴 #»𝑥 represents an
arbitrary element of Col(𝐴), the distance between 𝐴 #»𝑥 and

#»

𝑏 is minimized precisely when
𝐴 #»𝑥 = projCol(𝐴)(

#»

𝑏 ), by Proposition 4.6.10(b) and (c).

Example 4.7.2 Let 𝐴 =

[︂
1 2
1 2

]︂
and observe that Col(𝐴) = Span

{︂[︂
1
1

]︂}︂
. Let

#»

𝑏 =

[︂
1
0

]︂
. Then

#»

𝑏 ̸∈ Col(𝐴)

so the equation 𝐴 #»𝑥 =
#»

𝑏 does not have a solution.

Let’s find #»𝑝 = projCol(𝐴)(
#»

𝑏 ). This is simply equal to

#»𝑝 = proj⎡⎣1
1

⎤⎦
(︂[︂

1
0

]︂)︂
=

[︂
1
0

]︂
·
[︂
1
1

]︂
[︂
1
1

]︂
·
[︂
1
1

]︂ [︂
1
1

]︂
=

1

2

[︂
1
1

]︂
.

Now the equation 𝐴 #»𝑥 = #»𝑝 has a solution—in fact, it has infinitely many. The solution set
is given by

𝑆 =

{︂[︂
1
2
0

]︂
+ 𝑡

[︂
−2
1

]︂
: 𝑡 ∈ R

}︂
as you can check. Any #»𝑠 ∈ 𝑆 is a least squares solution to the system 𝐴 #»𝑥 =

#»

𝑏 .

Let’s give an alternative, and more practical, characterization of least squares solutions.

Proposition 4.7.3 Let 𝐴 ∈ 𝑀𝑚×𝑛(R) and
#»

𝑏 ∈ R𝑚. The vector #»𝑠 ∈ R𝑛 is a least squares solution to 𝐴 #»𝑥 =
#»

𝑏
if and only if it is a solution to 𝐴𝑇𝐴 #»𝑥 = 𝐴𝑇 #»

𝑏 .

Proof: Suppose that #»𝑠 is a least squares solution to 𝐴 #»𝑥 =
#»

𝑏 . Then 𝐴 #»𝑠 = #»𝑝 where
#»𝑝 = projCol(𝐴)(

#»

𝑏 ). Now,
#»

𝑏 − #»𝑝 = perpCol(𝐴)(
#»

𝑏 ) is in (Col(𝐴))⊥ hence is orthogonal to

the columns of 𝐴. So, letting #»𝑎 𝑖 denote the 𝑖th column of 𝐴, we have

#»𝑎 𝑖 · (
#»

𝑏 − #»𝑝 ) = 0 ⇐⇒ #»𝑎 𝑇
𝑖 (

#»

𝑏 − #»𝑝 ) = 0

for all 𝑖. That is, 𝐴𝑇 (
#»

𝑏 − #»𝑝 ) =
#»
0 , or equivalently 𝐴𝑇 (

#»

𝑏 −𝐴 #»𝑠 ) =
#»
0 . Hence 𝐴𝑇 #»

𝑏 = 𝐴𝑇𝐴 #»𝑠 ,
as required.

Conversely, if 𝐴𝑇𝐴 #»𝑠 = 𝐴𝑇 #»

𝑏 , then 𝐴𝑇 (𝐴 #»𝑠 − #»

𝑏 ) =
#»
0 and by the same reasoning as above,

we see that 𝐴 #»𝑠 − #»

𝑏 is orthogonal to the columns of 𝐴 and hence must be in Col(𝐴)⊥ by
Proposition 4.6.7(a). Since 𝐴 #»𝑠 is in Col(𝐴), it follows that 𝐴 #»𝑠 must be the projection of
#»

𝑏 onto Col(𝐴) (see exercise below). That is, 𝐴 #»𝑠 = #»𝑝 , and so #»𝑠 is a least squares solution.
This completes the proof.
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We used the following observation to complete the proof of the preceding proposition.

Exercise 57 Let 𝑉 be an inner product space and 𝑊 a subspace. Let #»𝑣 ∈ 𝑉 and #»𝑤 ∈ 𝑊 . Prove that
#»𝑤 = proj𝑊 ( #»𝑣 ) if and only if #»𝑣 − #»𝑤 ∈ 𝑊⊥.

Example 4.7.4 Let 𝐴 =

[︂
1 2
1 2

]︂
and

#»

𝑏 =

[︂
1
0

]︂
, as in the previous example. Then

𝐴𝑇𝐴 =

[︂
2 4
4 8

]︂
and 𝐴𝑇 #»

𝑏 =

[︂
1
2

]︂
.

The system [︂
2 4
4 8

]︂
#»𝑥 =

[︂
1
2

]︂
has solution set

𝑆 =

{︂[︂
1
2
0

]︂
+ 𝑡

[︂
−2
1

]︂
: 𝑡 ∈ R

}︂
which coincides with what we found in Example 4.7.2 above, confirming Proposition 4.7.3.

4.7.1 Least Squares Curve Fitting

Suppose we’re doing a super-serious study, and we’ve gathered a collection of data which is
looking for some kind of relationship between “self-perceived karaoke ability” and “alcohol
consumed.” The data we’ve collected looks like this when plotted:

Alcohol consumed

Self-perceived karaoke ability

Our goal is to model this data by some quadratic equation 𝑦 = 𝑎+ 𝑏𝑥+ 𝑐𝑥2 where 𝑦 is the
perceived karaoke ability and 𝑥 is the alcohol consumed. After all, we would expect this
to occur in reality: a person while sober thinks they’re quite good, after a couple of drinks
is aware they will be slurring a little, but after drinking more will begin to think they are
god’s gift to vocal performance!

So, we would like to find a quadratic that looks something like the blue curve:
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Alcohol consumed

Self-perceived karaoke ability

Furthermore, we would like such a quadratic to make the lengths of the vertical green lines
as small as possible, since the vertical green lines represent the error between our model
and the experimental data.

So let’s say we had the data points (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) which we want to approximate by
𝑦 = 𝑎+ 𝑏𝑥+ 𝑐𝑥2. We want this curve to best fit the points. But what do we mean by “best
fit”? We want to choose the curve that minimizes the sum of the squares of the lengths of
the vertical green lines:

(𝑦1 − (𝑎+ 𝑏𝑥1 + 𝑐𝑥21))
2 + · · ·+ (𝑦𝑛 − (𝑎+ 𝑏𝑥𝑛 + 𝑐𝑥2𝑛))

2.

(Hence the name: least squares!) This looks an awful lot like a norm in R𝑛 with respect to
the dot product. In fact, if we let

#»𝑦 =

⎡⎢⎣ 𝑦1
...
𝑦𝑛

⎤⎥⎦ ,
#»
1 =

⎡⎢⎣1
...
1

⎤⎥⎦ , #»𝑥 =

⎡⎢⎣𝑥1
...
𝑥𝑛

⎤⎥⎦ , #»𝑥 2 =

⎡⎢⎣𝑥21
...
𝑥2𝑛

⎤⎥⎦
be vectors in R𝑛, then minimizing the sum of the squares of the errors (the vertical green
bars) is the same as minimizing ⃦⃦⃦

#»𝑦 − (𝑎
#»
1 + 𝑏 #»𝑥 + 𝑐 #»𝑥 2)

⃦⃦⃦2
with respect to the dot product. In other words, to find 𝑎, 𝑏, and 𝑐, we need to find the
vector on the subspace 𝑊 = Span({ #»

1 , #»𝑥 , #»𝑥 2}) closest to the vector #»𝑦 . We know how to
do this! Putting all of these observations together, we find 𝑎, 𝑏, and 𝑐 by setting

𝑎
#»
1 + 𝑏 #»𝑥 + 𝑐 #»𝑥 2 = proj𝑊 ( #»𝑦 ).

If we let

𝑋 =
[︀ #»
1 #»𝑥 #»𝑥 2

]︀
and #»𝑠 =

⎡⎣𝑎
𝑏
𝑐

⎤⎦ ,

then the above equation becomes

𝑋 #»𝑠 = proj𝑊 ( #»𝑦 ).

That is, we are looking for a least squares solution #»𝑠 to the equation 𝑋 #»𝑥 = #»𝑦 ! By
Proposition 4.7.3, we know that this is equivalent to finding a solution to

𝑋𝑇𝑋 #»𝑠 = 𝑋𝑇 #»𝑦 .
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Now, if the 3× 3 matrix 𝑋𝑇𝑋 were invertible, then we’d be able to get our solution #»𝑠 as

#»𝑠 = (𝑋𝑇𝑋)−1𝑋𝑇 #»𝑦 .

Let’s see this in action.

Example 4.7.5 Suppose we have the following data:

𝑥 −1 0 1 2

𝑦 4 1 1 −1

Let’s first try to approximate this data set by a linear equation 𝑦 = 𝑎+ 𝑏𝑥. So we let

#»𝑠 =

[︂
𝑎
𝑏

]︂
, 𝑋 =

⎡⎢⎢⎣
1 −1
1 0
1 1
1 2

⎤⎥⎥⎦ , and #»𝑦 =

⎡⎢⎢⎣
4
1
1
−1

⎤⎥⎥⎦ .

Then

𝑋𝑇𝑋 =

[︂
1 1 1 1
−1 0 1 2

]︂⎡⎢⎢⎣
1 −1
1 0
1 1
1 2

⎤⎥⎥⎦ =

[︂
4 2
2 6

]︂
,

which is an invertible matrix! Thus,

#»𝑠 = (𝑋𝑇𝑋)−1𝑋𝑇 #»𝑦 =

(︂[︂
4 2
2 6

]︂)︂−1 [︂
5
−5

]︂
=

1

20

[︂
6 −2
−2 4

]︂ [︂
5
−5

]︂
=

[︂
2
−3

2

]︂
.

Therefore 𝑦 = 2− 3
2𝑥 is the line of best fit to the given data. Let’s see what this line looks

like.

𝑥

𝑦

While this is good, maybe it’s not as good as we’d like! Let’s see if we can do better
approximating the data by a quadratic equation 𝑦 = 𝑎+ 𝑏𝑥+ 𝑐𝑥2. This time we have

#»𝑠 =

⎡⎣𝑎
𝑏
𝑐

⎤⎦ , 𝑋 =

⎡⎢⎢⎣
1 −1 1
1 0 0
1 1 1
1 2 4

⎤⎥⎥⎦ , and #»𝑦 =

⎡⎢⎢⎣
4
1
1
−1

⎤⎥⎥⎦ .

Again, 𝑋𝑇𝑋 turns out to be invertible (we’ll let you check this), and so we get

#»𝑠 = (𝑋𝑇𝑋)−1𝑋𝑇 #»𝑦 =

⎡⎣ 7
4
−7

4
1
4

⎤⎦ .

Therefore the quadratic curve of best fit is 𝑦 = 7
4 − 7

4𝑥+ 1
4𝑥

2. Here’s a plot:
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𝑥

𝑦

That’s a little better!

In general, suppose we have some data points

𝑥 𝑥1 · · · 𝑥𝑛
𝑦 𝑦1 · · · 𝑦𝑛

and we want to find the equation 𝑦 = 𝑎0 + 𝑎1𝑥+ · · ·+ 𝑎𝑘𝑥
𝑘 of best fit to this data. Let

#»
1 =

⎡⎢⎣1
...
1

⎤⎥⎦ , #»𝑥 =

⎡⎢⎣𝑥1
...
𝑥𝑛

⎤⎥⎦ , #»𝑥 2 =

⎡⎢⎣𝑥21
...
𝑥2𝑛

⎤⎥⎦ , . . . , #»𝑥 𝑘 =

⎡⎢⎣𝑥𝑘1
...
𝑥𝑘𝑛

⎤⎥⎦ , #»𝑦 =

⎡⎢⎣ 𝑦1
...
𝑦𝑛

⎤⎥⎦ , and #»𝑠 =

⎡⎢⎣𝑎0
...
𝑎𝑘

⎤⎥⎦ .

Let 𝑋 =
[︀ #»
1 #»𝑥 · · · #»𝑥 𝑘

]︀
. If 𝑋𝑇𝑋 is invertible, then #»𝑠 = (𝑋𝑇𝑋)−1𝑋𝑇 #»𝑦 gives the coeffi-

cients of the equation of best fit.

A natural question, then, is: When is the matrix 𝑋𝑇𝑋 invertible?

Proposition 4.7.6 Let 𝑋 ∈ 𝑀𝑚×𝑛(R). Then 𝑋𝑇𝑋 ∈ 𝑀𝑛×𝑛(R) is invertible if and only if the columns of 𝑋
are linearly independent.

Proof: The matrix 𝑋𝑇𝑋 will be invertible if and only if the columns of 𝑋𝑇𝑋 are linearly
independent, which will be the case if and only if Null(𝑋𝑇𝑋) = { #»

0 }. We will show that
Null(𝑋𝑇𝑋) = Null(𝑋). This will show that 𝑋𝑇𝑋 is invertible if and only if the columns
of 𝑋 are linearly independent, as desired.

If #»𝑥 ∈ Null(𝑋), then 𝑋𝑇𝑋 #»𝑥 = 𝑋𝑇 #»
0 =

#»
0 , so #»𝑥 ∈ Null(𝑋𝑇𝑋) and Null(𝑋) ⊆ Null(𝑋𝑇𝑋).

Conversely, if #»𝑥 ∈ Null(𝑋𝑇𝑋) then #»𝑥𝑇𝑋𝑇𝑋 #»𝑥 = #»𝑥𝑇 #»
0 = 0 hence (𝑋 #»𝑥 )𝑇 (𝑋 #»𝑥 ) = 0, or

equivalently, (𝑋 #»𝑥 )·(𝑋 #»𝑥 ) = 0. Thus 𝑋 #»𝑥 =
#»
0 , so #»𝑥 ∈ Null(𝑋) and Null(𝑋𝑇𝑋) ⊆ Null(𝑋),

which completes the proof.

The next exercise addresses the issue in the case of the best quadratic fit.

Exercise 58 Let 𝑋 =

⎡⎢⎢⎢⎣
1 𝑥1 𝑥21
1 𝑥2 𝑥22
...

...
...

1 𝑥𝑛 𝑥2𝑛

⎤⎥⎥⎥⎦ ∈ 𝑀𝑛×3(R).



Section 4.7 Application: Method of Least Squares 121

(a) Assume that 𝑛 ≥ 3. Show that 𝑋𝑇𝑋 is invertible if and only if at least three of the 𝑥𝑖
are distinct.

(b) Show that 𝑋𝑇𝑋 is never invertible if 𝑛 < 3.

The assertions in this exercise should seem plausible. For instance, part (b) says that there
is no unique best fitting quadratic curve (parabola) through two or fewer points.



Chapter 5

Unitary Diagonalization

5.1 The Adjoint

When working with a linear operator 𝐿 : 𝑉 → 𝑉 on a finite-dimensional vector space, we
have seen in Chapter 3 how convenient it can be to have a basis 𝒟 for 𝑉 consisting of
eigenvectors of 𝐿. If 𝑉 also happens to be an inner product space, then we’ve learned in
Chapter 4 how useful it can be to have an orthonormal basis ℬ for 𝑉 . For a typical operator,
its eigenvectors will not be orthogonal, and so we will have to choose to either work with
eigenvectors or with orthogonal vectors.

So a natural question, then, is: Given a linear operator 𝐿 : 𝑉 → 𝑉 on a finite-dimensional
inner product space over F, can we find a basis for 𝑉 consisting of orthogonal eigenvectors
of 𝐿? If F = R, this will be possible if and only if 𝐿 is self-adjoint. If F = C, this will be
possible if and only if 𝐿 is normal. We’ll explain what this means in due course.

The first important definition we need to make is that of the adjoint of a matrix. To
motivate it, let’s take a slightly different look at the standard inner product in C𝑛. Recall
that ⟨⎡⎢⎣ 𝑣1

...
𝑣𝑛

⎤⎥⎦ ,

⎡⎢⎣𝑤1
...
𝑤𝑛

⎤⎥⎦⟩ = 𝑣1𝑤1 + 𝑣2𝑤2 + · · ·+ 𝑣𝑛𝑤𝑛.

With a bit of squinting and turning our head, we can recast this as a matrix multiplication.
Here it is: [︀

𝑤1 · · · 𝑤𝑛

]︀ ⎡⎢⎣ 𝑣1
...
𝑣𝑛

⎤⎥⎦ =
[︀
𝑣1𝑤1 + 𝑣2𝑤2 + · · ·+ 𝑣𝑛𝑤𝑛

]︀
.

The important trick here, which will come up again and again, is to take a matrix, conjugate
every entry, and take its transpose. This is called taking the adjoint of a matrix.

Definition 5.1.1

Adjoint, 𝐴*, 𝐴†

If 𝐴 ∈ 𝑀𝑚×𝑛(F), the adjoint of 𝐴 is the matrix 𝐴𝑇 ∈ 𝑀𝑛×𝑚(F). It is denoted by 𝐴* (read
𝐴 star). (In some texts the notation 𝐴†, read 𝐴 dagger, is also used.)

122
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The bar denotes complex conjugation. So 𝐴* = 𝐴𝑇 is the matrix whose entries are the
complex conjugates of the entries of 𝐴𝑇 . For example,[︂

2 4
−𝑖 2 + 𝑖

]︂*
=

[︂
2 𝑖
4 2− 𝑖

]︂
and

[︂
2 1− 𝑖

1 + 𝑖 3

]︂*
=

[︂
2 1− 𝑖

1 + 𝑖 3

]︂
.

If F = R then 𝐴* = 𝐴𝑇 is just the transpose of 𝐴.

Let’s return to the standard inner product on C𝑛. With

#»𝑣 =

⎡⎢⎣ 𝑣1
...
𝑣𝑛

⎤⎥⎦ and #»𝑤 =

⎡⎢⎣𝑤1
...
𝑤𝑛

⎤⎥⎦
we have

#»𝑤* #»𝑣 = [⟨ #»𝑣 , #»𝑤⟩].
Notice that the matrix multiplication doesn’t quite spit out the inner product, but instead
spits out a 1× 1 matrix with the inner product as its entry.

This all works wonderfully for the standard inner product on C𝑛, but we know there are
other inner product spaces! It would be nice if we could do something similar for all of
those as well—and, of course, we can!

Recall that for an arbitrary linear map 𝐿 : 𝑉 → 𝑊 between finite-dimensional vector spaces,
after choosing ordered bases for 𝑉 and 𝑊 , we can find a matrix that performs the mapping
for us by matrix multiplication. Similarly, for an arbitrary finite-dimensional inner product
space 𝑉 , after choosing an orthonormal basis (which we know exists by the Gram–Schmidt
procedure; see Corollary 4.5.2), we can simply take the adjoint of one of the coordinate
vectors, and matrix multiplication then computes the inner product for us!

Proposition 5.1.2 Let 𝑉 be a finite-dimensional inner product space, and let ℬ an orthonormal basis for 𝑉 .
Then for all #»𝑥 , #»𝑦 ∈ 𝑉 ,

[⟨ #»𝑥 , #»𝑦 ⟩] = [ #»𝑦 ]*ℬ[
#»𝑥 ]ℬ.

Proof: Let ℬ = { #»𝑣 1, . . . ,
#»𝑣 𝑛} and let #»𝑥 = 𝑥1

#»𝑣 1+ · · ·+𝑥𝑛
#»𝑣 𝑛 and #»𝑦 = 𝑦1

#»𝑣 1+ · · ·+ 𝑦𝑛
#»𝑣 𝑛.

Then ⟨ #»𝑥 , #»𝑦 ⟩ = 𝑥1𝑦1 + · · ·+ 𝑥𝑛𝑦𝑛. Also,

[ #»𝑥 ]ℬ =

⎡⎢⎣𝑥1
...
𝑥𝑛

⎤⎥⎦ and [ #»𝑦 ]ℬ =

⎡⎢⎣ 𝑦1
...
𝑦𝑛

⎤⎥⎦ .

It is now easily checked that [ #»𝑦 ]*ℬ[
#»𝑥 ]ℬ = [⟨ #»𝑥 , #»𝑦 ⟩].

One way of interpreting this Proposition is that once you choose an orthonormal basis for
an inner product space, it looks like F𝑛 with the standard inner product! This is reminiscent
of the fact that once you choose a basis for a vector space, it looks like F𝑛.

It is important that an orthonormal basis is chosen in Proposition 5.1.2, and in fact the
result is false if you do not choose an orthonormal basis.
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Exercise 59 Show that Proposition 5.1.2 is false if the basis ℬ is not orthonormal.

Taking the adjoint of a matrix may seem like a strange thing to do, which just happens to
be useful when computing inner products. It turns out that taking the adjoint of a matrix
gives us much more than a tool to compute inner products. In this chapter, the adjoint
plays a fundamental role in the main theorems. With this promise for future payoff in your
back pocket, let’s investigate some basic properties of the adjoint.

Proposition 5.1.3 (Properties of the Adjoint)

Let 𝐴,𝐵 ∈ 𝑀𝑛×𝑚(F) and 𝐶 ∈ 𝑀𝑚×𝑘(F). Then:

(a) (𝐴+𝐵)* = 𝐴* +𝐵*.

(b) (𝐴*)* = 𝐴.

(c) (𝛼𝐴)* = 𝛼𝐴* for all 𝛼 ∈ F.

(d) (𝐴𝐶)* = 𝐶*𝐴*.

Exercise 60 Prove Proposition 5.1.3.

We will close out the first section of this chapter by investigating the relationship between
adjoints and linear maps. We have emphasised over and over again that after choosing
bases, a matrix is a linear map, and a linear map is a matrix. “What linear map does the
adjoint of a matrix give us?” I hear you ask. This is absolutely the right question.

Let’s restrict our attention to the case where 𝐿 : 𝑉 → 𝑉 is an operator on an inner product
space 𝑉 , since this is the main interest of this chapter. The more general case of a linear
map 𝐿 : 𝑉 → 𝑊 between inner product spaces is dealt with in an exercise at the end of this
section.

To make our lives easier, let’s choose an orthonormal basis ℬ of 𝑉 . Let 𝑀 : 𝑉 → 𝑉 be
the operator obtained by simply taking the matrix [𝐿]ℬ, and taking its adjoint. That is,
[𝑀 ]ℬ = [𝐿]*ℬ. Let’s see what we can say about the operator 𝑀 .

Since ℬ is an orthonormal basis for 𝑉 , by Proposition 5.1.2 we know the inner product
is given to us by matrix multiplication (after taking an adjoint of course). So, using the
properties of the adjoint (Proposition 5.1.3) we have that for all #»𝑣 , #»𝑤 ∈ 𝑉 ,

[⟨ #»𝑣 ,𝑀( #»𝑤)⟩] = [𝑀( #»𝑤)]*ℬ[
#»𝑣 ]ℬ

= ([𝑀 ]ℬ[
#»𝑤]ℬ)

* [ #»𝑣 ]ℬ

= [ #»𝑤]*ℬ[𝑀 ]*ℬ[
#»𝑣 ]ℬ

= [ #»𝑤]*ℬ[𝐿]ℬ[
#»𝑣 ]ℬ

= [ #»𝑤]*ℬ[𝐿(
#»𝑣 )]ℬ

= [⟨𝐿( #»𝑣 ), #»𝑤⟩].

Thus 𝑀 and 𝐿 are related by the fact that for all #»𝑣 , #»𝑤 ∈ 𝑉 , ⟨𝐿( #»𝑣 ), #»𝑤⟩ = ⟨ #»𝑣 ,𝑀( #»𝑤)⟩.
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In the special case when we are in F𝑛 with the standard inner product, this discussion leads
to the following important property of adjoints.

Proposition 5.1.4 (The Fundamental Property of the Adjoint of a Matrix)

Let 𝐴 ∈ 𝑀𝑛×𝑛(F). Equip F𝑛 with the standard inner product. Then for all #»𝑣 , #»𝑤 ∈ F𝑛,

⟨𝐴 #»𝑣 , #»𝑤⟩ = ⟨ #»𝑣 ,𝐴* #»𝑤⟩ .

Proof: We have,

⟨𝐴 #»𝑣 , #»𝑤⟩ = #»𝑤*𝐴 #»𝑣 = ( #»𝑤*(𝐴*)*) #»𝑣 = (𝐴* #»𝑤)* #»𝑣 = ⟨ #»𝑣 ,𝐴* #»𝑤⟩

completing the proof.

Adjoints allow us to jump across an inner product, a fact that will be incredibly useful to
us as we progress through this chapter.

Exercise 61 Let 𝑉 and 𝑊 be inner product spaces, and 𝐿 : 𝑉 → 𝑊 a linear map. Prove that there
exists a unique linear map 𝑀 : 𝑊 → 𝑉 with the property that for all #»𝑣 ∈ 𝑉 and all #»𝑤 ∈ 𝑊 ,
⟨𝐿( #»𝑣 ), #»𝑤⟩ = ⟨ #»𝑣 ,𝑀( #»𝑤)⟩.

5.2 Orthogonal and Unitary Matrices

Our goal is to address the question of when an operator 𝐿 : 𝑉 → 𝑉 has the property that
there exists an orthonormal basis of 𝑉 that are eigenvectors of 𝐿. We can approach this
question by first choosing an arbitrary orthonormal basis of 𝑉 . As revealed in Section 5.1,
this puts us firmly in the setting of F𝑛 with the standard inner product. It is here that we
shall remain for the remainder of this chapter.

Now recall that a matrix 𝐴 ∈ 𝑀𝑛×𝑛(F) admits a basis of eigenvectors for F𝑛 precisely when
𝐴 is diagonalizable (Theorem 3.2.8), that is, if and only if there is an invertible matrix 𝑃
such that 𝑃−1𝐴𝑃 is diagonal. When this is the case, the columns of 𝑃 will form a basis of
F𝑛 consisting of eigenvectors of 𝐴. Thus being able to find a basis of eigenvectors for F𝑛

is effectively equivalent to being able to construct this matrix 𝑃 . In our setting, we wish
to impose the additional assumption that the columns of 𝑃 form an orthonormal basis of
eigenvectors with respect to the standard inner product on F𝑛. What can we then say about
𝑃?

Proposition 5.2.1 Let 𝑃 ∈ 𝑀𝑛×𝑛(F). Equip F𝑛 with the standard inner product. Then the following properties
are equivalent:

(a) The columns of 𝑃 form an orthonormal basis for F𝑛.

(b) 𝑃 * = 𝑃−1.

(c) The rows of 𝑃 form an orthonormal basis for F𝑛.
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Proof: We will prove the equivalence of (a) and (b). Let 𝑃 =
[︀

#»𝑣 1 · · · #»𝑣 𝑛

]︀
. Then

𝑃 *𝑃 =

⎡⎢⎣
#»𝑣 *
1
...

#»𝑣 *
𝑛

⎤⎥⎦
⎡⎣ #»𝑣 1 · · · #»𝑣 𝑛

⎤⎦ =

⎡⎢⎣ ⟨ #»𝑣 1,
#»𝑣 1⟩ · · · ⟨ #»𝑣 𝑛,

#»𝑣 1⟩
...

. . .
...

⟨ #»𝑣 1,
#»𝑣 𝑛⟩ · · · ⟨ #»𝑣 𝑛,

#»𝑣 𝑛⟩

⎤⎥⎦ .

From this we see that 𝑃 *𝑃 = 𝐼𝑛 if and only if

⟨ #»𝑣 𝑖,
#»𝑣 𝑗⟩ =

{︃
1 if 𝑖 = 𝑗

0 otherwise

equivalently, if and only if { #»𝑣 1, . . . ,
#»𝑣 𝑛} is an orthonormal set, which is precisely what we

wanted to prove.

The proof of the equivalence of (c) with (a) and (b) is left as an exercise.

Exercise 62 Show that properties (b) and (c) of Proposition 5.2.1 are equivalent. (Hint: The rows of 𝑃
are the columns of 𝑃 𝑇 .) Observe that since (a) and (b) are equivalent, this also proves the
equivalence of (c) and (a).

Let’s give a name to matrices that satisfy any of the equivalent properties in Proposition
5.2.1. It’s customary to separate the case where F = R.

Definition 5.2.2

Unitary Matrix,
Orthogonal Matrix

A matrix 𝑈 ∈ 𝑀𝑛×𝑛(F) is called a unitary matrix if 𝑈* = 𝑈−1.

A matrix 𝑄 ∈ 𝑀𝑛×𝑛(R) is called an orthogonal matrix if 𝑄𝑇 = 𝑄−1.

Note that an orthogonal matrix is by definition a real matrix. Of course, an orthogonal
matrix is by definition also a unitary matrix. However, we generally (but not always) reserve
the adjective “unitary” for when we are working with complex matrices. You might argue
that an orthogonal matrix should be called an orthonormal matrix, since its columns are
in fact orthonormal and not just orthogonal. You would have a point. Alas, the definition
“orthogonal” is deeply entrenched in the literature.

Example 5.2.3 The 𝑛× 𝑛 identity matrix is unitary. (In fact, orthogonal.)

Example 5.2.4 Let 𝑈 =

[︃
1√
2

1√
2

− 1√
2
𝑖 1√

2
𝑖

]︃
. Then 𝑈 is unitary since

𝑈𝑈* =
1

2

[︂
1 1
−𝑖 𝑖

]︂ [︂
1 𝑖
1 −𝑖

]︂
=

1

2

[︂
2 0
0 2

]︂
=

[︂
1 0
0 1

]︂
,

which proves that 𝑈* = 𝑈−1.
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Example 5.2.5 Let 𝐴 =

[︂
1 −1
1 1

]︂
. Notice that the columns of 𝐴 are orthogonal. However, 𝐴 is not an

orthogonal matrix since its columns are not orthonormal!

Example 5.2.6 For 𝜃 ∈ R, let 𝑅𝜃 =

[︂
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]︂
(the rotation-by-𝜃-counterclockwise matrix in R2).

Then 𝑅𝜃 is orthogonal. We leave it to you to check that

𝑅𝜃𝑅
𝑇
𝜃 = 𝐼.

Unitary matrices turn out to be interesting for a variety of reasons. When viewed as linear
maps with respect to the standard basis in F𝑛, they do not affect the standard inner product.
That is, unitary matrices preserve length and angle!

Proposition 5.2.7 Let 𝑈 ∈ 𝑀𝑛×𝑛(F) be a unitary matrix and consider F𝑛 with the standard inner product.
Then:

(a) ⟨𝑈 #»𝑣 , 𝑈 #»𝑤⟩ = ⟨ #»𝑣 , #»𝑤⟩ for all #»𝑣 , #»𝑤 ∈ F𝑛.

(b) ‖𝑈 #»𝑣 ‖ = ‖ #»𝑣 ‖ for all #»𝑣 ∈ F𝑛.

Proof: (a) Since the standard inner product on F𝑛 is given by ⟨ #»𝑣 , #»𝑤⟩ = [ #»𝑤* #»𝑣 ], we have

[⟨𝑈 #»𝑣 , 𝑈 #»𝑤⟩] = (𝑈 #»𝑤)*𝑈 #»𝑣 = #»𝑤*𝑈*𝑈 #»𝑣 = #»𝑤* #»𝑣 = [⟨ #»𝑣 , #»𝑤⟩]

completing the proof.

(b) Using part (a), we have

‖𝑈 #»𝑣 ‖ =
√︀

⟨𝑈 #»𝑣 , 𝑈 #»𝑣 ⟩ =
√︀
⟨ #»𝑣 , #»𝑣 ⟩ = ‖ #»𝑣 ‖.

Exercise 63 Let 𝑄 ∈ 𝑀𝑛×𝑛(R) be an orthogonal matrix and let #»𝑣 , #»𝑢 ∈ R𝑛 be non-zero vectors. Prove
that the angle between #»𝑣 and #»𝑢 is equal to the angle between 𝑄 #»𝑣 and 𝑄 #»𝑢 .

5.3 Schur’s Triangularization Theorem

We have just seen that a unitary matrix can be viewed as a special kind of change of basis
matrix, one that preserves length and angles. While it is not true that every matrix is
diagonalizable, we will now see that every matrix is upper-triangularizable (at least over
C), that is, for every matrix we can find a basis for C𝑛 with respect to which the matrix is
upper-triangular. Even better, we can choose this basis to be orthonormal (with respect to
the standard inner product)—meaning, the change of basis matrix will be unitary. We can
sometimes do this over R, too.
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Theorem 5.3.1 (Schur’s Triangularization Theorem)

Let 𝐴 ∈ 𝑀𝑛×𝑛(C). There is a unitary matrix 𝑈 ∈ 𝑀𝑛×𝑛(C) and an upper-triangular matrix
𝑇 ∈ 𝑀𝑛×𝑛(C) such that 𝑈*𝐴𝑈 = 𝑇 :

𝑈*𝐴𝑈 = 𝑇 =

⎡⎢⎣𝜆1 * *
0

. . . *
0 0 𝜆𝑛

⎤⎥⎦ .

The diagonal entries 𝜆𝑖 of 𝑇 are the complex eigenvalues of 𝐴 (repeated according to mul-
tiplicity).

Furthermore, if 𝐴 has real coefficients, and if all the eigenvalues 𝜆𝑖 of 𝐴 are in R, then 𝑈
may be chosen to be real and orthogonal and 𝑇 will be in 𝑀𝑛×𝑛(R).

NOTE: The * entries in the matrix just indicate that any element of F can appear in those
entries of the matrix.

REMARK

In stating this theorem, we’re using the fact that the characteristic polynomial of a matrix
𝐴 ∈ 𝑀𝑛×𝑛(C) will be a degree 𝑛 polynomial with complex coefficients. Hence, by the
fundamental theorem of algebra, 𝐴 will have 𝑛 eigenvalues in C (possibly repeated).

This applies in particular to the case where 𝐴 ∈ 𝑀𝑛×𝑛(R). Such a matrix will typically
have non-real roots. Schur’s theorem shows that 𝐴 can be triangularized using a unitary
matrix 𝑈 ∈ 𝑀𝑛×𝑛(C). In the special case where the 𝑛 eigenvalues of 𝐴 are all real, the
theorem asserts that we can arrange for 𝑈 and 𝑇 to be in 𝑀𝑛×𝑛(R).

Proof of Theorem 5.3.1: We will proceed by induction on 𝑛. For 𝑛 = 1, this is clearly
true since every 1× 1 matrix is upper-triangular.

Now suppose 𝐴 is an 𝑛 × 𝑛 matrix, and assume that the theorem is true for all (𝑛 − 1) ×
(𝑛 − 1) matrices. Let #»𝑣 1 be a unit eigenvector of 𝐴 with eigenvalue 𝜆. Extend { #»𝑣 1} to
a basis for C𝑛 and perform the Gram–Schmidt procedure to obtain an orthonormal basis
{ #»𝑣 1,

#»𝑤2, . . . ,
#»𝑤𝑛}.

Let 𝑉1 =
[︀

#»𝑣 1
#»𝑤2 · · · #»𝑤𝑛

]︀
. Since the columns are orthonormal, 𝑉1 is a unitary matrix. We

then have

𝑉 *
1 𝐴𝑉1 =

⎡⎢⎢⎢⎣
#»𝑣 1

*

#»𝑤2
*

...
#»𝑤𝑛

*

⎤⎥⎥⎥⎦𝐴
[︀

#»𝑣 1
#»𝑤2 · · · #»𝑤𝑛

]︀

=

⎡⎢⎢⎢⎣
#»𝑣 1

*

#»𝑤2
*

...
#»𝑤𝑛

*

⎤⎥⎥⎥⎦ [︀
𝐴 #»𝑣 1 𝐴 #»𝑤2 · · · 𝐴 #»𝑤𝑛

]︀
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=

⎡⎢⎢⎢⎣
#»𝑣 1

*

#»𝑤2
*

...
#»𝑤𝑛

*

⎤⎥⎥⎥⎦ [︀
𝜆 #»𝑣 1 𝐴 #»𝑤2 · · · 𝐴 #»𝑤𝑛

]︀

=

⎡⎢⎢⎢⎣
⟨𝜆 #»𝑣 1,

#»𝑣 1⟩ ⟨𝐴 #»𝑤2,
#»𝑣 1⟩ · · · ⟨𝐴 #»𝑤𝑛,

#»𝑣 1⟩
⟨𝜆 #»𝑣 1,

#»𝑤2⟩ ⟨𝐴 #»𝑤2,
#»𝑤2⟩ · · · ⟨𝐴 #»𝑤𝑛,

#»𝑤2⟩
...

...
. . .

...
⟨𝜆 #»𝑣 1,

#»𝑤𝑛⟩ ⟨𝐴 #»𝑤2,
#»𝑤𝑛⟩ · · · ⟨𝐴 #»𝑤𝑛,

#»𝑤𝑛⟩

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
𝜆 * * *
0
... 𝐵
0

⎤⎥⎥⎥⎦ .

Now 𝐵 is an (𝑛 − 1) × (𝑛 − 1) matrix, so by the inductive hypothesis there is a unitary
matrix 𝑉2 such that 𝑉 *

2 𝐵𝑉2 = 𝑇2 where 𝑇2 is upper-triangular. Let

𝑈 = 𝑉1

[︂
1 0

0 𝑉2

]︂
.

Then 𝑈*𝑈 = 𝐼𝑛 (see the Remark below) so 𝑈 is unitary, and we have

𝑈*𝐴𝑈 =

[︂
1 0

0 𝑉2

]︂*
𝑉 *
1 𝐴𝑉1

[︂
1 0

0 𝑉2

]︂
=

[︂
1 0

0 𝑉 *
2

]︂ [︂
𝜆 *
0 𝐵

]︂ [︂
1 0

0 𝑉2

]︂
=

[︂
𝜆 *
0 𝑉 *

2 𝐵𝑉2

]︂
=

[︂
𝜆 *
0 𝑇2

]︂
= 𝑇.

Since this last matrix 𝑇 is upper-triangular, the first part of the theorem has been proved
by the principle of mathematical induction.

Now observe that since 𝑈 is unitary, 𝑈* = 𝑈−1 so we see that 𝐴 is similar to 𝑇 . Conse-
quently, the eigenvalues of 𝐴 and 𝑇 are the same. However, since 𝑇 is upper-triangular, its
eigenvalues are its diagonal entries. This proves the second part of the theorem.

Finally, if 𝐴 has real coefficients and all of its eigenvalues are real, then in the inductive
step above, #»𝑣 1 will be in R𝑛, 𝜆 will be in R, and all the consequent steps can be carried
out in R𝑛 with real arithmetic. We’ll leave the careful verification to you.

REMARK

In the proof of Schur’s Triangularization Theorem, a trick was used, commonly referred to
as block multiplication of matrices. Here’s how it works in general. Suppose you have two
square (𝑛+𝑚)× (𝑛+𝑚) matrices, and you imagine drawing imaginary lines, splitting up
the two matrices into sub-matrices as follows:[︂

𝐴1 𝐵1

𝐶1 𝐷1

]︂
and

[︂
𝐴2 𝐵2

𝐶2 𝐷2

]︂
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where 𝐴1 and 𝐴2 are 𝑛× 𝑛 matrices, 𝐵1 and 𝐵2 are 𝑛×𝑚 matrices, 𝐶1 and 𝐶2 are 𝑚× 𝑛
matrices and 𝐷1 and 𝐷2 are 𝑚×𝑚 matrices. Then the product of the two matrices is given
by [︂

𝐴1 𝐵1

𝐶1 𝐷1

]︂ [︂
𝐴2 𝐵2

𝐶2 𝐷2

]︂
=

[︂
𝐴1𝐴2 +𝐵1𝐶2 𝐴1𝐵2 +𝐵1𝐷2

𝐶1𝐴2 +𝐷1𝐶2 𝐶1𝐵2 +𝐷1𝐷2

]︂
.

One way to think about this is that you are doing regular matrix multiplication, but instead
of the entries of the matrix being numbers, the entries are smaller matrices! Let’s look at
the top left 𝑛× 𝑛 block of the resulting matrix, just to see whether or not this is plausible.
Since 𝐴1 and 𝐴2 are both 𝑛× 𝑛 matrices, the product 𝐴1𝐴2 exists and is an 𝑛× 𝑛 matrix.
The block 𝐵1 is an 𝑛×𝑚 matrix and 𝐶2 is an 𝑚× 𝑛 matrix. Therefore 𝐵1𝐶2 exists and is
an 𝑛 × 𝑛 matrix. Alas, the sum 𝐴1𝐴2 + 𝐵1𝐶2 is a sum of two 𝑛 × 𝑛 matrices, so the sum
makes sense and the result is an 𝑛× 𝑛 matrix. You can do a similar analysis for the other
three blocks to see that the sizes of the matrices allow for the products and sums written
there to be defined.

Verify this yourself for two 5× 5 matrices, where 𝑛 = 2 and 𝑚 = 3.

The take home message is that every matrix is similar (over C!) to an upper-triangular one.
(But not to a unique upper-triangular matrix. See the next example.)

Example 5.3.2 Let 𝑇1 =

⎡⎣1 1 0
0 2 2
0 0 2

⎤⎦ and 𝑇2 =

⎡⎣2 −1
√
2

0 1 −
√
2

0 0 2

⎤⎦. Then you can check that 𝑈*𝑇1𝑈 = 𝑇2 with

the unitary matrix

𝑈 =

⎡⎢⎣
1√
2

1√
2

0
1√
2
− 1√

2
0

0 0 1

⎤⎥⎦ .

So unlike with diagonalization, where the resulting diagonal matrix is unique up to a re-
ordering of diagonal entries, the situation with triangularization is a bit more complicated.

Example 5.3.3 To illustrate the power of Schur’s theorem, let’s give a quick proof of the fact that, for any
matrix 𝐴 ∈ 𝑀𝑛×𝑛(C), its determinant is the product of its eigenvalues and its trace is the
sum of its eigenvalues. (This was given without proof in Corollary 3.1.18.)

By Schur’s theorem we know there is a unitary matrix 𝑈 and an upper-triangular matrix

𝑇 =

⎡⎢⎣𝜆1 * *
0

. . . *
0 0 𝜆𝑛

⎤⎥⎦
such that 𝑈*𝐴𝑈 = 𝑇 . The characteristic polynomial of 𝑇 is

𝐶𝑇 (𝜆) = (𝜆1 − 𝜆) · · · (𝜆𝑛 − 𝜆)

so the 𝜆𝑖 are the eigenvalues of 𝑇 . Furthermore we have

tr(𝑇 ) = 𝜆1 + · · ·+ 𝜆𝑛 and det(𝑇 ) = 𝜆1 · · ·𝜆𝑛.

Since 𝐴 and 𝑇 are similar, they have the same eigenvalues, determinant and trace, com-
pleting the proof.



Section 5.3 Schur’s Triangularization Theorem 131

At this point we would be remiss not to mention one of the more intriguing consequences of
Schur’s theorem: the Cayley–Hamilton theorem, which says that if you plug a matrix into
its own characteristic polynomial you get the zero matrix. That is, 𝐴 is a “root” of its own
characteristic polynomial!

For example, if 𝐴 =

[︂
1 2
3 4

]︂
, then its characteristic polynomial is 𝐶𝐴(𝜆) = 𝜆2 − 5𝜆 − 2. If

we plug 𝜆 = 𝐴 into the expression 𝜆2 − 5𝜆− 2𝐼, we get:

𝐴2 − 5𝐴− 2𝐼 =

[︂
7 10
15 22

]︂
−
[︂
5 10
15 20

]︂
−
[︂
2 0
0 2

]︂
=

[︂
0 0
0 0

]︂
.

This is a general phenomenon. Let’s agree that if 𝑝(𝑥) = 𝑎0+𝑎1𝑥+· · ·+𝑎𝑛𝑥
𝑛 is a polynomial

and if 𝐴 is a square matrix, then 𝑝(𝐴) = 𝑎0𝐼 + 𝑎1𝐴+ · · ·+ 𝑎𝑛𝐴
𝑛.

Theorem 5.3.4 (Cayley–Hamilton Theorem)

Let 𝐴 ∈ 𝑀𝑛×𝑛(C). Then 𝐶𝐴(𝐴) = 0𝑛×𝑛.

Proof: By Schur’s theorem, we can find a unitary matrix 𝑈 and an upper triangular matrix

𝑇 =

⎡⎢⎣𝜆1 * *
0

. . . *
0 0 𝜆𝑛

⎤⎥⎦
in 𝑀𝑛×𝑛(C) such that 𝐴 = 𝑈𝑇𝑈*. The diagonal entries of 𝑇 are the eigenvalues of 𝐴, and
therefore

𝐶𝐴(𝜆) = (𝜆1 − 𝜆) · · · (𝜆𝑛 − 𝜆).

As a result,

𝐶𝐴(𝐴) = (𝜆1𝐼 −𝐴) · · · (𝜆𝑛𝐼 −𝐴)

= (𝜆1𝐼 − 𝑈𝑇𝑈*) · · · (𝜆𝑛𝐼 − 𝑈𝑇𝑈*)

= (𝜆1𝑈𝑈* − 𝑈𝑇𝑈*) · · · (𝜆𝑛𝑈𝑈* − 𝑈𝑇𝑈*)

= 𝑈(𝜆1𝐼 − 𝑇 )𝑈* · · ·𝑈(𝜆𝑛𝐼 − 𝑇 )𝑈*

= 𝑈𝐶𝐴(𝑇 )𝑈
*.

So the proof will be complete if we can show that 𝐶𝐴(𝑇 ) = (𝜆1𝐼 − 𝑇 ) · · · (𝜆𝑛𝐼 − 𝑇 ) is the
zero matrix. We will do so by proving that, for every 𝑘 with 1 ≤ 𝑘 ≤ 𝑛, the first 𝑘 columns
of the matrix (𝜆1𝐼 − 𝑇 )(𝜆2𝐼 − 𝑇 ) · · · (𝜆𝑘𝐼 − 𝑇 ) only contain zeros.

We proceed by induction. When 𝑘 = 1, the first column of the matrix 𝜆1𝐼 − 𝑇 contains

only zeros, since the first column of 𝑇 is
[︀
𝜆1 0 · · · 0

]︀𝑇
. Next, assume that the first 𝑘

columns of (𝜆1𝐼 − 𝑇 )(𝜆2𝐼 − 𝑇 ) · · · (𝜆𝑘𝐼 − 𝑇 ) contain only zeros. Convince yourself that,
since each of the first 𝑘 + 1 columns of 𝜆𝑘+1𝐼 − 𝑇 has 𝑛 − 𝑘 zeros at the bottom, the
product (𝜆1𝐼 −𝑇 )(𝜆2𝐼 −𝑇 ) · · · (𝜆𝑘𝐼 −𝑇 )(𝜆𝑘+1𝐼 −𝑇 ) will have zeros everywhere in the first
𝑘 + 1 columns. Thus, 𝐶𝐴(𝑇 ) = (𝜆1𝐼 − 𝑇 )(𝜆2𝐼 − 𝑇 ) · · · (𝜆𝑛𝐼 − 𝑇 ) is the 𝑛× 𝑛 zero matrix,
completing the proof.
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Exercise 64 What is wrong with the following “proof” of the Cayley–Hamilton theorem?

“Since 𝐶𝐴(𝜆) = det(𝐴− 𝜆𝐼), if we let 𝜆 = 𝐴 we get 𝐶𝐴(𝐴) = det(𝐴−𝐴𝐼) = det(0) = 0.”

We close this section by giving two fun applications of the Cayley–Hamilton theorem. The
first one shows that we can express the inverse of an invertible matrix 𝐴 as a linear combi-
nation of powers 𝐴; the second one illustrates a new approach to computing powers 𝐴𝑘 of
an arbitrary 𝑛×𝑛 matrix 𝐴. Recall that we had seen one approach to computing powers of
diagonalizable matrices in Section 3.3. Now we have something that works for any matrix,
diagonalizable or not.

Example 5.3.5 (𝐴−1 via Cayley–Hamilton)

Let 𝐴 ∈ 𝑀𝑛×𝑛(F). If the characteristic polynomial of 𝐴 is expressed as

𝐶𝐴(𝜆) = 𝑐0 + 𝑐1𝜆+ · · ·+ 𝑐𝑛𝜆
𝑛

then the Cayley–Hamilton theorem tells us that

𝑐0𝐼 + 𝑐1𝐴+ · · ·+ 𝑐𝑛𝐴
𝑛 = 0.

If 𝐴 is invertible, then 𝑐0 ̸= 0 (since 𝑐0 equals the determinant of 𝐴). Then we can multiply
both sides of the above equation by 1

𝑐0
𝐴−1 to get

𝐴−1 +
𝑐1
𝑐0
𝐼 +

𝑐2
𝑐0
𝐴+ · · ·+ 𝑐𝑛

𝑐0
𝐴𝑛−1 = 0.

Thus,

𝐴−1 = −𝑐1
𝑐0
𝐼 − 𝑐2

𝑐0
𝐴− · · · − 𝑐𝑛

𝑐0
𝐴𝑛−1.

For instance, if 𝐴 =

⎡⎣1 2 1
0 1 −1
2 1 1

⎤⎦ then the characteristic polynomial of 𝐴 is

𝐶𝐴(𝜆) = −𝜆3 + 3𝜆2 − 2𝜆− 4.

So
−𝐴3 + 3𝐴2 − 2𝐴− 4𝐼 = 0.

Therefore, after multiplying by through by 𝐴−1 and re-arranging, we get

𝐴−1 = −1

4
(𝐴2 − 3𝐴+ 2𝐼)

= −1

4

⎛⎝⎡⎣ 3 5 0
−2 0 −2
4 6 2

⎤⎦−

⎡⎣3 6 3
0 3 −3
6 3 3

⎤⎦+

⎡⎣2 0 0
0 2 0
0 0 2

⎤⎦⎞⎠
=

1

4

⎡⎣−2 1 3
2 1 −1
2 −3 −1

⎤⎦ .
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Example 5.3.6 (𝐴𝑘 via Cayley–Hamilton)

Let’s illustrate how the Cayley–Hamilton theorem can be used to compute powers of the

3 × 3 matrix 𝐴 =

⎡⎣1 1 1
0 1 2
0 0 2

⎤⎦ (which, incidentally, is not diagonalizable). The characteristic

polynomial of 𝐴 is 𝐶𝐴(𝜆) = −𝜆3 + 4𝜆2 − 5𝜆+ 2. So

−𝐴3 + 4𝐴2 − 5𝐴+ 2𝐼 = 0.

Thus,
𝐴3 = 4𝐴2 − 5𝐴+ 2𝐼.

Multiplying through by 𝐴 and then re-using this expression for 𝐴3, we get

𝐴4 = 4𝐴3 − 5𝐴2 + 2𝐴 = 4(4𝐴2 − 5𝐴+ 2𝐼)− 5𝐴2 + 2𝐴 = 11𝐴2 − 18𝐴+ 8𝐼.

Proceeding this way, we are able to express 𝐴𝑘 as a linear combination of 𝐼, 𝐴 and 𝐴2.

At first sight this seems too tedious, but if you really think about it, you’ll realize that we’re
effectively carrying out the Euclidean algorithm for polynomial division! More specifically,
if we divide the polynomial 𝜆𝑘 by 𝐶𝐴(𝜆), then we get

𝜆𝑘 = 𝑞𝑘(𝜆)𝐶𝐴(𝜆) + 𝑟𝑘(𝜆)

for some polynomials 𝑞𝑘 and 𝑟𝑘 (quotient and remainder). Plugging 𝐴 into this, and using
the Cayley–Hamilton theorem, we find that

𝐴𝑘 = 𝑟𝑘(𝐴).

So all we have to do is find 𝑟𝑘. Fortunately, there are some fairly efficient software im-
plementations of the Euclidean algorithm. Using one of these, we can find that 𝑟10 (the
remainder of 𝜆10 divided by 𝐶𝐴(𝜆)) is

𝑟10(𝜆) = 1013𝜆2 − 2016𝜆+ 1004.

Thus,

𝐴10 = 1013𝐴2 − 2016𝐴+ 1004𝐼 =

⎡⎣1 10 3049
0 1 2046
0 0 1024

⎤⎦ .

5.4 Orthogonal and Unitary Diagonalization of Matrices

Let’s return to our problem of trying to find a basis of orthogonal eigenvectors for a given
𝑛×𝑛 matrix. We begin by introducing some handy terminology. First, recall that a matrix
𝐴 ∈ 𝑀𝑛×𝑛(F) is diagonalizable over F if there is an invertible matrix 𝑃 ∈ 𝑀𝑛×𝑛(F) such
that 𝑃−1𝐴𝑃 is diagonal. This prompts the following.
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Definition 5.4.1

Orthogonally
Diagonalizable,

Unitarily
Diagonalizable

Amatrix 𝐴 ∈ 𝑀𝑛×𝑛(R) is said to be orthogonally diagonalizable if there is an orthogonal
matrix 𝑄 ∈ 𝑀𝑛×𝑛(R) such that 𝑄𝑇𝐴𝑄 is diagonal.

A matrix 𝐴 ∈ 𝑀𝑛×𝑛(C) is said to be unitarily diagonalizable if there is a unitary matrix
𝑈 ∈ 𝑀𝑛×𝑛(C) such that 𝑈*𝐴𝑈 is diagonal.

In Section 5.2, we proved:

Proposition 5.4.2 (Criterion for Orthogonal and Unitary Diagonalizability)

(a) A matrix 𝐴 ∈ 𝑀𝑛×𝑛(R) is orthogonally diagonalizable if and only if there is a basis for
R𝑛 consisting of orthonormal eigenvectors of 𝐴 (orthonormal with respect to the standard
inner product on R𝑛, i.e., the dot product).

(b) A matrix 𝐴 ∈ 𝑀𝑛×𝑛(C) is unitarily diagonalizable if and only if there is a basis for
C𝑛 consisting of orthonormal eigenvectors for 𝐴 (orthonormal with respect to the standard
inner product on C𝑛).

Now the burning question is: when is a matrix in 𝑀𝑛×𝑛(R) orthogonally diagonalizable
and when is a matrix in 𝑀𝑛×𝑛(C) unitarily diagonalizable? The answers are surprisingly
simple: precisely when the matrix is symmetric or normal, respectively.

The formal definitions are given below, but here is the key observation. If 𝐴 = 𝑈𝐷𝑈* is
unitarily diagonalizable then 𝐴* = (𝑈𝐷𝑈*)* = 𝑈𝐷*𝑈*. If 𝐷 is diagonal, then so is 𝐷*; if
𝐷 is real too, then 𝐷* = 𝐷, and so 𝐴 = 𝐴*. Thus, if a real matrix can be orthogonally
diagonalized, it must be the case that 𝐴 = 𝐴𝑇 . On the other hand, if 𝐷 has non-real entries,
then we cannot say that 𝐴 = 𝐴*. However, notice that

𝐴𝐴* = (𝑈𝐷𝑈*)(𝑈𝐷*𝑈*) = 𝑈𝐷𝐷*𝑈* = 𝑈𝐷*𝐷𝑈* = 𝐴*𝐴.

Thus if a complex matrix can be unitarily diagonalized, it must be the case that 𝐴𝐴* =
𝐴*𝐴. This leads us to single out the following classes of matrices.

Definition 5.4.3

Normal,
Self-adjoint,
Symmetric

A matrix 𝐴 ∈ 𝑀𝑛×𝑛(F) is said to be normal if 𝐴𝐴* = 𝐴*𝐴.

A matrix 𝐴 ∈ 𝑀𝑛×𝑛(F) is said to be self-adjoint if 𝐴 = 𝐴*. Note that if 𝐴 ∈ 𝑀𝑛×𝑛(R)
and self-adjoint, then in fact we have 𝐴 = 𝐴𝑇 and we say that 𝐴 is symmetric.

So, normal matrices are the matrices that commute with their adjoints. So, in particular,
a self-adjoint matrix is normal. According to the definition, a real symmetric matrix is
self-adjoint, but we more often use the term “symmetric” in the real case.

In some textbooks, if 𝐴 ∈ 𝑀𝑛×𝑛(C) is a complex self-adjoint matrix, then we say that 𝐴 is
self-adjoint.

Example 5.4.4 The matrices 𝐴 =

[︂
1 2− 𝑖

2 + 𝑖 3

]︂
and 𝐵 =

[︂
2 4
4 1

]︂
are self-adjoint and 𝐵 is symmetric.

The matrix 𝐶 =

[︂
0 −1
1 0

]︂
is normal but not self-adjoint. Indeed, 𝐶* = −𝐶 and therefore

𝐶𝐶* = 𝐶*𝐶 = −𝐶2.
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Exercise 65 Prove that if 𝐴 ∈ 𝑀𝑛×𝑛(F) is self-adjoint, unitary or diagonal then 𝐴 is normal.

With Schur’s triangularization theorem (Theorem 5.3.1) in hand, we can easily prove the
following result.

Theorem 5.4.5 (Spectral Theorem for Self-adjoint Matrices)

A square matrix in 𝑀𝑛×𝑛(C) is self-adjoint if and only if it is unitarily diagonalizable and
its eigenvalues are all real.

Proof: Suppose 𝐴 ∈ 𝑀𝑛×𝑛(C) is unitarily diagonalizable, say 𝐴 = 𝑈𝐷𝑈* with 𝑈 unitary
and 𝐷 diagonal. If the eigenvalues of 𝐴 are real, then 𝐷 ∈ 𝑀𝑛(R). So 𝐷* = 𝐷𝑇 = 𝐷 since
𝐷 is diagonal and real, and therefore

𝐴* = (𝑈𝐷𝑈*)* = 𝑈𝐷𝑈* = 𝐴.

This proves that 𝐴 is self-adjoint.

Conversely, suppose that 𝐴 is self-adjoint. By Schur’s theorem, we know that there is a
unitary matrix 𝑈 such that 𝑈*𝐴𝑈 = 𝑇 where 𝑇 is upper-triangular. Notice that

𝑇 * = (𝑈*𝐴𝑈)* = 𝑈*𝐴*𝑈 = 𝑈*𝐴𝑈 = 𝑇

so 𝑇 is self-adjoint. Since 𝑇 is also upper-triangular, it must be the case that 𝑇 is diagonal.
So 𝐴 is unitarily diagonalizable. Furthermore, the entries on the diagonal of any self-adjoint
matrix are real (why?), so all of the eigenvalues of 𝐴 are real, since they are the diagonal
entries of 𝑇 .

Exercise 66 Prove the following fact that was used in the preceding proof. If 𝐴 ∈ 𝑀𝑛×𝑛(C) is self-adjoint,
then the diagonal entries of 𝐴 are real.

Example 5.4.6 Let 𝐴 =

[︂
1 1− 𝑖

1 + 𝑖 0

]︂
and notice that 𝐴* = 𝐴, so 𝐴 is self-adjoint. Now, the Spectral

Theorem for self-adjoint matrices guarantees us that 𝐴 is unitarily diagonalizable, so let us
find a unitary matrix 𝑈 that unitarily diagonalizes 𝐴.

We find that the characteristic polynomial of 𝐴 is 𝐶𝐴(𝜆) = (𝜆 + 1)(𝜆 − 2), so 𝐴 has the
distinct eigenvalues 𝜆1 = −1 and 𝜆2 = 2. (As an aside, observe that these eigenvalues are
real, as predicted by the spectral theorem for self-adjoint matrices.)

Since a 2 × 2 matrix 𝐴 has 2 distinct eigenvalues, it follows from Proposition 3.2.12 that,
at the very least, it is diagonalizable. Let’s find eigenvectors. For 𝜆1, we row reduce

𝐴− 𝜆1𝐼 =

[︂
2 1− 𝑖

1 + 𝑖 1

]︂
→

[︂
1 1

2(1− 𝑖)
0 0

]︂
.

(for this computation, use (1 + 𝑖)−1 = 1
2(1 − 𝑖)). Therefore a basis for the eigenspace

corresponding to 𝜆1 is

{︂[︂
−1

2 + 1
2 𝑖

1

]︂}︂
, or more simply

{︂[︂
−1 + 𝑖

2

]︂}︂
.
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Next, for 𝜆2, we row reduce

𝐴− 𝜆2𝑖 =

[︂
−1 1− 𝑖
1 + 𝑖 −2

]︂
→

[︂
1 −1 + 𝑖
0 0

]︂
.

So a basis for the corresponding eigenspace is

{︂[︂
1− 𝑖
1

]︂}︂
.

Putting these two bases together, we get the basis

{︂[︂
−1 + 𝑖

2

]︂
,

[︂
1− 𝑖
1

]︂}︂
for C2. Notice

that this basis is orthogonal, since⟨[︂
−1 + 𝑖

2

]︂
,

[︂
1− 𝑖
1

]︂⟩
= (−1 + 𝑖)(1− 𝑖) + 2(1) = −2 + 2 = 0.

This is not a coincidence: in Proposition 5.4.10 we will show that any two eigenvectors of
a normal matrix that correspond to distinct eigenvalues must be orthogonal. To get an
orthonormal basis, we simply normalize, obtaining{︂

1√
6

[︂
−1 + 𝑖

2

]︂
,
1√
3

[︂
1− 𝑖
1

]︂}︂
.

We now set

𝑈 =

[︃
1√
6
(−1 + 𝑖) 1√

3
(1− 𝑖)

2√
6

1√
3

]︃
to obtain our unitary matrix. Convince yourself that the identity 𝑈*𝐴𝑈 = diag(−1, 2)
holds.

If we specialize the Spectral Theorem for self-adjoint matrices to real self-adjoint matrices
(otherwise known as real symmetric matrices), we arrive at the following result.

Theorem 5.4.7 (Spectral Theorem for Symmetric Matrices)

A square matrix in 𝑀𝑛×𝑛(R) is symmetric if and only if it is orthogonally diagonalizable.

Proof: A matrix 𝐴 in 𝑀𝑛×𝑛(R) can be regarded as a matrix in 𝑀𝑛×𝑛(C). In this light, we
know from the preceding theorem that if 𝐴 ∈ 𝑀𝑛×𝑛(R) is symmetric (hence self-adjoint)
then there is a unitary matrix 𝑈 ∈ 𝑀𝑛×𝑛(C) and a real diagonal matrix 𝐷 ∈ 𝑀𝑛×𝑛(R) such
that 𝐴 = 𝑈𝐷𝑈*. Note in particular that this means that all of the eigenvalues of 𝐴 are real,
since they are the diagonal entries of 𝐷. The matrix 𝑈 was provided by Schur’s theorem,
which when 𝐴 is real and has all real eigenvalues, we know we can choose to be orthogonal.
That is, we can find a real orthogonal matrix 𝑈 such that 𝐴 = 𝑈𝐷𝑈* = 𝑈𝐷𝑈𝑇 . This
proves that 𝐴 is orthogonally diagonalizable.

We leave the proof of the converse as an easy exercise.

Exercise 67 Complete the proof of Theorem 5.4.7 by showing that if 𝐴 ∈ 𝑀𝑛×𝑛(R) is orthogonally
diagonalizable then 𝐴 is symmetric.
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Here is the definitive result that says when a matrix can be unitarily diagonalized.

Theorem 5.4.8 (Spectral Theorem for Normal Matrices)

A square matrix in 𝑀𝑛×𝑛(C) is normal if and only if it is unitarily diagonalizable.

Proof: Suppose that 𝐴 ∈ 𝑀𝑛×𝑛(C) is normal. By Schur’s triangularization theorem, we
can find a unitary matrix 𝑈 and an upper-triangular matrix 𝑇 such that 𝑈*𝐴𝑈 = 𝑇 . Then

𝑇𝑇 * = (𝑈*𝐴𝑈)(𝑈*𝐴*𝑈) = 𝑈*𝐴𝐴*𝑈 = 𝑈*𝐴*𝐴𝑈 = 𝑇 *𝑇.

Let 𝑡𝑖𝑗 denote the (𝑖, 𝑗)th entry of 𝑇 . Then the (1, 1) entry of 𝑇𝑇 * is

𝑡11𝑡11 + 𝑡12𝑡12 + · · ·+ 𝑡1𝑛𝑡1𝑛 = |𝑡11|2 + |𝑡12|2 + · · ·+ |𝑡1𝑛|2.

On the other hand, the (1, 1) entry of 𝑇 *𝑇 is |𝑡11|2. It follows that 𝑡12 = · · · = 𝑡1𝑛 = 0. Next,
comparing the (2, 2) entries in a similar manner, we find that 𝑡21 = 𝑡23 = 𝑡24 = · · · = 𝑡2𝑛 = 0.
Continuing in this way, we see that 𝑇 must be diagonal.

Thus, if 𝐴 is normal, it is unitarily diagonalizable. The converse is left as an exercise.

Exercise 68 Complete the proof of Theorem 5.4.8 by showing that if 𝐴 ∈ 𝑀𝑛×𝑛(F) is unitarily diago-
nalizable then 𝐴 is normal.

Example 5.4.9 Let 𝐴 =

[︂
0 −1
1 0

]︂
. We find the eigenvalues of 𝐴 are 𝑖 and −𝑖 with bases for the eigenspaces

given by {︂[︂
𝑖
1

]︂}︂
and

{︂[︂
−𝑖
1

]︂}︂
,

respectively. Notice that with the standard inner product on C2 we have⟨[︂
𝑖
1

]︂
,

[︂
−𝑖
1

]︂⟩
= 𝑖2 + 1 = 0.

So the eigenvectors are orthogonal. Normalizing them and putting them in a matrix gives
us the unitary matrix

𝑈 =

[︃
1√
2
𝑖 − 1√

2
𝑖

1√
2

1√
2

]︃
.

Then, since both the columns of 𝑈 are eigenvectors of 𝐴, we have 𝑈*𝐴𝑈 =

[︂
𝑖 0
0 −𝑖

]︂
.

So we see here that 𝐴 is unitarily diagonalizable, but the eigenvalues are not real, and 𝐴 is
not self-adjoint. (However, notice that 𝐴 is normal!)

To summarize: we now know that if we have a normal (e.g., self-adjoint) matrix 𝐴, then it
is diagonalizable (over C) with a basis of orthonormal eigenvectors; further, if 𝐴 is real and
symmetric, then this can be done over R. Unfortunately, the results so far don’t really give
any indication as to how we can find this basis of orthogonal eigenvectors—or equivalently,
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how we can find the unitary 𝑈 or real orthogonal 𝑄 that diagonalizes 𝐴. It is tempting
to simply find a basis of eigenvectors as usual (that is, diagonalize as usual) and perform
Gram–Schmidt on that basis to obtain an orthonormal basis. There’s only one problem
with this idea: there’s a chance that while performing Gram–Schmidt, you are no longer
left with eigenvectors!

Example 5.4.9 gives us a hint as to how to get around this. Notice that the two eigenvectors
we found were already orthogonal. This was not a coincidence! For normal matrices (so
in particular for self-adjoint and real symmetric matrices), eigenvectors corresponding to
different eigenvalues are orthogonal. We prove this, along with a few other useful facts
about normal matrices, in the following proposition.

Proposition 5.4.10 (Properties of Normal Matrices)

Let 𝐴 ∈ 𝑀𝑛×𝑛(F) be a normal matrix. Equip F𝑛 with the standard inner product. Then:

(a) For all #»𝑥 ∈ F𝑛, ‖𝐴 #»𝑥‖ = ‖𝐴* #»𝑥‖.

(b) If #»𝑥 ∈ F𝑛 is an eigenvector for 𝐴 with eigenvalue 𝜆, then #»𝑥 is an eigenvector for 𝐴*

with eigenvalue 𝜆.

(c) If #»𝑥 and #»𝑦 in F𝑛 are eigenvectors of 𝐴 with distinct eigenvalues 𝜆 and 𝜇, then #»𝑥 is
orthogonal to #»𝑦 .

Proof: (a) We have

‖𝐴 #»𝑥‖2 = ⟨𝐴 #»𝑥 ,𝐴 #»𝑥 ⟩ = ⟨ #»𝑥 ,𝐴*𝐴 #»𝑥 ⟩ = ⟨ #»𝑥 ,𝐴𝐴* #»𝑥 ⟩ = ⟨𝐴* #»𝑥 ,𝐴* #»𝑥 ⟩ = ‖𝐴* #»𝑥‖2.

(b) Suppose that 𝐴 #»𝑥 = 𝜆 #»𝑥 . We want to prove that 𝐴* #»𝑥 = 𝜆 #»𝑥 . It will suffice to show
that ‖𝐴* #»𝑥 − 𝜆 #»𝑥‖ = 0. Now, by part (a), we have

‖𝐴* #»𝑥 − 𝜆 #»𝑥‖ = ‖(𝐴* − 𝜆𝐼) #»𝑥‖ = ‖(𝐴* − 𝜆𝐼)* #»𝑥‖ = ‖(𝐴− 𝜆𝐼) #»𝑥‖.

Since 𝐴 #»𝑥 = 𝜆 #»𝑥 , the last term above is 0, completing the proof.

(c) We want to show that ⟨ #»𝑥 , #»𝑦 ⟩ = 0. The trick is to consider 𝜆 ⟨ #»𝑥 , #»𝑦 ⟩:

𝜆 ⟨ #»𝑥 , #»𝑦 ⟩ = ⟨𝜆 #»𝑥 , #»𝑦 ⟩
= ⟨𝐴 #»𝑥 , #»𝑦 ⟩
= ⟨ #»𝑥 ,𝐴* #»𝑦 ⟩
= ⟨ #»𝑥 , 𝜇 #»𝑦 ⟩ (by part (b))

= 𝜇 ⟨ #»𝑥 , #»𝑦 ⟩ .

Thus (𝜆− 𝜇) ⟨ #»𝑥 , #»𝑦 ⟩ = 0. Since 𝜆 ̸= 𝜇, it follows that ⟨ #»𝑥 , #»𝑦 ⟩ = 0, as required.

Proposition 5.4.10(c) tells us that if 𝐴 is normal, then eigenvectors corresponding to dis-
tinct eigenvalues must be orthogonal. This result should remind you of Lemma 3.2.11,
which says that eigenvectors corresponding to distinct eigenvalues are linearly independent.
It’s important to note that eigenvectors of a normal matrix that correspond to the same
eigenvalue need not be orthogonal. (Consider then eigenvector #»𝑥 and its scalar multiple
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2 #»𝑥 for example.) Now that we have Proposition 5.4.10(c), we now know that we don’t have
to perform Gram–Schmidt on the entire basis of eigenvectors, just on the basis for each
eigenspace! This leads to the following algorithm to unitarily diagonalize a normal matrix
(so, in particular, a self-adjoint or real symmetric matrix).

ALGORITHM (Unitary Diagonalization of a Normal Matrix)

To unitarily diagonalize a normal matrix 𝐴 ∈ 𝑀𝑛×𝑛(F):

1. Diagonalize 𝐴 as usual (see the Algorithm “Diagonalization of an Operator” in Section

3.2), obtaining 𝐷 =

⎡⎢⎣𝜆1

. . .

𝜆𝑛

⎤⎥⎦ and a basis of eigenvectors for F𝑛.

2. Perform the Gram–Schmidt procedure on the bases of each of the eigenspaces 𝐸𝜆𝑖
of

𝐴, obtaining orthonormal bases for the eigenspaces. (This step is to be carried out
using the standard inner product on F𝑛.)

3. Take the union of the orthonormal bases from Step 2 to obtain 𝒟 = { #»𝑤1, . . . ,
#»𝑤𝑛},

which is an orthonormal basis of eigenvectors for F𝑛. Order the basis 𝒟 so that the
orthonormal basis for 𝐸𝜆1 is followed by the orthonormal basis for 𝐸𝜆2 , etc.

4. Let 𝑈 =
[︀

#»𝑤1 · · · #»𝑤𝑛

]︀
. Then 𝑈 is unitary and 𝑈*𝐴𝑈 = 𝐷, with 𝐷 as in Step 1.

If the above process is carried out on a real symmetric matrix 𝐴 ∈ 𝑀𝑛×𝑛(R), then the
resulting matrix 𝑈 will be real and orthogonal, and the diagonal matrix 𝐷 will have real
entries. Thus, we will have 𝑈𝑇𝐴𝑈 = 𝐷 with the columns of 𝑈 forming an orthonormal
basis for R𝑛.

In particular, suppose an 𝑛 × 𝑛 self-adjoint (or real symmetric) matrix 𝐴 has 𝑛 distinct
eigenvalues. Since 𝐴 has distinct eigenvalues, we know it’s diagonalizable, and moreover,
any basis of eigenvectors for F𝑛 will consist of one eigenvector for each eigenvalue. Since
𝐴 is self-adjoint, hence normal, this basis must be orthogonal, since it consists of eigen-
vectors corresponding to distinct eigenvalues. In this case, to obtain an orthonormal basis
(and therefore a unitary 𝑈 such that 𝑈*𝐴𝑈 is diagonal) we simply need to normalize the
eigenvectors in this basis. This special case was demonstrated in Example 5.4.6.

And now here is an example of the algorithm in all its glory.

Example 5.4.11 Let’s unitarily diagonalize the matrix

𝐴 =

⎡⎣ 5 −4 −2
−4 5 −2
−2 −2 8

⎤⎦ .

First note that 𝐴 is symmetric. A quick computation gives 𝐶𝐴(𝜆) = 𝜆(9− 𝜆)2. We’ll now
find bases for the eigenspaces corresponding to 𝜆 = 0 and 𝜆 = 9. Since 𝐴 is self-adjoint, we
know it’s diagonalizable so we should have the geometric multiplicities 𝑔0 = 1 and 𝑔9 = 2.
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For 𝜆 = 0, we row reduce

𝐴− 0𝐼 =

⎡⎣ 5 −4 −2
−4 5 −2
−2 −2 8

⎤⎦ →

⎡⎣1 0 −2
0 1 −2
0 0 0

⎤⎦ .

Therefore a basis for the eigenspace corresponding to 0 is

⎧⎨⎩
⎡⎣2
2
1

⎤⎦⎫⎬⎭. We wish to have

an orthonormal basis for this eigenspace, so we normalize and choose instead the basis⎧⎨⎩1
3

⎡⎣2
2
1

⎤⎦⎫⎬⎭. To find the eigenspace corresponding to 𝜆 = 9 we row reduce

𝐴− 9𝐼 =

⎡⎣−4 −4 −2
−4 −4 −2
−2 −2 −1

⎤⎦ →

⎡⎣2 2 1
0 0 0
0 0 0

⎤⎦

giving a basis { #»𝑣 1,
#»𝑣 2} =

⎧⎨⎩
⎡⎣−1

1
0

⎤⎦ ,

⎡⎣−1
0
2

⎤⎦⎫⎬⎭. Note that #»𝑣 1 and #»𝑣 2 are not orthogonal, so

we must perform Gram-Schmidt to obtain an orthogonal basis for this eigenspace.

Doing so, we let #»𝑤1 =
#»𝑣 1 and

#»𝑤2 =
#»𝑣 2 −

⟨ #»𝑣 2,
#»𝑤1⟩

‖ #»𝑤1‖2
#»𝑤1 =

⎡⎣−1
0
2

⎤⎦− 1

2

⎡⎣−1
1
0

⎤⎦ =
1

2

⎡⎣−1
−1
4

⎤⎦ .

Now { #»𝑤1,
#»𝑤2} is an orthogonal basis for the eigenspace corresponding to 𝜆 = 9. To obtain

an orthonormal basis {�⃗�1, �⃗�2} we set

�⃗�1 =
1√
2

⎡⎣−1
1
0

⎤⎦ and �⃗�2 =
1√
18

⎡⎣−1
−1
4

⎤⎦ .

Finally, 𝑈*𝐴𝑈 = 𝐷 where

𝑈 =

⎡⎢⎣
2
3 − 1√

2
− 1√

18
2
3

1√
2

− 1√
18

1
3 0 4√

18

⎤⎥⎦ and 𝐷 =

⎡⎣0 0 0
0 9 0
0 0 9

⎤⎦ .

As usual, the order of diagonal entries in 𝐷 matches the order of eigenvectors in our change-
of-basis matrix 𝑈 .

Exercise 69 A matrix 𝐴 ∈ 𝑀𝑛×𝑛(C) is said to be skew-self-adjoint if 𝐴* = −𝐴.

(a) Prove that a skew-self-adjoint matrix is unitarily diagonalizable.

(b) Let 𝐴 =

[︂
0 𝑖
𝑖 0

]︂
. Find a unitary matrix 𝑈 and a diagonal matrix𝐷 such that 𝑈*𝐴𝑈 = 𝐷.
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5.5 Unitary Diagonalization of Operators

The spectral theorems from Section 5.4 are all stated in terms of matrices, which we viewed
as operators on F𝑛 with the standard inner product. However, we know from Section
5.1 that given an arbitrary inner product space 𝑉 and an orthonormal basis ℬ, the inner
product applied to the coordinate vectors acts like the standard inner product on F𝑛. More
precisely, for all #»𝑣 , #»𝑤 ∈ 𝑉 , [⟨ #»𝑣 , #»𝑤⟩] = [ #»𝑤]*ℬ[

#»𝑣 ]ℬ.

So, suppose 𝐿 : 𝑉 → 𝑉 is an arbitrary operator on an inner product space, and we want to
know whether or not there exists an orthornormal basis for 𝑉 consisting of eigenvectors of
𝐿. The upshot is that we can simply choose an orthonormal basis ℬ of 𝑉 , and apply our
work from Section 5.4 to [𝐿]ℬ:

Theorem 5.5.1 (Spectral Theorem for Operators)

Let 𝐿 : 𝑉 → 𝑉 be a linear operator on a finite-dimensional inner product space over F. Let
ℬ be an orthonormal basis for 𝑉 and let 𝐴 = [𝐿]ℬ. Then:

(a) If F = C, there is an orthonormal basis for 𝑉 consisting of eigenvectors of 𝐿 if and only
if 𝐴 is normal.

(b) If F = R, there is an orthonormal basis for 𝑉 consisting of eigenvectors of 𝐿 if and only
if 𝐴 is symmetric.

Proof: This follows from our preceding discussion and the corresponding spectral theorems
for matrices (Theorems 5.4.8 and 5.4.7).

We emphasize once more that the previous theorem only works if ℬ is an orthonormal basis
for 𝑉 . See the following example.

Example 5.5.2 Endow 𝑉 = 𝒫1(R) with the inner product

⟨𝑝, 𝑞⟩ = 𝑝(0)𝑞(0) + 𝑝(1)𝑞(1).

(Check that this is indeed an inner product using what we learned in the previous section!)
Consider the linear operator 𝐿 : 𝑉 → 𝑉 defined by

𝐿(𝑎+ 𝑏𝑥) = (𝑎+ 𝑏) + (𝑎+ 𝑏)𝑥.

If we let 𝒮 = {1, 𝑥} be the standard basis for 𝒫1(R), then the corresponding matrix of 𝐿 is

𝐴 = [𝐿]𝒮 =

[︂
1 1
1 1

]︂
.
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Notice that 𝐴 is symmetric. We’ll leave it to you to check that the eigenvalues of 𝐴 are 0
and 2, with eigenspaces

𝐸0 = Span

{︂[︂
−1
1

]︂}︂
and 𝐸2 = Span

{︂[︂
1
1

]︂}︂
.

Converting back to polynomials, we see that −1 + 𝑥 and 1 + 𝑥 span the two corresponding
eigenspaces of 𝐿. So there is no chance of finding orthogonal eigenvectors for 𝐿, since −1+𝑥
and 1 + 𝑥 are not orthogonal! Indeed,

⟨−1 + 𝑥, 1 + 𝑥⟩ = (−1)(1) + (−1 + 1)(1 + 1) = −1.

This does not contradict the spectral theorem. Although the matrix 𝐴 is symmetric, the
problem here is that the standard basis 𝒮 is not orthonormal with respect to ⟨ , ⟩. Let’s
find an orthonormal basis and see what happens. Applying the Gram–Schmidt procedure

to 𝒮, we arrive at the orthonormal basis ℬ =
{︁

1√
2
,
√
2
(︀
𝑥− 1

2

)︀}︁
. The matrix of 𝐿 with

respect to ℬ is

[𝐿]ℬ =
1

2

[︂
3 3
1 1

]︂
which is not symmetric, so 𝐿 cannot be orthogonally diagonalized, according to the spectral
theorem, and as we discovered above.

We close this chapter with a remark that gives a different perspective on what we did in
this section.

REMARK

Our approach to the problem of finding an orthonormal basis for an operator on an arbitrary
inner product space is not the only one. We decided to tackle it using matrices to keep
everything as concrete as possible. It is possible to attack the problem head on, without
choosing any bases, and without reducing to the case of matrices.

The key result is that every operator 𝐿 : 𝑉 → 𝑉 on a finite-dimensional inner product space
gives rise to another operator 𝐿* : 𝑉 → 𝑉 , called its adjoint. These two operators are linked
by the following fundamental property:

⟨𝐿( #»𝑣 ), #»𝑢 ⟩ = ⟨ #»𝑣 , 𝐿*( #»𝑢 )⟩ for all #»𝑣 , #»𝑢 ∈ 𝑉.

(Compare this with Proposition 5.1.4 and the exercise immediately after the proposition.)

Starting from this innocent seeming identity, it is possible to develop the theory of the
adjoint operator all the way to proving the spectral theorem for operators. From this we
can then deduce the spectral theorems for matrices. This is the reverse of what we’ve done!

The connection between the two approaches is the following. If we choose an orthonormal
basis ℬ for 𝑉 , then the ℬ-matrices [𝐿]ℬ and [𝐿*]ℬ turn out to be adjoints of one another.
That is, [𝐿]*ℬ = [𝐿*]ℬ. (This is not true if ℬ is not orthonormal.) So our two notions of
“adjoint” are thus linked.

A natural question is: why do this? Why be unsatisfied with working with matrices as we
had done? Here are two reasons.
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1. Our approach to the spectral theorem for operators involved choosing an orthonormal
basis for the underlying inner product space only to later discard this basis in favour
of a diagonalizing one. This seems odd. More-so because there is no obvious choice to
be made at the outset, besides picking a random basis and applying Gram–Schmidt
to it.

2. The matrix approach is restricted to finite-dimensional inner product spaces. The
theory of orthonormal diagonalization has important consequences for operators on
infinite-dimensional inner product spaces (e.g. it is of great use in quantum mechan-
ics). As such, an approach that is not tied down to matrices is very desirable.

5.6 Application: Classifying Quadratic Forms

There are many situations where you might find yourself interested in maximizing or mini-
mizing a certain quantity. A physicist would want to determine when a mass moving down
a hill reaches a stable equilibrium, which will be the case when the potential energy due
to gravity is minimized. A statistician carrying out an experiment will want to minimize
the error between real-world observations and the predictions of their model. A student
of linear algebra will want to solve a system of equations 𝐴 #»𝑥 =

#»

𝑏 , which will amount to
minimizing ‖𝐴 #»𝑥 − #»

𝑏 ‖ or, equivalently, minimizing ‖𝐴 #»𝑥 − #»

𝑏 ‖2. (We’ve already considered
this last problem when we discussed the method of least squares in Section 4.7.)

In the simplest of these situations, you will be faced with the task of minimizing some kind
of quadratic function. For instance, to solve the system[︂

1 2
3 4

]︂
#»𝑥 =

[︂
5
11

]︂
by means of solving a minimization problem as described above, you will want to minimize
the quantity

𝑓( #»𝑥 ) =

⃦⃦⃦⃦[︂
1 2
3 4

]︂
#»𝑥 −

[︂
5
11

]︂⃦⃦⃦⃦2
= (𝑥1 + 2𝑥2 − 5)2 + (3𝑥1 + 4𝑥2 − 11)2

= 10𝑥21 + 28𝑥1𝑥2 + 20𝑥22 − 76𝑥1 − 108𝑥2 + 146.

Calculus teaches us that the local maximum and minimum values of a sufficiently differen-
tiable function 𝑓( #»𝑥 ) (where #»𝑥 ∈ R𝑛) occur at the critical points of 𝑓 , i.e. the points where
all the partial derivatives of 𝑓 vanish:

𝜕𝑓

𝜕𝑥𝑖
( #»𝑥 ) = 0 for all 𝑖 = 1, . . . , 𝑛.

To determine whether a critical point gives a local maximum or minimum value of 𝑓 (or
neither), one employs a type of second derivative test. The idea is that near a critical point
#»𝑎 , 𝑓 can be approximated by its second degree Taylor polynomial

𝑓( #»𝑥 ) ≈ 𝑓( #»𝑎 ) +
𝑛∑︁

𝑖=1

𝜕𝑓

𝜕𝑥𝑖
( #»𝑎 )⏟  ⏞  

=0

(𝑥𝑖 − 𝑎𝑖) +
1

2

𝑛∑︁
𝑖,𝑗=1

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
( #»𝑎 )(𝑥𝑖 − 𝑎𝑖)(𝑥𝑗 − 𝑎𝑗). (5.1)
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The difference 𝑓( #»𝑥 )− 𝑓( #»𝑎 ) will therefore be approximated by the quadratic quantity

1

2

𝑛∑︁
𝑖,𝑗=1

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
( #»𝑎 )(𝑥𝑖 − 𝑎𝑖)(𝑥𝑗 − 𝑎𝑗). (5.2)

For instance, if (5.2) is positive for all #»𝑥 ≈ #»𝑎 , then we will have 𝑓( #»𝑥 ) > 𝑓( #»𝑎 ) for all
#»𝑥 ≈ #»𝑎 , and so 𝑓( #»𝑎 ) will be a local minimum value. Similarly, if (5.2) is negative for all
#»𝑥 ≈ #»𝑎 , 𝑓( #»𝑎 ) will be a local maximum. Thus we find ourselves interested in determining
the sign of (5.2).

To make the previous analysis rigorous, we need to carry out a careful examination of the
approximation (5.1). However, if 𝑓( #»𝑥 ) is itself already a quadratic polynomial, we can
side-step this issue, since 𝑓 will be equal to its degree-2 Taylor polynomial:

𝑓( #»𝑥 ) = 𝑓( #»𝑎 ) +

𝑛∑︁
𝑖=1

𝜕𝑓

𝜕𝑥𝑖
( #»𝑎 )(𝑥𝑖 − 𝑎𝑖) +

1

2

𝑛∑︁
𝑖,𝑗=1

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
( #»𝑎 )(𝑥𝑖 − 𝑎𝑖)(𝑥𝑗 − 𝑎𝑗). (5.3)

In fact, what is going on here is a change of basis in the space of degree ≤ 2 polynomials in
𝑥1, . . . , 𝑥𝑛 from

{1, 𝑥21, . . . , 𝑥2𝑛, 𝑥1𝑥2, . . . , 𝑥𝑛−1𝑥𝑛}
to

{1, (𝑥1 − 𝑎1)
2, . . . , (𝑥𝑛 − 𝑎𝑛)

2, (𝑥1 − 𝑎1)(𝑥2 − 𝑎2), . . . , (𝑥𝑛−1 − 𝑎𝑛−1)(𝑥𝑛 − 𝑎𝑛)}.

Example 5.6.1 If 𝑓(𝑥1, 𝑥2) = 10𝑥21 + 28𝑥1𝑥2 + 20𝑥22 − 76𝑥1 − 108𝑥2 + 146 then 𝑓 has the unique critical
point #»𝑎 = (1, 2), and if we try to re-write 𝑓 in terms of powers of (𝑥1 − 1) and (𝑥2 − 2), we
would find that

𝑓(𝑥1, 𝑥2) = 10(𝑥1 − 1)2 + 28(𝑥1 − 1)(𝑥2 − 2) + 20(𝑥2 − 2)2.

We’ll leave it to you to check that this is true, and to verify that the above expression is
identical to

𝑓(𝑥1, 𝑥2) = 𝑓(1, 2) +
2∑︁

𝑖=1

𝜕𝑓

𝜕𝑥𝑖
(1, 2)(𝑥𝑖 − 𝑎𝑖) +

1

2

2∑︁
𝑖,𝑗=1

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
(1, 2)(𝑥𝑖 − 𝑎𝑖)(𝑥𝑗 − 𝑎𝑗).

Returning to (5.2), if we let

𝑢𝑖 = 𝑥𝑖 − 𝑎𝑖 and 𝑎𝑖𝑗 =
1

2

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
( #»𝑎 )

then the expression takes the simpler form

𝑛∑︁
𝑖,𝑗=1

𝑎𝑖𝑗𝑢𝑖𝑢𝑗 .

Definition 5.6.2

Quadratic Form

A (real) quadratic form in the variables #»𝑢 = (𝑢1, . . . , 𝑢𝑛) is a polynomial of the form

𝑄( #»𝑢 ) =
𝑛∑︁

𝑖,𝑗=1

𝑎𝑖𝑗𝑢𝑖𝑢𝑗 , where 𝑎𝑖𝑗 ∈ R.
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Thus, a quadratic form is effectively a quadratic polynomial that does not have any linear
or constant terms. We are interested in determining the sign of a quadratic form. Observe
that 𝑄(

#»
0 ) = 0.

Definition 5.6.3

Positive Definite,
Negative Definite,

Semi-Definite,
Indefinite

Quadratic Form

A quadratic form 𝑄( #»𝑢 ) is said to be

• positive definite if 𝑄( #»𝑢 ) > 0 for all non-zero #»𝑢 ∈ R𝑛;

• positive semi-definite if 𝑄( #»𝑢 ) ≥ 0 for all #»𝑢 ∈ R𝑛;

• negative definite if 𝑄( #»𝑢 ) < 0 for all non-zero #»𝑢 ∈ R𝑛;

• negative semi-definite if 𝑄( #»𝑢 ) ≤ 0 for all #»𝑢 ∈ R𝑛;

• indefinite if there exist #»𝑢 , #»𝑣 ∈ R𝑛 such that 𝑄( #»𝑢 ) > 0 and 𝑄( #»𝑣 ) < 0.

Notice that every positive (resp. negative) definite quadratic form is also positive (negative)
semi-definite.

Example 5.6.4 The quadratic form 𝑄1(𝑢1, 𝑢2) = 𝑢21 + 𝑢22 is positive definite.

The quadratic form 𝑄2(𝑢1, 𝑢2) = 𝑢21 is positive semi-definite but not positive definite.

The quadratic form 𝑄3(𝑢1, 𝑢2) = −3𝑢21 − 4𝑢22 is negative definite.

The quadratic form 𝑄4(𝑢1, 𝑢2) = −4𝑢21 is negative semi-definite.

The quadratic form 𝑄5(𝑢1, 𝑢2) = 3𝑢21 − 2𝑢22 is indefinite.

The verification of the above is entirely trivial. But how do we classify something more
complicated like 𝑄6(𝑢1, 𝑢2) = 10𝑢21 + 28𝑢1𝑢2 + 20𝑢22? (This is the quadratic form that
appeared in the previous example.)

Our main tool in being able to classify a quadratic form into one of the above classes is its
associated matrix. Consider an arbitrary two-variable quadratic form

𝑄(𝑢1, 𝑢2) =

2∑︁
𝑖,𝑗=1

𝑎𝑖𝑗𝑢𝑖𝑢𝑗 = 𝑎11𝑢
2
1 + 𝑎12𝑢1𝑢2 + 𝑎21𝑢2𝑢1 + 𝑎22𝑢

2
2.

We can re-write this as

𝑄(𝑢1, 𝑢2) =
[︀
𝑢1 𝑢2

]︀ [︂𝑎11 𝑎12
𝑎21 𝑎22

]︂ [︂
𝑢1
𝑢2

]︂
or more simply as

𝑄( #»𝑢 ) = #»𝑢𝑇

[︂
𝑎11

𝑎12+𝑎21
2

𝑎12+𝑎21
2 𝑎22

]︂
#»𝑢 .

(This type of expression should ring some bells. Compare it to our construction of the
Gram matrix of an inner product in Section 5.7.) The same kind of construction is possible
for 𝑛-variable quadratic forms:
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Proposition 5.6.5 Let 𝑄( #»𝑢 ) =
𝑛∑︀

𝑖,𝑗=1
𝑎𝑖𝑗𝑢𝑖𝑢𝑗 be a quadratic form. If we let 𝐴 be the 𝑛×𝑛 matrix whose (𝑖, 𝑗)th

entry is
𝑎𝑖𝑗 + 𝑎𝑗𝑖

2
, then

𝑄( #»𝑢 ) = #»𝑢𝑇𝐴 #»𝑢 .

Exercise 70 Prove Proposition 5.6.5.

Definition 5.6.6

Matrix Associated
to a Quadratic

Form

The matrix 𝐴 ∈ 𝑀𝑛×𝑛(R) constructed in Proposition 5.6.5 is called the matrix associated
to the quadratic form 𝑄( #»𝑢 ).

Example 5.6.7 The matrix associated to the quadratic form 𝑄(𝑢1, 𝑢2) = 10𝑢21 + 28𝑢1𝑢2 + 20𝑢22 is

𝐴 =

[︂
10 14
14 20

]︂
.

Notice that the diagonal entries are the coefficients of the pure square terms 𝑢21 and 𝑢22 while
the off-diagonal entries are one-half of the coefficient of the mixed term 𝑢1𝑢2.

Example 5.6.8 The matrix associated to the quadratic form 𝑄(𝑢1, 𝑢2, 𝑢3) = 3𝑢21 + 𝑢1𝑢2 − 2𝑢2𝑢3 + 3𝑢23 is

𝐴 =

⎡⎣ 3 1
2 0

1
2 0 −1
0 −1 3

⎤⎦ .

Again, notice that the diagonal entries are the coefficients of the pure square terms, while
the off-diagonal entries are one-half the coefficients of the mixed terms.

The key thing to glean from the previous two examples is that the matrices we got were
symmetric. This is true in general.

Proposition 5.6.9 Let 𝐴 ∈ 𝑀𝑛×𝑛(R) be the matrix associated to the quadratic form 𝑄( #»𝑢 ). Then 𝐴 is sym-
metric.

Exercise 71 Prove Proposition 5.6.9.

REMARK

We can reverse the sequence of ideas presented above. Starting from a symmetric matrix
𝐴 ∈ 𝑀𝑛×𝑛(R), we can create a quadratic form 𝑄( #»𝑢 ) = #»𝑢𝑇𝐴 #»𝑢 . Propositions 5.6.5 and 5.6.9
guarantee that in this way we are able to produce all quadratic forms.
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Thus, quadratic forms in 𝑛-variables and 𝑛× 𝑛 symmetric matrices are essentially one and
the same. Can you formulate this as some kind of isomorphism between two vector spaces?

Given this, we can now appeal to the spectral theorem for symmetric matrices (Theorem
5.4.7). The upshot is the following result, which says that the sign of 𝑄( #»𝑢 ) is determined
by the signs of the eigenvalues of 𝐴.

Theorem 5.6.10 (Classification of Quadratic Forms)

Let 𝑄( #»𝑢 ) be a quadratic form with associated matrix 𝐴. Let 𝜆1, . . . , 𝜆𝑛 be the eigenvalues
of 𝐴. Then:

1. 𝑄( #»𝑢 ) is positive definite if and only if 𝜆𝑖 > 0 for all 𝑖 ∈ {1, . . . , 𝑛}.

2. 𝑄( #»𝑢 ) is positive semi-definite if and only if 𝜆𝑖 ≥ 0 for all 𝑖 ∈ {1, . . . , 𝑛}.

3. 𝑄( #»𝑢 ) is negative definite if and only if 𝜆𝑖 < 0 for all 𝑖 ∈ {1, . . . , 𝑛}.

4. 𝑄( #»𝑢 ) is negative semi-definite if and only if 𝜆𝑖 ≤ 0 for all 𝑖 ∈ {1, . . . , 𝑛}.

5. 𝑄( #»𝑢 ) is indefinite if and only if 𝜆𝑖 > 0 and 𝜆𝑗 < 0 for some 𝑖, 𝑗 ∈ {1, . . . , 𝑛}.

Proof: By the spectral theorem for symmetric matrices (Theorem 5.4.7), we can orthog-
onally diagonalize 𝐴. That is, there exists an orthogonal matrix 𝑃 ∈ 𝑀𝑛×𝑛(R) such that
𝐴 = 𝑃𝐷𝑃 𝑇 , where𝐷 = diag(𝜆1, . . . , 𝜆𝑛). Without loss of generality, let’s label the eigenval-
ues by descending order according to size: 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑛. (Note that the eigenvalues
are all real, by the spectral theorem, so this makes sense.) Then

𝑄( #»𝑢 ) = #»𝑢𝑇𝐴 #»𝑢 = #»𝑢𝑇𝑃𝐷𝑃 𝑇 #»𝑢 = (𝑃 𝑇 #»𝑢 )𝑇𝐷(𝑃 𝑇 #»𝑢 ).

If we let #»𝑦 = 𝑃 𝑇 #»𝑢 =

⎡⎢⎣ 𝑦1
...
𝑦𝑛

⎤⎥⎦ (equivalently, #»𝑢 = 𝑃 #»𝑦 ), then we can write

𝑄( #»𝑢 ) = #»𝑦 𝑇𝐷 #»𝑦 = #»𝑦 𝑇

⎡⎢⎣𝜆1

. . .

𝜆𝑛

⎤⎥⎦ #»𝑦 = 𝜆1𝑦
2
1 + · · ·+ 𝜆𝑛𝑦

2
𝑛.

The sign of 𝑄 is now very easy to determine. For instance, if all the 𝜆𝑖 are positive, then
𝑄( #»𝑢 ) > 0 for all #»𝑢 ̸= #»

0 . This proves (a). The proofs of (b), (c) and (d) are similar. For
(e), consider #»𝑢 = 𝑃 #»𝑦 , where #»𝑦 = #»𝑒 𝑖 and

#»𝑦 = #»𝑒 𝑗 (where #»𝑒 𝑘 is the 𝑘th standard basis
vector for R𝑛). Then 𝑄( #»𝑢 ) = 𝜆𝑖 > 0 and 𝑄( #»𝑢 ) = 𝜆𝑗 < 0, respectively, proving that 𝑄 is
indefinite.

The take-away from the above proof is that when we diagonalize 𝐴, the quadratic form
becomes simple: all the mixed terms disappear, and we are left only with pure terms.
(Essentially, we completed the squares.) This is generally what diagonalization does. It
removes unnecessary complications that are present because we are, in a sense, working
with a less than optimal point of view.
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Example 5.6.11 The matrix associated to the quadratic form 𝑄(𝑢1, 𝑢2) = 10𝑢21 + 28𝑢1𝑢2 + 20𝑢22 is

𝐴 =

[︂
10 14
14 20

]︂
.

Its eigenvalues are
𝜆1 = 15 +

√
221 and 𝜆2 = 15−

√
221.

Since these are positive, we conclude that 𝑄( #»𝑢 ) is positive definite.

Example 5.6.12 The matrix associated to the quadratic form 𝑄(𝑢1, 𝑢2, 𝑢3) = 3𝑢21 + 𝑢1𝑢2 − 2𝑢2𝑢3 + 3𝑢23 is

𝐴 =

⎡⎣ 3 1
2 0

1
2 0 −1
0 −1 3

⎤⎦ .

Its eigenvalues are

𝜆1 =
3 +

√
14

2
, 𝜆2 = 3 and 𝜆3 =

3−
√
14

2
.

Since 𝜆1 > 0 and 𝜆3 < 0, it follows that 𝑄( #»𝑢 ) is indefinite.

Let’s return now to our motivating problem of optimizing a quadratic function 𝑓( #»𝑥 ). We
had reduced the issue to determining the sign of the quadratic form

𝑄( #»𝑢 ) =
1

2

𝑛∑︁
𝑖,𝑗=1

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
( #»𝑎 )𝑢𝑖𝑢𝑗 ,

where #»𝑎 is a critical point of the function. The matrix associated to 𝑄 is 𝐴 = 1
2𝐻, with

𝐻 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕2𝑓

𝜕𝑥21
( #»𝑎 )

𝜕2𝑓

𝜕𝑥1𝜕𝑥2
( #»𝑎 ) · · · 𝜕2𝑓

𝜕𝑥1𝜕𝑥𝑛
( #»𝑎 )

𝜕2𝑓

𝜕𝑥2𝜕𝑥1
( #»𝑎 )

𝜕2𝑓

𝜕𝑥22
( #»𝑎 ) · · · 𝜕2𝑓

𝜕𝑥2𝜕𝑥𝑛
( #»𝑎 )

...
...

. . .
...

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥1
( #»𝑎 )

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥2
( #»𝑎 ) · · · 𝜕2𝑓

𝜕𝑥2𝑛
( #»𝑎 )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where we’ve implicitly used the fact that for a sufficiently differentiable function 𝑓 , its mixed
second-order partial derivatives are equal:

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
=

𝜕2𝑓

𝜕𝑥𝑗𝜕𝑥𝑖
.

The matrix 𝐻 above is called the Hessian matrix of 𝑓 .It plays a role analogous to the
second derivative of a single-variable function. Our discussion above tells us that the nature
of the critical point #»𝑎 is tied to the sign of 𝑄 hence to the eigenvalues of 𝐻. In particular,
𝑓( #»𝑎 ) will be a local maximum value of 𝑓 if 𝑄 is negative definite, and will be a local
minimum if 𝑄 is positive definite. This is part of the so-called second derivative test for
multivariable functions. To learn more, take a course in multivariable calculus!
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Example 5.6.13 Let’s revisit our function

𝑓(𝑥1, 𝑥2) =

⃦⃦⃦⃦[︂
1 2
3 4

]︂
#»𝑥 −

[︂
5
11

]︂⃦⃦⃦⃦2
= 10𝑥21 + 28𝑥1𝑥2 + 20𝑥22 − 76𝑥1 − 108𝑥2 + 146.

Our work in Example 5.6.1 shows that the Hessian matrix of 𝑓 at the critical point #»𝑎 = (1, 2)
is

𝐻 = 2𝐴 =

[︂
20 28
28 40

]︂
,

where 𝐴 is the matrix associated to the quadratic form 𝑄(𝑢1, 𝑢2) = 20𝑢21+28𝑢1𝑢2+40𝑢22. In
Example 5.6.11, we showed that 𝑄 is positive-definite. Thus, 𝑓(1, 2) = 0 is a local minimum
value of 𝑓 . In fact, since 𝑓(𝑥1, 𝑥2) ≥ 0 for all (𝑥1, 𝑥2), it must be the case that this is a
global minimum value.

Of course, this is to be expected, since #»𝑥 =

[︂
1
2

]︂
is a solution to the system

[︂
1 2
3 4

]︂
#»𝑥 =

[︂
5
11

]︂
,

hence definitely minimizes 𝑓(𝑥1, 𝑥2)! In fact, we know that (𝑥1, 𝑥2) = (1, 2) gives us the
unique global minimum value of 𝑓 . But it’s good to know that our methods above allow us
to reach this same conclusion. Their true power emerges once we consider more complicated
(in particular, non-quadratic) functions 𝑓 .

5.7 Application: Inner Products and Gram Matrices

The goal of this section is to describe what all inner products on F𝑛 (and indeed on any
finite-dimensional inner product space) look like in terms of matrices.

Suppose we have an inner product ⟨ , ⟩ on C2 and suppose we know what it does to the
standard basis { #»𝑒 1,

#»𝑒 2}:

⟨ #»𝑒 1,
#»𝑒 1⟩ = 2, ⟨ #»𝑒 2,

#»𝑒 2⟩ = 3, and ⟨ #»𝑒 1,
#»𝑒 2⟩ = 1 + 𝑖.

Is it possible to recover the entire inner product just from this information? The answer is
yes! Given #»𝑣 , #»𝑢 ∈ C2, we can express them uniquely in terms of the standard basis as

#»𝑣 = 𝑎 #»𝑒 1 + 𝑏 #»𝑒 2 and #»𝑢 = 𝑐 #»𝑒 1 + 𝑑 #»𝑒 2 (𝑎, 𝑏, 𝑐, 𝑑 ∈ C).

Then

⟨ #»𝑣 , #»𝑢 ⟩ = ⟨𝑎 #»𝑒 1 + 𝑏 #»𝑒 2, 𝑐
#»𝑒 1 + 𝑑 #»𝑒 2⟩

= ⟨𝑎 #»𝑒 1, 𝑐
#»𝑒 1⟩+ ⟨𝑏 #»𝑒 2, 𝑐

#»𝑒 1⟩+ ⟨𝑎 #»𝑒 1, 𝑑
#»𝑒 2⟩+ ⟨𝑏 #»𝑒 2, 𝑑

#»𝑒 2⟩
= 𝑎𝑐 ⟨ #»𝑒 1,

#»𝑒 1⟩+ 𝑏𝑐 ⟨ #»𝑒 2,
#»𝑒 1⟩+ 𝑎𝑑 ⟨ #»𝑒 1,

#»𝑒 2⟩+ 𝑏𝑑 ⟨ #»𝑒 2,
#»𝑒 2⟩

= 2𝑎𝑐+ (1− 𝑖)𝑏𝑐+ (1 + 𝑖)𝑎𝑑+ 3𝑏𝑑.

This completely defines our inner product. So, just like linear maps are determined by what
they do to basis vectors, it appears, at least in this example, that inner products may be
determined by what they do to basis vectors.
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Recall that the fact that linear maps are determined by the images of the basis vectors is
intimately tied to the fact that every linear map can be represented by a matrix (once we’ve
chosen bases for our vector spaces of course). So a natural question arises: can we represent
an inner product by a matrix, and does every matrix represent an inner product?

Continuing the example above, let 𝒮 be the standard basis for C2. Then [ #»𝑣 ]𝒮 =

[︂
𝑎
𝑏

]︂
,

[ #»𝑢 ]𝒮 =

[︂
𝑐
𝑑

]︂
and (forgive us for pulling this identity out of thin air)

[︀
𝑐 𝑑

]︀ [︂ 2 1− 𝑖
1 + 𝑖 3

]︂ [︂
𝑎
𝑏

]︂
=

[︀
2𝑎𝑐+ (1− 𝑖)𝑏𝑐+ (1 + 𝑖)𝑎𝑑+ 3𝑏𝑑

]︀
.

Hmm! If we identify a 1×1 matrix with an element of C, the above equation can be written
as

[ #»𝑢 ]𝑇𝒮 𝐴 [ #»𝑣 ]𝒮 = ⟨ #»𝑣 , #»𝑢 ⟩

for the 2× 2 matrix 𝐴 =

[︂
2 1− 𝑖

1 + 𝑖 3

]︂
.

Does this type of expression seem familiar? You might recall that the standard inner product
on C2 is given by

⟨ #»𝑣 , #»𝑢 ⟩ = #»𝑢𝑇 #»𝑣 = #»𝑢𝑇 𝐼 #»𝑣 = [ #»𝑢 ]𝑇𝒮 𝐼 [ #»𝑣 ]𝒮 .

Comparing both equations, the difference appears to be that we changed the definition of
the inner product on the standard basis, which resulted in the identity matrix changing to
this peculiar matrix 𝐴.

Let’s phrase our motivating question a little better. Let 𝑉 be an 𝑛-dimensional vector space
with basis ℬ.

1. Let ⟨ , ⟩ be an inner product on 𝑉 . Is there an 𝑛× 𝑛 matrix 𝐴 such that

⟨ #»𝑣 , #»𝑤⟩ = [ #»𝑤]*ℬ 𝐴 [ #»𝑣 ]ℬ for all #»𝑣 , #»𝑤 ∈ 𝑉 ?

2. Let 𝐴 be an 𝑛× 𝑛 matrix. Does

⟨ #»𝑣 , #»𝑤⟩ = [ #»𝑤]*ℬ 𝐴 [ #»𝑣 ]ℬ

define an inner product on 𝑉 ?

To try and get some headway into the problem, let’s assume that dim(𝑉 ) = 2 say with
basis ℬ = { #»𝑔 1,

#»𝑔 2}. Let #»𝑣 = 𝑎 #»𝑔 1 + 𝑏 #»𝑔 2 and #»𝑤 = 𝑐 #»𝑔 1 + 𝑑 #»𝑔 2 be arbitrary vectors in 𝑉 , so

that [ #»𝑣 ]ℬ =

[︂
𝑎
𝑏

]︂
and [ #»𝑤]ℬ =

[︂
𝑐
𝑑

]︂
.

Suppose there is a 2× 2 matrix 𝐴 =

[︂
𝑤 𝑥
𝑦 𝑧

]︂
such that ⟨ #»𝑣 , #»𝑤⟩ = [ #»𝑤]*ℬ 𝐴 [ #»𝑣 ]ℬ. Then

⟨ #»𝑣 , #»𝑤⟩ =
[︀
𝑐 𝑑

]︀ [︂𝑤 𝑥
𝑦 𝑧

]︂ [︂
𝑎
𝑏

]︂
=

[︀
𝑎𝑐𝑤 + 𝑎𝑑𝑦 + 𝑏𝑐𝑥+ 𝑏𝑑𝑧

]︀
.

Since
⟨ #»𝑣 , #»𝑤⟩ = 𝑎𝑐 ⟨ #»𝑔 1,

#»𝑔 1⟩+ 𝑎𝑑 ⟨ #»𝑔 1,
#»𝑔 2⟩+ 𝑏𝑐 ⟨ #»𝑔 2,

#»𝑔 1⟩+ 𝑏𝑑 ⟨ #»𝑔 2,
#»𝑔 2⟩
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we must have

𝑎𝑐𝑤 + 𝑎𝑑𝑦 + 𝑏𝑐𝑥+ 𝑏𝑑𝑧 = 𝑎𝑐 ⟨ #»𝑔 1,
#»𝑔 1⟩+ 𝑎𝑑 ⟨ #»𝑔 1,

#»𝑔 2⟩+ 𝑏𝑐 ⟨ #»𝑔 2,
#»𝑔 1⟩+ 𝑏𝑑 ⟨ #»𝑔 2,

#»𝑔 2⟩

for all 𝑎, 𝑏, 𝑐, 𝑑 ∈ F. Thus, [︂
𝑤 𝑥
𝑦 𝑧

]︂
=

[︂
⟨ #»𝑔 1,

#»𝑔 1⟩ ⟨ #»𝑔 2,
#»𝑔 1⟩

⟨ #»𝑔 1,
#»𝑔 2⟩ ⟨ #»𝑔 2,

#»𝑔 2⟩

]︂
.

(For instance, if we let 𝑏 = 𝑑 = 0 and 𝑎 = 𝑐 = 1, then we find that 𝑤 = ⟨ #»𝑔 1,
#»𝑔 1⟩. Similar

choices allow us to determine 𝑥, 𝑦 and 𝑧.)

For the general case of an 𝑛-dimensional inner product space with basis ℬ = { #»𝑔 1, . . . ,
#»𝑔 𝑛},

if there is to be an 𝑛 × 𝑛 matrix 𝐴 = [𝐴𝑖𝑗 ] such that ⟨ #»𝑣 , #»𝑤⟩ = [ #»𝑤]*ℬ𝐴[ #»𝑣 ]ℬ then we must

have 𝐴𝑖𝑗 = ⟨ #»𝑔 𝑗 ,
#»𝑔 𝑖⟩. Furthermore, since ⟨ #»𝑣 , #»𝑤⟩ = ⟨ #»𝑤, #»𝑣 ⟩ it follows that 𝐴𝑖𝑗 = 𝐴𝑗𝑖 (take

#»𝑣 = #»𝑔 𝑖 and
#»𝑤 = #»𝑔 𝑗). That is, it must be the case that 𝐴 = 𝐴* is self-adjoint. What other

features must 𝐴 have?

Theorem 5.7.1 (Characterization of Inner Products in Terms of Matrices)

Let 𝑉 be a vector space over F with basis ℬ = { #»𝑔 1, . . . ,
#»𝑔 𝑛}, and let 𝐴 ∈ 𝑀𝑛×𝑛(F). Then

⟨ #»𝑣 , #»𝑤⟩ = [ #»𝑤]*ℬ 𝐴 [ #»𝑣 ]ℬ ( #»𝑣 , #»𝑤 ∈ 𝑉 )

defines an inner product on 𝑉 if and only if 𝐴 = 𝐴* and all the eigenvalues of 𝐴 are positive.

Furthermore, if ⟨ , ⟩ is an inner product of 𝑉 , then there is a self-adjoint matrix 𝐴 such
that

⟨ #»𝑣 , #»𝑤⟩ = [ #»𝑤]*ℬ 𝐴 [ #»𝑣 ]ℬ for all #»𝑣 , #»𝑤 ∈ 𝑉.

Explicitly, this matrix is given by

𝐴 =

⎡⎢⎣ ⟨ #»𝑔 1,
#»𝑔 1⟩ ⟨ #»𝑔 2,

#»𝑔 1⟩ · · · ⟨ #»𝑔 𝑛,
#»𝑔 1⟩

...
...

. . .
...

⟨ #»𝑔 1,
#»𝑔 𝑛⟩ ⟨ #»𝑔 2,

#»𝑔 𝑛⟩ · · · ⟨ #»𝑔 𝑛,
#»𝑔 𝑛⟩

⎤⎥⎦ .

Proof: First, assume that ⟨ #»𝑣 , #»𝑤⟩ = [ #»𝑤]*ℬ𝐴[ #»𝑣 ]ℬ defines an inner product on 𝑉 . Then it
must satisfy the inner product axioms:

1. ⟨ #»𝑣 , #»𝑤⟩ = ⟨ #»𝑤, #»𝑣 ⟩.

2. ⟨𝛼 #»𝑣 , #»𝑤⟩ = 𝛼 ⟨ #»𝑣 , #»𝑤⟩.

3. ⟨ #»𝑢 + #»𝑣 , #»𝑤⟩ = ⟨ #»𝑢 , #»𝑤⟩+ ⟨ #»𝑣 , #»𝑤⟩.

4. (a) ⟨ #»𝑣 , #»𝑣 ⟩ ≥ 0.

(b) If ⟨ #»𝑣 , #»𝑣 ⟩ = 0 then #»𝑣 =
#»
0 .

The discussion preceding the statement of the theorem shows that we must have 𝐴 = 𝐴*.
For the claim about the eigenvalues, suppose that 𝐴[ #»𝑥 ]ℬ = 𝜆[ #»𝑥 ]ℬ with [ #»𝑥 ]ℬ ̸= #»

0 an
eigenvector of 𝐴. Then by multiplying both sides by [ #»𝑥 ]*ℬ we get

[ #»𝑥 ]*ℬ𝐴[ #»𝑥 ]ℬ = 𝜆[ #»𝑥 ]*ℬ[
#»𝑥 ]ℬ.
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The left-side is ⟨ #»𝑥 , #»𝑥 ⟩ which by axiom 4 is positive since #»𝑥 ̸= #»
0 . The number [ #»𝑥 ]*ℬ[

#»𝑥 ]ℬ on
the right-side is the standard inner product of [ #»𝑥 ]ℬ with itself, hence must also be positive.
Thus

𝜆 =
⟨ #»𝑥 , #»𝑥 ⟩

[ #»𝑥 ]*ℬ[
#»𝑥 ]ℬ

is positive.

Conversely, assume that 𝐴 = 𝐴* and that the eigenvalues of 𝐴 are positive. We want to
prove that ⟨ #»𝑣 , #»𝑤⟩ = [ #»𝑤]*ℬ𝐴[ #»𝑣 ]ℬ satisfies the inner product axioms above. To show that
axiom 1 is satisfied, we will “un-abuse” notation and revert back to viewing [ #»𝑤]*ℬ𝐴[

#»𝑣 ]ℬ as
the 1× 1 matrix [⟨ #»𝑣 , #»𝑤⟩]. Then

[⟨ #»𝑣 , #»𝑤⟩]* = ([ #»𝑤]*ℬ𝐴[
#»𝑣 ]ℬ)

*

= [ #»𝑣 ]*ℬ𝐴
*[ #»𝑤]ℬ

= [ #»𝑣 ]*ℬ𝐴[ #»𝑤]ℬ (since 𝐴 = 𝐴*)

= [⟨ #»𝑤, #»𝑣 ⟩]

which, since the transpose of a 1×1 matrix is just the matrix itself, implies ⟨ #»𝑣 , #»𝑤⟩ = ⟨ #»𝑤, #»𝑣 ⟩.
For the other axioms we resume our abuse of notation and identify the 1×1 matrix [⟨ #»𝑣 , #»𝑤⟩]
with the number ⟨ #»𝑣 , #»𝑤⟩. We have

⟨ #»𝑣 + �⃗�, #»𝑤⟩ = [ #»𝑤]*ℬ𝐴[ #»𝑣 + �⃗�]ℬ

= [ #»𝑤]*ℬ𝐴([ #»𝑣 ]ℬ + [�⃗�]ℬ)

= [ #»𝑤]*ℬ𝐴[ #»𝑣 ]ℬ + [ #»𝑤]*ℬ𝐴[�⃗�]ℬ

= ⟨ #»𝑣 , #»𝑤⟩+ ⟨�⃗�, #»𝑤⟩ .

Similarly,

⟨𝛼 #»𝑣 , #»𝑤⟩ = [ #»𝑤]*ℬ𝐴[𝛼 #»𝑣 ]ℬ

= 𝛼[ #»𝑤]*ℬ𝐴[ #»𝑣 ]ℬ

= 𝛼 ⟨ #»𝑣 , #»𝑤⟩ .

As usual, the interesting situation is axiom 4. It’s not clear what conditions we need on 𝐴
so that [ #»𝑣 ]*ℬ𝐴[

#»𝑣 ]ℬ ≥ 0.

Since 𝐴* = 𝐴, i.e., 𝐴 is self-adjoint, the spectral theorem (Theorem 5.4.5) tells us there is
a unitary matrix 𝑈 ∈ 𝑀𝑛×𝑛(C) and a diagonal matrix 𝐷 ∈ 𝑀𝑛×𝑛(R) so that 𝑈*𝐴𝑈 = 𝐷.
Then

⟨ #»𝑣 , #»𝑤⟩ = [ #»𝑤]*ℬ𝑈𝐷𝑈*[ #»𝑣 ]ℬ = (𝑈*[ #»𝑤]ℬ)
*𝐷(𝑈*[ #»𝑣 ]ℬ).

Since 𝑈* is invertible, we can think of it as a change of basis matrix. In fact, we have
𝑈*[ #»𝑣 ]ℬ = [ #»𝑣 ]𝒞 for all #»𝑣 ∈ 𝑉 , where 𝒞 is some other basis (it’s not important what it is).
So we now have

⟨ #»𝑣 , #»𝑤⟩ = [ #»𝑤]*𝒞𝐷[ #»𝑣 ]𝒞 .

Remember that 𝐷 is a diagonal matrix with entries along the diagonal equal to the eigen-
values of 𝐴, and these eigenvalues are real and positive (by assumption). So if

[ #»𝑤]𝒞 =

⎡⎢⎣𝑤1
...
𝑤𝑛

⎤⎥⎦ , [ #»𝑣 ]𝒞 =

⎡⎢⎣ 𝑣1
...
𝑣𝑛

⎤⎥⎦ , and 𝐷 =

⎡⎢⎣𝜆1

. . .

𝜆𝑛

⎤⎥⎦ .
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Then
⟨ #»𝑣 , #»𝑤⟩ = [ #»𝑤]*𝒞𝐷[ #»𝑣 ]𝒞 = 𝜆1𝑣1𝑤1 + · · ·+ 𝜆𝑛𝑣𝑛𝑤𝑛.

In particular,
⟨ #»𝑣 , #»𝑣 ⟩ = 𝜆1 |𝑣1|2 + · · ·+ 𝜆𝑛 |𝑣𝑛|2 .

Therefore ⟨ #»𝑣 , #»𝑣 ⟩ ≥ 0 since 𝜆𝑖 > 0 for all 𝑖. Furthermore, if ⟨ #»𝑣 , #»𝑣 ⟩ = 0 then necessarily
|𝑣𝑖|2 = 0 for all 𝑖, and consequently #»𝑣 = 0⃗. This completes the proof that ⟨ #»𝑣 , #»𝑤⟩ is an inner
product.

The final assertion in the theorem was proved in the discussion immediately preceding the
statement of the theorem.

Let’s give the matrix 𝐴 in the previous theorem a name.

Definition 5.7.2

Gram Matrix

Let 𝑉 be a finite-dimensional inner product space over F with inner product ⟨ , ⟩ and basis
ℬ = { #»𝑔 1, . . . ,

#»𝑔 𝑛}. The Gram matrix of ⟨ , ⟩ with respect to ℬ is the matrix whose
(𝑖, 𝑗)th entry is 𝐴𝑖𝑗 = ⟨ #»𝑔 𝑗 ,

#»𝑔 𝑖⟩. That is,

𝐴 =

⎡⎢⎣ ⟨ #»𝑔 1,
#»𝑔 1⟩ · · · ⟨ #»𝑔 𝑛,

#»𝑔 1⟩
...

. . .
...

⟨ #»𝑔 1,
#»𝑔 𝑛⟩ · · · ⟨ #»𝑔 𝑛,

#»𝑔 𝑛⟩

⎤⎥⎦ .

Theorem 5.7.1 shows that the Gram matrix can be used to compute the inner product via
the formula

⟨ #»𝑣 , #»𝑤⟩ = [ #»𝑤]*ℬ𝐴[ #»𝑣 ]ℬ.

Example 5.7.3 In F𝑛 with the standard inner product, if we let ℬ = { #»𝑒 1, . . . ,
#»𝑒 𝑛} be the standard basis,

then the corresponding Gram matrix is

⎡⎢⎣ ⟨ #»𝑒 1,
#»𝑒 1⟩ · · · ⟨ #»𝑒 𝑛,

#»𝑒 1⟩
...

. . .
...

⟨ #»𝑒 1,
#»𝑒 𝑛⟩ · · · ⟨ #»𝑒 𝑛,

#»𝑒 𝑛⟩

⎤⎥⎦ =

⎡⎢⎢⎢⎣
1 0 · · · 0
0 1 · · · 0
...
. . .

. . .
...

0 · · · 0 1

⎤⎥⎥⎥⎦ ,

i.e. it’s the 𝑛× 𝑛 identity matrix! This re-establishes our familiar formula

⟨ #»𝑣 , #»𝑤⟩ = #»𝑤*𝐼𝑛
#»𝑣 = #»𝑤* #»𝑣

for the standard inner product on F𝑛.

More generally, if 𝑉 is any 𝑛-dimensional inner product space, and if ℬ is an orthonormal
basis for 𝑉 , then the corresponding Gram matrix is the 𝑛× 𝑛 identity matrix. This means
that we can compute the inner product on 𝑉 as though it were the standard inner product
on F𝑛 (once we convert to ℬ-coordinates):

⟨ #»𝑣 , #»𝑤⟩ = [ #»𝑤]*ℬ[
#»𝑣 ]ℬ.

Another reason why orthonormal bases are nice!
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Exercise 72 Let 𝑉 be an 𝑛-dimensional inner product space and let ℬ be an orthonormal basis for 𝑉 .

(a) Show that the Gram matrix with respect to ℬ is 𝐼𝑛.

(b) What does the Gram matrix with respect to an orthogonal basis look like?

As you may have experienced, sometimes it is difficult to prove or disprove that a potential
inner product satisfies axiom 4 (positive-definiteness) of Definition 4.1.1. Theorem 5.7.1
gives us an algorithmic way to determine if a potential inner product is actually an inner
product. We simply choose a basis, compute the corresponding potential Gram matrix 𝐴,
check that 𝐴 is self-adjoint, verify that 𝐴 actually performs the potential inner product for
us, and then determine if the eigenvalues of 𝐴 are all positive.

Example 5.7.4 Is
⟨𝑎+ 𝑏𝑥, 𝑐+ 𝑑𝑥⟩ = 2𝑎𝑐+ (1 + 𝑖)𝑏𝑐+ (1− 𝑖)𝑎𝑑+ 3𝑏𝑑

an inner product on 𝒫1(C)? Let’s find out.

Let ℬ be the standard basis for 𝒫1(C). The corresponding Gram matrix is given by

𝐴 =

[︂
⟨1, 1⟩ ⟨𝑥, 1⟩
⟨1, 𝑥⟩ ⟨𝑥, 𝑥⟩

]︂
=

[︂
2 1 + 𝑖

1− 𝑖 3

]︂
.

First thing we need to check is that this matrix is self-adjoint, which it is. Now we need
to check that it actually performs the inner product for us. That is, we need to check if
⟨𝑝, 𝑞⟩ = [𝑞]*ℬ𝐴[𝑝]ℬ. We have

[𝑐+ 𝑑𝑥]*ℬ𝐴[𝑎+ 𝑏𝑥]ℬ =
[︀
𝑐 𝑑

]︀ [︂ 2 1 + 𝑖
1− 𝑖 3

]︂ [︂
𝑎
𝑏

]︂
=

[︀
2𝑎𝑐+ (1 + 𝑖)𝑏𝑐+ (1− 𝑖)𝑎𝑑+ 3𝑏𝑑

]︀
.

Therefore this matrix does the trick! So, to check whether or not it’s an inner product, we
need to compute the eigenvalues and make sure they’re all positive. We have

|𝐴− 𝜆𝐼| =
⃒⃒⃒⃒
2− 𝜆 1 + 𝑖
1− 𝑖 3− 𝜆

⃒⃒⃒⃒
= (2− 𝜆)(3− 𝜆)− (1 + 𝑖)(1− 𝑖)

= 𝜆2 − 5𝜆+ 4

= (𝜆− 4)(𝜆− 1).

Since the eigenvalues are 1 and 4, which are both positive, Theorem 5.7.1 allows us to
conclude that this is indeed an inner product.

Example 5.7.5 Let’s determine whether or not⟨⎡⎣𝑣1
𝑣2
𝑣3

⎤⎦ ,

⎡⎣𝑤1

𝑤2

𝑤3

⎤⎦⟩ = 2𝑣1𝑤1 + 2𝑣2𝑤2 + 2𝑣3𝑤3 − 𝑣1𝑤2 − 𝑣2𝑤1 − 𝑣2𝑤3 − 𝑣3𝑤2

is an inner product on R3.
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Let {�⃗�1, �⃗�2, �⃗�3} be the standard basis for R3. Our candidate matrix for this potential inner
product is

𝐴 =

⎡⎣ 2 −1 0
−1 2 −1
0 −1 2

⎤⎦ .

This matrix is certainly self-adjoint, which is a good start. Furthermore we have

[︀
𝑤1 𝑤2 𝑤3

]︀ ⎡⎣ 2 −1 0
−1 2 −1
0 −1 2

⎤⎦⎡⎣𝑣1
𝑣2
𝑣3

⎤⎦ =
[︀
2𝑣1𝑤1 + 2𝑣2𝑤2 + 2𝑣3𝑤3 − 𝑣1𝑤2 − 𝑣2𝑤1 − 𝑣2𝑤3 − 𝑣3𝑤2

]︀
so the matrix does actually perform the inner product for us. Finally, you can compute its
eigenvalues and get them to be {2, 2+

√
2, 2−

√
2}, all of which are positive! Therefore this

is an inner product.

Exercise 73 Determine whether
⟨ #»𝑧 , #»𝑤⟩ = 𝑧1𝑤1 − 𝑖𝑧1𝑤2 + 𝑖𝑧2𝑤1

is an inner product on C2.



Chapter 6

The Singular Value Decomposition

6.1 Singular Values and Singular Vectors

In Chapter 3 we studied the problem of finding a simple matrix representation of a given
linear operator 𝐿 : 𝑉 → 𝑉 on a finite-dimensional vector space 𝑉 . We learned that, if certain
conditions are satisfied by 𝐿, we’re able to find a basis 𝒟 for 𝑉 consisting of eigenvectors of
𝐿 such that [𝐿]𝒟 is a diagonal matrix. Unfortunately, since the needed conditions are not
always met, many linear operators are left without simple matrix representations.

In this chapter we aim to rectify this situation. What made diagonalization difficult to
attain is our insistence on using the same basis 𝒟 for both the domain and codomain of
𝐿 : 𝑉 → 𝑉 . Let’s instead ask for two (possibly different) bases ℬ and 𝒞 of 𝑉 so that 𝒞 [𝐿]ℬ
is diagonal. Are we always able to find these? The answer is yes! Actually, this is quite
easy to do—but what is more interesting is that, if 𝑉 is an inner product space, we can
arrange for ℬ and 𝒞 to be orthonormal bases. Additionally, all this can be done not just
for operators, but for linear maps 𝐿 : 𝑉 → 𝑊 as well! (Of course, in this case 𝒞 [𝐿]ℬ won’t
be a square matrix, so we’ll need to redefine what we mean by “diagonal matrix”—but you
can probably guess what the definition is going to be.)

Although this seems like it would be only of theoretical interest, this is very far from
the truth. The results of this chapter in fact have an abundance of practical, real-world
applications—see Section 6.4.

We will begin by seeing how all this works for a matrix 𝐴 ∈ 𝑀𝑚×𝑛(F), which we think of as
giving a linear map F𝑛 → F𝑚. We give F𝑛 and F𝑚 their standard inner product. The key
to our approach to diagonalization of square matrices (and linear operators) was the idea
of eigenvectors and eigenvalues. Our starting point here will be to find a suitable analogue
for non-square matrices; these are the so-called singular vectors and singular values of 𝐴,
to be introduced momentarily. First we need a preliminary lemma.

Lemma 6.1.1 Let 𝐴 ∈ 𝑀𝑚×𝑛(F). Then 𝐴*𝐴 is an 𝑛 × 𝑛 self-adjoint matrix and its eigenvalues are
non-negative real numbers.

Proof: It’s clear that 𝐴*𝐴 is 𝑛 × 𝑛 and self-adjoint. Let 𝜆 be an eigenvalue of 𝐴*𝐴, say
with eigenvector #»𝑥 . Then 𝐴*𝐴 #»𝑥 = 𝜆 #»𝑥 , and therefore

𝜆‖ #»𝑥‖2 = 𝜆 ⟨ #»𝑥 , #»𝑥 ⟩ = ⟨𝜆 #»𝑥 , #»𝑥 ⟩ = ⟨𝐴*𝐴 #»𝑥 , #»𝑥 ⟩ = ⟨𝐴 #»𝑥 ,𝐴 #»𝑥 ⟩ = ‖𝐴 #»𝑥‖2.

156
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Since #»𝑥 is an eigenvector, ‖ #»𝑥‖ ≠ 0, and consequently 𝜆 =
‖𝐴 #»𝑥‖2
‖ #»𝑥‖2 ≥ 0.

Definition 6.1.2

Singular Values,
Singular Vectors

Let 𝐴 ∈ 𝑀𝑚×𝑛(F). The singular values of 𝐴 are the non-negative square-roots 𝜎𝑖 =
√
𝜆𝑖

of the eigenvalues 𝜆𝑖 of 𝐴
*𝐴.

The corresponding eigenvectors of 𝐴*𝐴 are called the singular vectors of 𝐴.

REMARK

The name singular value originates in the theory of integral equations, and was coined by
Emile Picard for a value that is of special (or singular) interest. It has nothing to do with
our modern mathematical usage of the word “singular.”

By convention, the singular values are always ordered in descending order:

𝜎1 ≥ 𝜎2 ≥ · · · ≥ 𝜎𝑛 ≥ 0.

At this stage it’s not at all clear what singular values and vectors have to do with our
motivating problem. The connection is explained in the discussion preceding Theorem
6.2.1 in the next section. For now, however, let’s see some examples.

Example 6.1.3 Let 𝐴 =

⎡⎣ 1 −4
−2 2
2 4

⎤⎦. Then

𝐴*𝐴 = 𝐴𝑇𝐴 =

[︂
1 −2 2
−4 2 4

]︂⎡⎣ 1 −4
−2 2
2 4

⎤⎦ =

[︂
9 0
0 36

]︂
.

(Notice that this matrix is symmetric, as expected.)

The eigenvalues of 𝐴*𝐴 are 𝜆1 = 36 and 𝜆2 = 9. (Notice that they are non-negative, as
expected.) Thus the singular values of 𝐴 are 𝜎1 =

√
36 = 6 and 𝜎2 =

√
9 = 3.

The vectors #»𝑣 1 =

[︂
0
1

]︂
and #»𝑣 2 =

[︂
1
0

]︂
are corresponding singular vectors, since they are

eigenvectors for 𝐴*𝐴 with eigenvalues 𝜆1 = 36 and 𝜆2 = 9, respectively.

Example 6.1.4 Let 𝐴 =

[︂
1 1 0
−1 1 1

]︂
. Then

𝐴*𝐴 = 𝐴𝑇𝐴 =

⎡⎣1 −1
1 1
0 1

⎤⎦[︂
1 1 0
−1 1 1

]︂
=

⎡⎣ 2 0 −1
0 2 1
−1 1 1

⎤⎦ .
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You can check that the eigenvalues of 𝐴*𝐴 are 𝜆1 = 3, 𝜆2 = 2 and 𝜆3 = 0. Thus the
singular values of 𝐴 are 𝜎1 =

√
3, 𝜎2 =

√
2 and 𝜎3 = 0. Corresponding singular vectors are

#»𝑣 1 =

⎡⎣−1
1
1

⎤⎦, #»𝑣 2 =

⎡⎣1
1
0

⎤⎦ and #»𝑣 3 =

⎡⎣ 1
−1
2

⎤⎦, respectively.

Example 6.1.5 Let 𝐴 =

[︂
0 2
−3 0

]︂
. Then

𝐴*𝐴 = 𝐴𝑇𝐴 =

[︂
0 −3
2 0

]︂ [︂
0 2
−3 0

]︂
=

[︂
9 0
0 4

]︂
.

The eigenvalues of 𝐴*𝐴 are 𝜆1 = 9 and 𝜆2 = 4. Thus the singular values of 𝐴 are 𝜎1 = 3

and 𝜎2 = 2, and #»𝑣 1 =

[︂
1
0

]︂
and #»𝑣 2 =

[︂
0
1

]︂
are corresponding singular vectors.

Example 6.1.6 Let 𝐴 =

⎡⎢⎢⎣
1 2 −1
2 4 −2
−1 −2 1
𝑖 2𝑖 −𝑖

⎤⎥⎥⎦. Then

𝐴*𝐴 =

⎡⎣ 1 2 −1 −𝑖
2 4 −2 −2𝑖
−1 −2 1 𝑖

⎤⎦
⎡⎢⎢⎣

1 2 −1
2 4 −2
−1 −2 1
𝑖 2𝑖 −𝑖

⎤⎥⎥⎦ =

⎡⎣ 7 14 −7
14 28 −14
−7 −14 7

⎤⎦ .

The eigenvalues of 𝐴*𝐴 are 𝜆1 = 42 and 𝜆2 = 𝜆3 = 0. For eigenvectors, we can take

#»𝑣 1 =

⎡⎣−1
−2
1

⎤⎦ , #»𝑣 2 =

⎡⎣1
0
1

⎤⎦ and #»𝑣 3 =

⎡⎣−1
1
1

⎤⎦, respectively. Here we decided to pick two

orthogonal eigenvectors #»𝑣 2 and #»𝑣 3 for the repeated eigenvalue 0. We are able to do this
because 𝐴*𝐴 is symmetric, hence orthogonally diagonalizable by the spectral theorem.

The singular values of 𝐴 are 𝜎1 =
√
42 and 𝜎2 = 𝜎3 = 0, with corresponding singular vectors

#»𝑣 1,
#»𝑣 2 and #»𝑣 3 as above.

Exercise 74 Let 𝐴 ∈ 𝑀𝑛×𝑛(F) be a self-adjoint matrix. What are the singular values of 𝐴? What can
you say about the corresponding singular vectors?

There are two things we can notice from the previous examples:

1. The singular vectors of 𝐴 corresponding to different singular values are orthogonal.

2. The rank of 𝐴 is equal to the number of non-zero singular values of 𝐴.
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These resemble two facts that we know about eigenvalues and eigenvectors of a square
matrix 𝐴. The first one is that eigenvectors corresponding to distinct eigenvalues are linearly
independent (Proposition 3.2.11). The second one is that the nullity of 𝐴 is equal to the
geometric multiplicity of 0 as an eigenvalue. Consequently, if 𝐴 is diagonalizable, nullity(𝐴)
is equal to the algebraic multiplicity of 0, and so rank(𝐴) is the sum of the algebraic
multiplicities of the non-zero eigenvalues which we can interpret as being the number of
non-zero eigenvalues, each counted according to multiplicity.

Let’s now prove that our two observations above are in fact always true.

Proposition 6.1.7 Let 𝐴 ∈ 𝑀𝑚×𝑛(F), and let #»𝑥 , #»𝑦 ∈ F𝑛 be singular vectors of 𝐴 corresponding to the singular
values 𝜎1 and 𝜎2. If 𝜎1 ̸= 𝜎2, then

#»𝑥 and #»𝑦 are orthogonal.

Proof: Let 𝐵 = 𝐴*𝐴 and let 𝜆𝑖 = 𝜎2
𝑖 . Notice that 𝜆1 ̸= 𝜆2 since otherwise we’d have

𝜎1 = ±𝜎2 hence 𝜎1 = 𝜎2 since both are non-negative. Thus, #»𝑥 and #»𝑦 are eigenvectors of
𝐵 with distinct eigenvalues 𝜆1 and 𝜆2, respectively. Since 𝐵 is self-adjoint, hence normal,
the orthogonality of #»𝑥 and #»𝑦 follows from Proposition 5.4.10(c).

To prove our second observation, we will need the following lemma.

Lemma 6.1.8 Let 𝐴 ∈ 𝑀𝑚×𝑛(F). Then Null(𝐴*𝐴) = Null(𝐴).

Proof: Suppose that #»𝑥 ∈ Null(𝐴), so that 𝐴 #»𝑥 =
#»
0 . Then 𝐴*𝐴 #»𝑥 = 𝐴* #»

0 =
#»
0 , so

#»𝑥 ∈ Null(𝐴*𝐴). Thus, Null(𝐴) ⊆ Null(𝐴*𝐴). Conversely, suppose that #»𝑥 ∈ Null(𝐴*𝐴).
Then

‖𝐴 #»𝑥‖2 = ⟨𝐴 #»𝑥 ,𝐴 #»𝑥 ⟩ = ⟨ #»𝑥 ,𝐴*𝐴 #»𝑥 ⟩ = ⟨ #»𝑥 ,
#»
0 ⟩ = 0

so that 𝐴 #»𝑥 =
#»
0 , proving that #»𝑥 ∈ Null(𝐴) and hence that Null(𝐴*𝐴) ⊆ Null(𝐴). This

completes the proof.

Proposition 6.1.9 Let 𝐴 ∈ 𝑀𝑚×𝑛(F). The number of non-zero singular values of 𝐴 is equal to rank(𝐴), where
each repeated singular value is counted according to its multiplicity. (The multiplicity of a
singular value 𝜎 is the algebraic multiplicity of 𝜎2 as an eigenvalue of 𝐴*𝐴.)

Proof: Since 𝐴*𝐴 is self-adjoint, hence diagonalizable by the spectral theorem, the argu-
ment preceding Proposition 6.1.7 shows that rank(𝐴*𝐴) is equal to the number of non-zero
eigenvalues of 𝐴*𝐴, which in turn is equal to the number of singular values of 𝐴, each
counted according to multiplicity. (Here we’re again using the fact that distinct singular
values of 𝐴 come from distinct eigenvalues of 𝐴*𝐴, and vice versa, as observed in the proof
of Proposition 6.1.7.)

So the proof will be complete if we can show that rank(𝐴) = rank(𝐴*𝐴). Since 𝐴 is 𝑚× 𝑛
and 𝐴*𝐴 is 𝑛× 𝑛, the rank-nullity theorem and Lemma 6.1.8 give

rank(𝐴) = 𝑛− nullity(𝐴) = 𝑛− nullity(𝐴*𝐴) = rank(𝐴*𝐴),

as desired.

In particular, an 𝑚× 𝑛 matrix will have at most min{𝑚,𝑛} non-zero singular values.
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6.2 Singular Value Decomposition of Matrices

In this section we will show that we can always diagonalize a matrix 𝐴 ∈ 𝑀𝑚×𝑛(F) by
choosing appropriate orthonormal bases for F𝑛 and F𝑚. If we let 𝑈 and 𝑉 be the matrices
whose columns are these basis vectors, then this amounts to a factorization of 𝐴 of the form

𝐴 = 𝑈Σ𝑉 *,

where 𝑈 is an 𝑚 × 𝑚 unitary matrix, 𝑉 is an 𝑛 × 𝑛 unitary matrix, and where Σ is an
𝑚× 𝑛 matrix whose (𝑖, 𝑗)th entry is 0 for 𝑖 ̸= 𝑗.

The idea behind the proof is really simple: we reverse engineer what we want. That is,
suppose we know that 𝐴 = 𝑈Σ𝑉 *. Then we’d also have that 𝐴* = 𝑉 Σ*𝑈* and therefore

𝐴*𝐴 = 𝑉 Σ*𝑈*𝑈Σ𝑉 * = 𝑉 Σ*Σ𝑉 *.

The matrix Σ*Σ is a square diagonal matrix whose diagonal entries are non-negative real
numbers. So, we conclude that if 𝐴 = 𝑈Σ𝑉 *, then we’d be able to unitarily diagonalize
𝐴*𝐴 with non-negative real eigenvalues. But since 𝐴*𝐴 is self-adjoint, we know that this is
possible thanks to the spectral theorem (Theorem 5.4.5) and Lemma 6.1.1. So this suggests
what to take for the diagonal entries of Σ and for 𝑉 : namely, the positive square roots
of the eigenvalues of 𝐴*𝐴 (i.e. the singular values of 𝐴), and the same 𝑉 that unitarily
diagonalizes 𝐴*𝐴 (i.e. the corresponding singular vectors)!

By applying the same analysis to 𝐴𝐴* = 𝑈ΣΣ*𝑈*, we know what we must take for 𝑈 . Now
all that remains is to show that if we do take these 𝑈, Σ and 𝑉 , then we get our desired
decomposition 𝐴 = 𝑈Σ𝑉 *. The proof below will basically do this, except it will construct
𝑈 directly because this makes the verification easier.

Theorem 6.2.1 (Singular Value Decomposition of Matrices)

Let 𝐴 ∈ 𝑀𝑚×𝑛(F) be a matrix of rank 𝑟 with non-zero singular values 𝜎1 ≥ · · · ≥ 𝜎𝑟 > 0.
Then there exist unitary matrices 𝑈 ∈ 𝑀𝑚×𝑚(F) and 𝑉 ∈ 𝑀𝑛×𝑛(F) such that

𝐴 = 𝑈Σ𝑉 *,

where Σ is the 𝑚× 𝑛 matrix whose entries are

Σ𝑖𝑗 =

{︃
𝜎𝑖 if 𝑖 = 𝑗 ≤ 𝑟

0 otherwise.

If 𝐴 ∈ 𝑀𝑚×𝑛(R) is real, then 𝑈 and 𝑉 can be chosen to be orthogonal matrices.

Proof: The 𝑛× 𝑛 self-adjoint matrix 𝐴*𝐴 is unitarily diagonalizable, by the spectral the-
orem. So we can find an orthonormal basis { #»𝑣 1, . . . ,

#»𝑣 𝑛} for F𝑛 consisting of eigenvectors
of 𝐴*𝐴 with corresponding eigenvalues 𝜆1 ≥ · · · ≥ 𝜆𝑛 (which are all real, by the spectral
theorem, so it is possible to order them like this). Then 𝑉 =

[︀
#»𝑣 1 · · · #»𝑣 𝑛

]︀
is a unitary

matrix and
𝐴𝑉 =

[︀
𝐴 #»𝑣 1 · · ·𝐴 #»𝑣 𝑛

]︀
.

According to Proposition 6.1.9, 𝜆𝑖 = 𝜎2
𝑖 = 0 for all 𝑖 > 𝑟. Thus the vectors #»𝑣 𝑖 for 𝑖 > 𝑟 are

all in Null(𝐴*𝐴), hence in Null(𝐴) by Lemma 6.1.8. So

𝐴𝑉 =
[︀
𝐴 #»𝑣 1 · · · 𝐴 #»𝑣 𝑟

#»
0 · · · #»

0
]︀
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Let #»𝑢 𝑖 =
1
𝜎𝑖
𝐴 #»𝑣 𝑖 for 𝑖 ≤ 𝑟 and notice that, since 𝜎𝑖 is real and positive,

⟨ #»𝑢 𝑖,
#»𝑢 𝑗⟩ =

1

𝜎𝑖𝜎𝑗
⟨𝐴 #»𝑣 𝑖, 𝐴

#»𝑣 𝑗⟩ =
1

𝜎𝑖𝜎𝑗
⟨ #»𝑣 𝑖, 𝐴

*𝐴 #»𝑣 𝑗⟩ =
1

𝜎𝑖𝜎𝑗

⟨︀
#»𝑣 𝑖, 𝜎

2
𝑗

#»𝑣 𝑗

⟩︀
=

𝜎𝑗
𝜎𝑖

⟨ #»𝑣 𝑖,
#»𝑣 𝑗⟩ .

Thus, ⟨ #»𝑢 𝑖,
#»𝑢 𝑗⟩ is 0 for 𝑖 ̸= 𝑗 and is 1 otherwise, since { #»𝑣 1 . . . ,

#»𝑣 𝑛} is an orthonormal set. It
follows that { #»𝑢 1, . . . ,

#»𝑢 𝑟} is an orthonormal set in F𝑚. Extend it to an orthonormal basis
{ #»𝑢 1, . . . ,

#»𝑢𝑚}. Then 𝑈 =
[︀

#»𝑢 1 · · · #»𝑢𝑚

]︀
is unitary and we have

𝐴𝑉 =
[︀
𝐴 #»𝑣 1 · · · 𝐴 #»𝑣 𝑟

#»
0 · · · #»

0
]︀

=
[︀
𝜎1

#»𝑢 1 · · · 𝜎𝑟 #»𝑢 𝑟
#»
0 · · · #»

0
]︀

=
[︀

#»𝑢 1 · · · #»𝑢 𝑟
#»𝑢 𝑟+1 · · · #»𝑢𝑚

]︀ [︂diag(𝜎1, . . . , 𝜎𝑟) 0𝑟×(𝑛−𝑟)

0(𝑚−𝑟)×𝑟 0(𝑛−𝑟)×(𝑚−𝑟)

]︂
= 𝑈Σ.

Multiplying both sides by 𝑉 * on the right, we get our desired decomposition 𝐴 = 𝑈Σ𝑉 *.

Exercise 75 By examining the proof of Theorem 6.2.1, show that if 𝐴 ∈ 𝑀𝑚×𝑛(R) is real, then we can
choose 𝑈 and 𝑉 to be orthogonal.

Definition 6.2.2

Singular Value
Decomposition,

SVD

A decomposition 𝐴 = 𝑈Σ𝑉 * of the type occurring in Theorem 6.2.1 is called a singular
value decomposition (SVD) of 𝐴.

Although the entries of Σ are uniquely determined by 𝐴 (they are its singular values), there
is generally quite a bit of freedom in choosing 𝑈 and 𝑉 . For instance, if 𝐴 = 𝐼𝑛 is the 𝑛×𝑛
identity matrix, then 𝐴 = 𝑈𝐼𝑛𝑈

* will be an SVD of 𝐴 for any unitary 𝑛×𝑛 unitary matrix
𝐴. Thus, an SVD is not unique.

If we let 𝐷 = diag(𝜎1, . . . , 𝜎𝑟) ∈ 𝑀𝑟×𝑟(F), we see that the matrix Σ in an SVD of 𝐴 takes
one of the following shapes, depending on 𝑟 = rank(𝐴), 𝑚 and 𝑛:

• If 𝑟 < min{𝑚,𝑛}, then Σ =

[︂
𝐷 0𝑟×(𝑛−𝑟)

0(𝑚−𝑟)×𝑟 0(𝑛−𝑟)×(𝑚−𝑟)

]︂
.

• If 𝑟 = 𝑚 < 𝑛, then Σ =
[︀
𝐷 0𝑟×(𝑛−𝑟)

]︀
.

• If 𝑟 = 𝑛 < 𝑚, then Σ =

[︂
𝐷

0(𝑚−𝑟)×𝑟

]︂
.

• If 𝑟 = 𝑚 = 𝑛, then Σ = 𝐷.

We will illustrate each of these scenarios below.

First, let’s note that the proof of Theorem 6.2.1 describes an algorithm for constructing an
SVD for a given 𝑚× 𝑛 matrix 𝐴.
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ALGORITHM (Finding an SVD for a Matrix)

Let 𝐴 ∈ 𝑀𝑚×𝑛(F) be a matrix of rank 𝑟. To find an SVD for 𝐴:

1. Find the eigenvalues 𝜆1 ≥ · · · ≥ 𝜆𝑛 and a corresponding set of orthonormal eigenvec-
tors { #»𝑣 1, . . . ,

#»𝑣 𝑛} for 𝐴*𝐴. (See the algorithm “Unitary Diagonalization of a Normal
Matrix” in Section 5.4.)

2. Set 𝜎𝑖 =
√
𝜆𝑖 for 𝑖 ≤ 𝑟.

3. Set #»𝑢 𝑖 =
1
𝜎𝑖
𝐴 #»𝑣 𝑖 for 𝑖 ≤ 𝑟. If 𝑟 < 𝑚, extend { #»𝑢 1, . . . ,

#»𝑢 𝑟} to an orthonormal basis
{ #»𝑢 1, . . . ,

#»𝑢 𝑟,
#»𝑢 𝑟+1, . . . ,

#»𝑢𝑚} of F𝑚.

4. Set 𝑉 =
[︀

#»𝑣 1 · · · #»𝑣 𝑛

]︀
and 𝑈 =

[︀
#»𝑢 1 . . . #»𝑢𝑚

]︀
, and let Σ be the 𝑚 × 𝑛 matrix whose

entries are

Σ𝑖𝑗 =

{︃
𝜎𝑖 if 𝑖 = 𝑗 ≤ 𝑟

0 otherwise.

Then 𝑈 and 𝑉 are unitary square matrices (orthogonal matrices if 𝐴 is real) and

𝐴 = 𝑈Σ𝑉 *.

Notice that in the above algorithm we will have 𝐴 #»𝑣 𝑖 = 𝜎𝑖
#»𝑢 𝑖 for all 𝑖 ≤ 𝑟 (and even for

𝑟 < 𝑖 ≤ 𝑛, since in that case 𝜎𝑖 = 0 and 𝐴 #»𝑣 𝑖 =
#»
0 by Lemma 6.1.8), which should remind

you of eigenvectors and eigenvalues. See Section 6.2.1 for a geometric interpretation.

To facilitate Step 3 of the algorithm, let’s observe that the vectors #»𝑢 1, . . . ,
#»𝑢 𝑟 form a set

of 𝑟 = rank(𝐴) linearly independent vectors in Col(𝐴), thus they must be an orthonormal
basis for Col(𝐴). It follows that { #»𝑢 𝑟+1, . . . ,

#»𝑢𝑚} must be an orthonormal basis for Col(𝐴)⊥.
Here is a handy result, which tells us that one way of finding the vectors { #»𝑢 𝑟+1, . . . ,

#»𝑢𝑚}
is by taking them to be an orthonormal basis for Null(𝐴*).

Proposition 6.2.3 Let 𝐴 ∈ 𝑀𝑚×𝑛(F). Then Col(𝐴)⊥ = Null(𝐴*).

Proof: The vectors in Col(𝐴) are those of the form 𝐴 #»𝑥 , where #»𝑥 ∈ F𝑛 is arbitrary. So a
vector #»𝑦 ∈ F𝑚 will be in Col(𝐴)⊥ if and only if

0 = ⟨𝐴 #»𝑥 , #»𝑦 ⟩ = ⟨ #»𝑥 ,𝐴* #»𝑦 ⟩ for all #»𝑥 ∈ F𝑛,

which is the case if and only if 𝐴* #»𝑦 ∈ (F𝑛)⊥ = { #»
0 }, i.e., if and only if #»𝑦 ∈ Null(𝐴*),

proving the proposition.

Let’s now compute SVDs for the matrices in Examples 6.1.3—6.1.6.
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Example 6.2.4 Let 𝐴 =

⎡⎣ 1 −4
−2 2
2 4

⎤⎦. The singular values of 𝐴 were found to be 𝜎1 = 6 and 𝜎2 = 3, with

corresponding singular vectors #»𝑣 1 =

[︂
0
1

]︂
and #»𝑣 2 =

[︂
1
0

]︂
(which are unit vectors). Now let

#»𝑢 1 =
1

𝜎1
𝐴 #»𝑣 1 =

1

6

⎡⎣−4
2
4

⎤⎦ =
1

3

⎡⎣−2
1
2

⎤⎦ and #»𝑢 2 =
1

𝜎2
𝐴 #»𝑣 2 =

1

3

⎡⎣ 1
−2
2

⎤⎦ .

Notice that { #»𝑢 1,
#»𝑢 2} is an orthonormal set in F3 (as guaranteed by the proof of Theorem

6.2.1). We must extend it to an orthonormal basis for F3. This can be achieved in a variety
of ways. For instance, we can take the cross product of #»𝑢 1 and #»𝑢 2 or we can find an

orthonormal basis for Null(𝐴*). In any case, we obtain #»𝑢 3 =
1

3

⎡⎣2
2
1

⎤⎦.
Finally, set

𝑉 =
[︀

#»𝑣 1
#»𝑣 2

]︀
=

[︂
0 1
1 0

]︂
and 𝑈 =

[︀
#»𝑢 1

#»𝑢 2
#»𝑢 3

]︀
=

1

3

⎡⎣−2 1 2
1 −2 2
2 2 1

⎤⎦
and notice that these matrices are orthogonal. The resulting SVD of 𝐴 is:

𝐴 = 𝑈

⎡⎣6 0
0 3
0 0

⎤⎦𝑉 𝑇 .

Example 6.2.5 Let 𝐴 =

[︂
1 1 0
−1 1 1

]︂
. The singular values of 𝐴 were found to be 𝜎1 =

√
3, 𝜎2 =

√
2 and

𝜎3 = 0, with corresponding singular vectors

⎡⎣−1
1
1

⎤⎦,
⎡⎣1
1
0

⎤⎦ and

⎡⎣ 1
−1
2

⎤⎦, respectively.
Let #»𝑣 1 =

1√
3

⎡⎣−1
1
1

⎤⎦, #»𝑣 2 =
1√
2

⎡⎣1
1
0

⎤⎦ and #»𝑣 3 =
1√
6

⎡⎣ 1
−1
2

⎤⎦, so that { #»𝑣 1,
#»𝑣 2,

#»𝑣 3} is orthonor-

mal. Notice that 𝑟 = rank(𝐴) = 2, since there are only two non-zero singular values. Next,
let

#»𝑢 1 =
1

𝜎1
𝐴 #»𝑣 1 =

[︂
0
1

]︂
and #»𝑢 2 =

1

𝜎2
𝐴 #»𝑣 2 =

[︂
1
0

]︂
.

Then { #»𝑢 1,
#»𝑢 2} is already a basis for F2 and we can construct the orthogonal matrices

𝑉 =
1√
6

⎡⎣−
√
2
√
3 1√

2
√
3 −1√

2 0 2

⎤⎦ and 𝑈 =

[︂
0 1
1 0

]︂
.
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The resulting SVD of 𝐴 is

𝐴 = 𝑈

[︂√
3 0 0

0
√
2 0

]︂
𝑉 𝑇 .

Example 6.2.6 Let 𝐴 =

[︂
0 2
−3 0

]︂
. The singular values of 𝐴 were found to be 𝜎1 = 3 and 𝜎2 = 2, with

corresponding singular vectors #»𝑣 1 =

[︂
1
0

]︂
and #»𝑣 2 =

[︂
0
1

]︂
, respectively. These are unit

vectors, so we may set

#»𝑢 1 =
1

𝜎1
𝐴 #»𝑣 1 =

[︂
0
−1

]︂
and #»𝑢 2 =

1

𝜎2
𝐴 #»𝑣 2 =

[︂
1
0

]︂
.

Thus, in this case our orthogonal matrices are

𝑉 =

[︂
1 0
0 1

]︂
and 𝑈 =

[︂
0 1
−1 0

]︂
and the resulting SVD of 𝐴 is

𝐴 = 𝑈

[︂
3 0
0 2

]︂
𝑉 𝑇 .

Interestingly, while 𝐴 is not diagonalizable over R, it is diagonalizable over C (with distinct
eigenvalues ±

√
−6). However, 𝐴 is not unitarily diagonalizable since it is not normal, as

you can check.

Example 6.2.7 Let 𝐴 =

⎡⎢⎢⎣
1 2 −1
2 4 −2
−1 −2 1
𝑖 2𝑖 −𝑖

⎤⎥⎥⎦. The singular values of 𝐴 were found to be 𝜎1 =
√
42 and 𝜎2 =

𝜎3 = 0 with corresponding orthonormal eigenvectors #»𝑣 1 = 1√
6

⎡⎣−1
−2
1

⎤⎦ , #»𝑣 2 = 1√
2

⎡⎣1
0
1

⎤⎦
and #»𝑣 3 = 1√

3

⎡⎣−1
1
1

⎤⎦, respectively. Here there is only one non-zero singular value, and

correspondingly we set

#»𝑢 1 =
1

𝜎1
𝐴 #»𝑣 1 =

1√
7

⎡⎢⎢⎣
−1
−2
1
−𝑖

⎤⎥⎥⎦ .

Now we must extend { #»𝑢 1} to an orthonormal basis for C4. We can do so by applying
the Gram–Schmidt process to { #»𝑢 1,

#»𝑒 1,
#»𝑒 2,

#»𝑒 3,
#»𝑒 4}, where the #»𝑒 𝑖 are the standard basis

vectors for C4, or by finding an orthonormal basis for Null(𝐴*). In either case it’s going to
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be a tedious computation! We’ll spare you the boring details and just give the end result:

#»𝑢 2 =
1√
2

⎡⎢⎢⎣
𝑖
0
0
1

⎤⎥⎥⎦ , #»𝑢 3 =
1√
6

⎡⎢⎢⎣
1
0
2
𝑖

⎤⎥⎥⎦ and #»𝑢 4 =
1√
21

⎡⎢⎢⎣
−2
3
2

−2𝑖

⎤⎥⎥⎦ .

We thus have our unitary matrices 𝑉 =
[︀

#»𝑣 1
#»𝑣 2

#»𝑣 3

]︀
and 𝑈 =

[︀
#»𝑢 1

#»𝑢 2
#»𝑢 3

#»𝑢 4

]︀
with

corresponding SVD

𝐴 = 𝑈

⎡⎢⎢⎣
√
42 0 0
0 0 0
0 0 0
0 0 0

⎤⎥⎥⎦𝑉 *.

Exercise 76 Let 𝐴 ∈ 𝑀𝑛×𝑛(F) be a self-adjoint matrix. How does an SVD 𝐴 = 𝑈Σ𝑉 * compare to a
unitary diagonalization 𝐴 = 𝑊𝐷𝑊 *?

6.2.1 The Geometry of the Singular Value Decomposition

In this section we will work over F = R.

If we diagonalize a square matrix 𝐴 ∈ 𝑀𝑛×𝑛(R) to get 𝐴 = 𝑃𝐷𝑃−1, then we can interpret
this factorization as follows. The matrix 𝐴 sends the vector #»𝑥 ∈ R𝑛 to the vector 𝐴 #»𝑥 =
𝑃𝐷𝑃−1 #»𝑥 . The matrix 𝑃−1 changes coordinates from the standard basis for R𝑛 to our
basis of eigenvectors, then the matrix 𝐷 scales the coordinate of each eigenvector by the
corresponding eigenvalue, and finally 𝑃 converts the result back to the standard basis.

If we can orthogonally diagonalize 𝐴, then 𝑃 and 𝑃−1 = 𝑃 𝑇 are still change of basis
matrices, but they change bases from the one orthonormal basis to another. In a sense,
they are built up of rotations and reflections, but they don’t perform any “stretching.”

Now if𝐴 ∈ 𝑀𝑚×𝑛(R) has an SVD given by𝐴 = 𝑈Σ𝑉 𝑇 , then we can interpret the orthogonal
matrices 𝑉 𝑇 and 𝑈 as each performing rotations and/or reflections, while the diagonal
matrix Σ performs a scaling (possibly by zero in some directions). So the singular value
decomposition now paints the following picture of any linear map from R𝑛 to R𝑚: it is
built up of rotations and/or reflections, followed by scalings, then followed by additional
rotations and/or reflections! For instance, the effect of 𝐴 ∈ 𝑀2×2(R) on the unit circle can
be pictured as follows:

#»𝑣 1

#»𝑣 2

𝑉 𝑇

−→ #»𝑒 1

#»𝑒 2

Σ−→ 𝜎1
#»𝑒 1

𝜎2
#»𝑒 2

𝑈−→
𝜎2

#»𝑢 1

𝜎2
#»𝑢 2
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6.3 Singular Value Decomposition of Linear Maps

We now come to the result that we wished to establish in the introduction to this chapter.
We’re going to prove that a linear map between finite-dimensional inner product spaces can
always be “diagonalized” by picking appropriate (and possibly distinct) orthonormal bases
for its domain and codomain.

Theorem 6.3.1 (Singular Value Decomposition of Linear Maps)

Let 𝐿 : 𝑊1 → 𝑊2 be a linear map between finite-dimensional inner product spaces of di-
mensions 𝑛 and 𝑚, respectively. If 𝑟 = rank(𝐴), then there exist orthonormal basis ℬ and
𝒞 for 𝑊1 and 𝑊2 and an 𝑟 × 𝑟 diagonal matrix 𝐷 such that

𝒞 [𝐿]ℬ =

[︂
𝐷 0𝑟×(𝑛−𝑟)

0(𝑚−𝑟)×𝑟 0(𝑚−𝑟)×(𝑛−𝑟)

]︂
.

Proof: Choose orthonormal bases ℬ′ and 𝒞′ for 𝑊1 and 𝑊2, let 𝐴 = 𝒞′ [𝐿]ℬ′ , and let
𝐴 = 𝑈Σ𝑉 * be an SVD of 𝐴. Since ℬ′ is an orthonormal basis, the discussion preceding
Theorem 5.5.1 shows that the inner product of two vectors in 𝑊1 is the same as the inner
product of their ℬ′-coordinate vectors; and the analogous statement is true for 𝑊2 and
𝒞′. Thus if we let ℬ be the basis for 𝑊1 consisting of the vectors whose ℬ′-coordinates
are the columns of 𝑉 , and if we let 𝒞 be the basis for 𝑊2 consisting of the vectors whose
𝒞′-coordinates are the columns of 𝑈 , then ℬ and 𝒞 are orthonormal bases, and we have
𝑈 = 𝒞′ℐ𝒞 and 𝑉 = ℬ′ℐℬ so that

𝒞 [𝐿]ℬ = 𝒞ℐ𝒞′ 𝒞′ [𝐿]ℬ′ ℬ′ℐℬ = 𝑈−1𝐴𝑉 = Σ,

as required.

Let’s see the proof of this theorem in action.

Example 6.3.2 Consider the differentiation map 𝐷 : 𝒫2(F) → 𝒫1(F) given by 𝐷(𝑝(𝑥)) = 𝑝′(𝑥), and suppose

that both polynomial spaces are endowed with the inner product ⟨𝑝, 𝑞⟩ =
∫︁ 1

−1
𝑝(𝑥)𝑞(𝑥) 𝑑𝑥.

The first order of business is to find orthonormal bases ℬ′ and 𝒞′ for 𝒫2(R) ad 𝒫1(R),
respectively. According to Example 4.3.6, we can take

ℬ′ =

{︃
1√
2
,

√︂
3

2
𝑥,

√︂
5

2

(︂
3

2
𝑥2 − 1

2

)︂}︃
and 𝒞′ =

{︃
1√
2
,

√︂
3

2
𝑥

}︃
.

Then let

𝐴 = 𝒞′ [𝐷]ℬ′ =

[︂
0
√
3 0

0 0
√
15

]︂
.

We must now find an SVD of 𝐴. We have

𝐴𝑇𝐴 =

⎡⎣0 0 0
0 3 0
0 0 15

⎤⎦ .
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So the eigenvalues of 𝐴*𝐴 are 𝜆1 = 15, 𝜆2 = 3 and 𝜆3 = 0 with corresponding eigenvectors

#»𝑣 1 =

⎡⎣0
0
1

⎤⎦, #»𝑣 2 =

⎡⎣0
1
0

⎤⎦ and #»𝑣 3 =

⎡⎣1
0
0

⎤⎦.
Thus the singular values of 𝐴 are 𝜎1 =

√
15, 𝜎2 =

√
3 and 𝜎3 = 0, with corresponding

singular vectors #»𝑣 1,
#»𝑣 2 and #»𝑣 3 as above.

Now let
#»𝑢 1 =

1

𝜎1
𝐴 #»𝑣 1 =

[︂
0
1

]︂
and #»𝑢 2 =

1

𝜎2
𝐴 #»𝑣 2 =

[︂
1
0

]︂
.

Then { #»𝑢 1,
#»𝑢 2} is an orthonormal basis for R2. So if we let

𝑉 =

⎡⎣0 0 1
0 1 0
1 0 0

⎤⎦ and 𝑈 =

[︂
0 1
1 0

]︂

then the corresponding SVD of 𝐴 is

𝐴 = 𝑈

[︂√
15 0 0

0
√
3 0

]︂
𝑉 𝑇 .

Let’s convert everything back to polynomials. Our desired basis ℬ for 𝒫2(R) comes from
the columns of 𝑉 (thought of as being ℬ′-coordinate vectors):

ℬ =

{︃√︂
5

2

(︂
3

2
𝑥2 − 1

2

)︂
,

√︂
3

2
𝑥,

1√
2

}︃
.

Similarly, our desired basis 𝒞 for 𝒫1(R) comes from the columns of 𝑈 (thought of as being
𝒞′-coordinate vectors):

𝒞 =

{︃√︂
3

2
𝑥,

1√
2

}︃
.

We’ll leave it to you to check that

𝒞 [𝐷]ℬ =

[︂√
15 0 0

0
√
3 0

]︂
,

as claimed by Theorem 6.3.1 (bear in mind that 𝑟 = rank(𝐷) = 2).
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6.4 Applications of the Singular Value Decomposition

In this final section we will highlight a select few applications of the singular value decom-
position. We will barely scratch the surface of what is possible. Indeed, the applications of
the singular value decomposition are too numerous and too broad, ranging from computa-
tional mathematics, statistics, text analysis, image and data compression, machine learning,
quantum physics, to even psychology! Essentially, if you are able to put your data into a
matrix somehow, then it’s very likely that the SVD will say something interesting about
this matrix (and hence your data).

Here’s a simple, but relatable, example. You’ve probably used software to compute the rank
or nullspace of a matrix. Have you wondered how the software does these computations?
You might be surprised to learn that it very likely used SVD at some point. For instance,
Mathematica (hence WolframAlpha), Maple and MATLAB all use SVD in their rank and
nullspace routines. One reason for this is that SVD offers certain numerical advantages that
makes it more stable than, say, the more efficient Gaussian elimination algorithm.

6.4.1 Low-rank Approximations

Many real-life applications of linear algebra involve large matrices built out of data. For
instance, the results of a demographic survey of the population of Ontario can be recorded
in a matrix each of whose rows represents a resident of Ontario, and whose columns rep-
resent values such as age, gender, income and city of residence. Movies on a streaming
platform could be represented as rows in a matrix whose columns contain information such
as language, running time and genre. A gray-scale image could be represented as a matrix
whose entries are the color intensities of each pixel.

In practice, these large data matrices tend to contain certain dominant features due to the
inherent correlation in the data (e.g. nearby pixels in an image tend to have the same shade
of colour), and it’s highly desirable that these dominant features be identified. The SVD
provides us with a way to do this. It turns out that the singular vectors associated to the
larger singular values contain most of the information about the matrix, in a certain sense.
Therefore by “forgetting” about the parts of the matrix coming from the smaller singular
values, we’re able to somehow compress our matrix down into something that is simpler
to analyze but that is still fairly representative. We will explain how this works in this
section, and at the end we will illustrate by showing how these ideas can help with image
compression.

As a first step, we will introduce a more compact version of SVD that removes unnecessary
rows and columns from 𝑈 , Σ and 𝑉 𝑇 . Let’s look back at the SVDs from Examples 6.2.4–
6.2.6 to illustrate the idea. We had obtained the decompositions⎡⎣ 1 −4

−2 2
2 4

⎤⎦ =
[︀

#»𝑢 1
#»𝑢 2

#»𝑢 3

]︀ ⎡⎣6 0
0 3
0 0

⎤⎦[︂
#»𝑣 𝑇
1

#»𝑣 𝑇
2

]︂
(6.1)

[︂
1 1 0
−1 1 1

]︂
=

[︀
#»𝑢 1

#»𝑢 2

]︀ [︂√3 0 0

0
√
2 0

]︂⎡⎣ #»𝑣 𝑇
1

#»𝑣 𝑇
2

#»𝑣 𝑇
3

⎤⎦ (6.2)

[︂
0 2
−3 0

]︂
=

[︀
#»𝑢 1

#»𝑢 2

]︀ [︂3 0
0 2

]︂ [︂
#»𝑣 𝑇
1

#»𝑣 𝑇
2

]︂
. (6.3)
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In (6.1), the row of 0s in Σ indicates that the vector #»𝑢 3 is rather unnecessary since it will
get multiplied by 0. So if we delete #»𝑢 3 and the row of 0s from Σ, we would obtain the
simpler decomposition ⎡⎣ 1 −4

−2 2
2 4

⎤⎦ =
[︀

#»𝑢 1
#»𝑢 2

]︀ [︂6 0
0 3

]︂ [︂
#»𝑣 𝑇
1

#»𝑣 𝑇
2

]︂

Likewise, the column of 0s in (6.2) indicates that we could’ve done without #»𝑣 𝑇
3 . By deleting

both, we obtain the simpler decomposition[︂
1 1 0
−1 1 1

]︂
=

[︀
#»𝑢 1

#»𝑢 2

]︀ [︂√3 0

0
√
2

]︂ [︂
#»𝑣 𝑇
1

#»𝑣 𝑇
2

]︂
.

On the other hand, there are no redundancies in (6.3).

In general, suppose that 𝐴 is an 𝑚× 𝑛 matrix of rank 𝑟 with SVD 𝐴 = 𝑈Σ𝑉 *. The 𝑚× 𝑛
matrix Σ will have 𝑟 non-zero entries on its diagonal. By deleting all zero rows and columns
from Σ, we are left with an 𝑟 × 𝑟 diagonal matrix Σ𝑟 = diag(𝜎1, . . . , 𝜎𝑟). Let 𝑈𝑟 and 𝑉𝑟 be
the matrices formed from the first 𝑟 columns of 𝑈 and 𝑉 . Thus, 𝑈𝑟 is an 𝑚× 𝑟 matrix and
𝑉 *
𝑟 is an 𝑟 × 𝑛 matrix.

Definition 6.4.1

Compact SVD

Let 𝐴 ∈ 𝑀𝑚×𝑛(F) be a rank 𝑟 matrix with singular value decomposition 𝐴 = 𝑈Σ𝑉 *. Let
Σ𝑟, 𝑈𝑟 and 𝑉𝑟 be as described in the preceding paragraph. The decomposition

𝐴 = 𝑈𝑟Σ𝑟𝑉
*
𝑟

is called a compact singular value decomposition of 𝐴.

Example 6.4.2 In Example 6.2.7 we obtained the singular value decomposition

𝐴 =

⎡⎢⎢⎣
1 2 −1
2 4 −2
−1 −2 1
𝑖 2𝑖 −𝑖

⎤⎥⎥⎦ = 𝑈

⎡⎢⎢⎣
√
42 0 0
0 0 0
0 0 0
0 0 0

⎤⎥⎥⎦𝑉 *,

where

𝑈 =

⎡⎢⎢⎢⎣
− 1√

7
𝑖√
2

1√
6
− 2√

21
−2√
7

0 0 3√
21

1√
7

0 2√
6

2√
21

− 𝑖√
7

1√
2

𝑖√
6
− 2𝑖√

21

⎤⎥⎥⎥⎦ and 𝑉 =

⎡⎢⎣− 1√
6

1√
2
− 1√

3

− 2√
6

0 1√
3

1√
6

1√
2

1√
3

⎤⎥⎦ .

The matrix 𝐴 has rank 𝑟 = 1 (since it has only one non-zero singular value). Let’s delete
the last three zero rows from Σ (hence the last three columns from 𝑈), and then let’s delete
the last two columns from Σ (hence the last two columns from 𝑉 ). We are left with

Σ𝑟 =
[︀√

42
]︀
, 𝑈𝑟 =

1√
7

⎡⎢⎢⎣
−1
−2
1
−𝑖

⎤⎥⎥⎦ and 𝑉𝑟 =
1√
6

⎡⎣−1
−2
1

⎤⎦ .
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The corresponding compact SVD is⎡⎢⎢⎣
1 2 −1
2 4 −2
−1 −2 1
𝑖 2𝑖 −𝑖

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
− 1√

7

− 2√
7

1√
7

− 𝑖√
7

⎤⎥⎥⎥⎦ [︀√
42

]︀ [︁− 1√
6
− 2√

6
1√
6

]︁
.

You should multiply out the right side to confirm that it does indeed give the left side!

Notice that we’ve replaced our original decomposition 𝐴 = 𝑈Σ𝑉 * with the much simpler
𝐴 = 𝜎1

#»𝑢 1
#»𝑣 *
1.

The compact SVD in the example above took on the particularly simple form 𝐴 = 𝜎1
#»𝑢 1

#»𝑣 *
1

owing to the fact that 𝑟 = rank(𝐴) was equal to 1. In the general situation, we’ll be able
to express 𝐴 as a sum of 𝑟 matrices of this form.

Proposition 6.4.3 Let 𝐴 ∈ 𝑀𝑚×𝑛(F) have rank 𝑟 and compact SVD 𝐴 = 𝑈𝑟Σ𝑟𝑉
*
𝑟 , where Σ𝑟 =

⎡⎢⎣𝜎1 0 0

0
. . . 0

0 0 𝜎𝑟

⎤⎥⎦.
Let #»𝑢 1, . . . ,

#»𝑢 𝑟 and #»𝑣 1, . . . ,
#»𝑣 𝑟 be the columns of 𝑈𝑟 and 𝑉𝑟, respectively. Then:

𝐴 = 𝜎1
#»𝑢 1

#»𝑣 *
1 + · · ·+ 𝜎𝑟

#»𝑢 𝑟
#»𝑣 *
𝑟 .

Proof: We have

𝐴 = 𝑈𝑟Σ𝑟𝑉
*
𝑟

=
[︀

#»𝑢 1 · · · #»𝑢 𝑟

]︀ ⎡⎢⎣𝜎1 0 0

0
. . . 0

0 0 𝜎𝑟

⎤⎥⎦
⎡⎢⎣

#»𝑣 *
1
...

#»𝑣 *
𝑟

⎤⎥⎦
=

[︀
𝜎1

#»𝑢 1 · · · 𝜎𝑟 #»𝑢 𝑟

]︀ ⎡⎢⎣
#»𝑣 *
1
...

#»𝑣 *
𝑟

⎤⎥⎦
= 𝜎1

#»𝑢 1
#»𝑣 *
1 + · · ·+ 𝜎𝑟

#»𝑢 𝑟
#»𝑣 *
𝑟 ,

using the definition of matrix multiplication.

Example 6.4.4 From Example 6.2.4, we have the SVD⎡⎣ 1 −4
−2 2
2 4

⎤⎦ =

⎡⎣−2
3

1
3

2
3

1
3 −2

3
2
3

2
3

2
3

1
3

⎤⎦⎡⎣6 0
0 3
0 0

⎤⎦[︂
0 1
1 0

]︂

hence compact SVD ⎡⎣ 1 −4
−2 2
2 4

⎤⎦ =

⎡⎣−2
3

1
3

1
3 −2

3
2
3

2
3

⎤⎦[︂
6 0
0 3

]︂ [︂
0 1
1 0

]︂
.
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Thus, ⎡⎣ 1 −4
−2 2
2 4

⎤⎦ = 6

⎡⎣−2
3

1
3
2
3

⎤⎦ [︀
0 1

]︀
+ 3

⎡⎣ 1
3
−2

3
2
3

⎤⎦ [︀
1 0

]︀
.

Exercise 77 Let #»𝑢 , #»𝑣 ∈ F𝑛 be non-zero vectors. Show that the 𝑛 × 𝑛 matrix #»𝑢 #»𝑣 * has rank 1. This is
sometimes called the outer product of #»𝑢 and #»𝑣 . (Recall that the standard inner product
of #»𝑢 and #»𝑣 is given by #»𝑣 * #»𝑢 .)

In view of the previous exercise and Proposition 6.4.3, we’re now able to use the SVD to
express a given rank 𝑟 matrix 𝐴 as the sum of 𝑟 matrices of rank 1:

𝐴 = 𝜎1
#»𝑢 1

#»𝑣 *
1 + · · ·+ 𝜎𝑟

#»𝑢 𝑟
#»𝑣 *
𝑟 .

Since the singular values of 𝐴 are ordered in descending order 𝜎1 ≥ · · · ≥ 𝜎𝑟, the tail-end of
this representation will in some sense be “less significant” if the smaller singular values are
very small. In many real-life scenarios, the small singular values will be numerically much
smaller than the first few large singular values, and so if we discard them then not much is
lost. This motivates the following definition.

Definition 6.4.5

Rank-𝑘 Truncation

Let 𝐴 ∈ 𝑀𝑚×𝑛(F) be a rank 𝑟 matrix with singular values 𝜎1 ≥ · · · ≥ 𝜎𝑟 > 0 and compact
singular value decomposition 𝐴 = 𝑈𝑟Σ𝑟𝑉

*
𝑟 , where 𝑈 =

[︀
#»𝑢 1 · · · #»𝑢 𝑟

]︀
and 𝑉 =

[︀
#»𝑣 1 · · · #»𝑣 𝑟

]︀
.

Let 𝑘 ≤ 𝑟 be a positive integer. The rank-𝑘 truncation of 𝐴 is

𝐴𝑘 = 𝜎1
#»𝑢 1

#»𝑣 *
1 + · · ·+ 𝜎𝑘

#»𝑢 𝑘
#»𝑣 *
𝑘.

That is, the rank-𝑘 truncation only keeps the contributions of the largest 𝑘 singular values
and corresponding singular vectors and discards the rest. Here are some key properties.

Proposition 6.4.6 Let 𝐴 ∈ 𝑀𝑚×𝑛(F) be a matrix of rank 𝑟 with rank-𝑘 truncation

𝐴𝑘 = 𝜎1
#»𝑢 1

#»𝑣 *
1 + · · ·+ 𝜎𝑘

#»𝑢 𝑘
#»𝑣 *
𝑘.

Then:

(a) 𝐴 = 𝐴𝑟.

(b) rank(𝐴𝑘) = 𝑘.

(c) ‖𝐴−𝐴𝑘‖ ≤ ∑︀𝑟
𝑖=𝑘+1 𝜎𝑖, where ‖𝑋‖ =

√︀
tr(𝑋*𝑋) is the norm induced from the Frobe-

nius inner product ⟨𝐴,𝐵⟩ = tr(𝐵*𝐴) on 𝑀𝑚×𝑛(F). (See Example 4.1.6 and the two
exercises that follow it.)

Proof: (a) This is just Proposition 6.4.3.
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(b) Let’s view 𝐴𝑘 as giving the linear map 𝐿𝑘 : F𝑛 → F𝑚 defined by 𝐿𝑘(
#»𝑥 ) = 𝐴𝑘

#»𝑥 . We
claim that the range of 𝐿𝑘 is Span{ #»𝑢 1, . . . ,

#»𝑢 𝑘}. Since the vectors { #»𝑢 1, . . . ,
#»𝑢 𝑘} are

linearly independent, this will show that the rank of 𝐿𝑘, hence of 𝐴𝑘, is equal to 𝑘, as
required.

To see why the claim about the range of 𝐿𝑘 is true, consider first any #»𝑥 ∈ F𝑛. Then

𝐿𝑘(
#»𝑥 ) = 𝐴𝑘

#»𝑥 =

𝑘∑︁
𝑖=1

𝜎𝑖
#»𝑢 𝑖

#»𝑣 *
𝑖

#»𝑥 =

𝑘∑︁
𝑖=1

𝜎𝑖
#»𝑢 𝑖 ⟨ #»𝑥 , #»𝑣 𝑖⟩

is a linear combination of { #»𝑢 1, . . . ,
#»𝑢 𝑘}, proving that Range(𝐿𝑘) ⊆ Span{ #»𝑢 1, . . . ,

#»𝑢 𝑘}.
Conversely, given any 𝑗 ∈ {1, . . . , 𝑘}, consider

𝐿𝑘(
#»𝑣 𝑗) =

𝑘∑︁
𝑖=1

𝜎𝑖
#»𝑢 𝑖 ⟨ #»𝑣 𝑗 ,

#»𝑣 𝑖⟩ .

Since { #»𝑣 1, . . . ,
#»𝑣 𝑗} is an orthonormal set, the above reduces to 𝐿𝑘(

#»𝑣 𝑗) = 𝜎𝑗
#»𝑢 𝑗 . And

since 𝜎𝑗 ̸= 0 by the definition of the compact SVD, it follows that #»𝑢 𝑗 = 𝐿𝑘(
1
𝜎𝑗

#»𝑣 𝑗) is

in the range of 𝐿𝑘. This completes the proof that Range(𝐿𝑘) = Span{ #»𝑢 1, . . . ,
#»𝑢 𝑘}, as

claimed.

(c) We have

‖𝐴−𝐴𝑘‖ =

⃦⃦⃦⃦
⃦

𝑟∑︁
𝑖=𝑘+1

𝜎𝑖
#»𝑢 𝑖

#»𝑣 *
𝑖

⃦⃦⃦⃦
⃦

≤
𝑟∑︁

𝑖=𝑘+1

|𝜎𝑖| ‖ #»𝑢 𝑖
#»𝑣 *
𝑖 ‖

=
𝑟∑︁

𝑖=𝑘+1

𝜎𝑖 tr ((
#»𝑢 𝑖

#»𝑣 *
𝑖 )

* #»𝑢 𝑖
#»𝑣 *
𝑖 )

=
𝑟∑︁

𝑖=𝑘+1

𝜎𝑖 tr (
#»𝑣 𝑖

#»𝑢 *
𝑖

#»𝑢 𝑖
#»𝑣 *
𝑖 )

=

𝑟∑︁
𝑖=𝑘+1

𝜎𝑖 tr (
#»𝑣 𝑖

#»𝑣 *
𝑖 ) ,

where the last equality follows since #»𝑢 *
𝑖

#»𝑢 𝑖 = ⟨ #»𝑢 𝑖,
#»𝑢 𝑖⟩ = 1. Now, using the fact that

tr(𝑋𝑌 ) = tr(𝑌 𝑋) for matrices 𝑋 and 𝑌 of compatible sizes, we see that tr ( #»𝑣 𝑖
#»𝑣 *
𝑖 ) =

tr ( #»𝑣 *
𝑖

#»𝑣 𝑖) = ⟨ #»𝑣 𝑖,
#»𝑣 𝑖⟩ = 1, completing the proof.

Exercise 78 We can do better than the inequality in part (c) of Proposition 6.4.6. Show that, in fact,

‖𝐴−𝐴𝑘‖ =

⎯⎸⎸⎷ 𝑟∑︁
𝑖=𝑘+1

𝜎2
𝑖 .

Hint: Show that the matrices #»𝑢 𝑖
#»𝑣 *
𝑖 and

#»𝑢 𝑗
#»𝑣 *
𝑗 are orthogonal with respect to the Frobenius

inner product.
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Part (b) of Proposition 6.4.6 justifies that the name “rank-𝑘 truncation” for 𝐴𝑘, while part
(c) shows that if the singular values 𝜎𝑖 for 𝑖 > 𝑘 are small, then ‖𝐴−𝐴𝑘‖ will be small too,
and so 𝐴𝑘 will in this sense be a good approximation to 𝐴. Of course, this is only a heuristic
justification, since even if the 𝜎𝑖’s are small, their sum might not be small. However, there
is a sense in which 𝐴𝑘 is the best rank 𝑘 approximation to 𝐴. This is the content of the
next theorem, which we state without proof. (The proof is not difficult, but it requires a
few extra ideas that will veer us off course.)

Theorem 6.4.7 (Eckart–Young Theorem)

Let 𝐴 ∈ 𝑀𝑚×𝑛(F), and let 𝐴𝑘 be the rank-𝑘 truncation of 𝐴. Let 𝐵 ∈ 𝑀𝑚×𝑛(F) be an
arbitrary rank 𝑘 matrix. Then

‖𝐴−𝐵‖ ≥ ‖𝐴−𝐴𝑘‖.

Thus, 𝐴𝑘 is closer to 𝐴 than any other rank 𝑘 matrix 𝐵.

Example 6.4.8 Consider the matrix 𝐴 =

⎡⎢⎢⎣
1 0 −2
1 1 3
−1 0 1
−4 0 2

⎤⎥⎥⎦. Using software, we find 𝐴 = 𝑈Σ𝑉 * with

𝑈 ≈

⎡⎢⎢⎣
−0.408 −0.207 −0.833 −0.312
0.272 0.894 −0.356 0
0.274 0.003 0.217 −0.937
0.827 −0.397 −0.365 0.156

⎤⎥⎥⎦ , 𝑉 ≈

⎡⎣−0.721 0.677 0.148
0.053 0.266 −0.962
0.691 0.686 0.228

⎤⎦
and

Σ ≈

⎡⎢⎢⎣
5.156 0 0
0 3.358 0
0 0 0.370
0 0 0

⎤⎥⎥⎦ .

We can delete the bottom row from Σ and the fourth column from 𝑈 to obtain a compact
SVD. Here are the rank truncations of 𝐴:

𝐴1 ≈ 5.156

⎡⎢⎢⎣
−0.408
0.272
0.274
0.827

⎤⎥⎥⎦ [︀
−0.721 0.053 0.691

]︀
=

⎡⎢⎢⎣
1.517 −0.111 −1.452
−1.011 0.074 0.968
−1.019 0.075 0.975
−3.074 0.226 2.943

⎤⎥⎥⎦

𝐴2 ≈ 𝐴1 + 3.358

⎡⎢⎢⎣
−0.207
0.894
0.003
−0.397

⎤⎥⎥⎦ [︀
0.677 0.266 0.686

]︀
=

⎡⎢⎢⎣
1.046 −0.295 −1.930
1.021 0.872 3.028
−1.012 0.077 0.983
−3.977 −0.131 2.032

⎤⎥⎥⎦
𝐴3 = 𝐴.

We have ‖𝐴 − 𝐴1‖ ≈ 3.379 ≤ 𝜎2 + 𝜎3 and ‖𝐴 − 𝐴2‖ ≈ 0.36983 ≤ 𝜎3, as predicted by
Proposition 6.4.6(c).
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Let’s now illustrate how all this can be applied to perform image compression. The basic
idea is to encode an image into a matrix, say by converting to gray-scale and then recording
the (𝑖, 𝑗)th pixel intensity as the (𝑖, 𝑗)th entry of a matrix 𝐴. This will usually create a rather
large matrix, with large rank. However, in practice, most of the singular values of 𝐴 will be
extremely small. Thus we will be able to use the rank-𝑘 approximation for 𝑘 ≪ rank(𝐴) to
approximate the original image. This results in us having to use less memory to store the
image, since we only need to use the truncated SVD data to reconstruct it.

Here is a simple example of three rank-𝑘 truncations of an image.

(a) 𝑘 = 5 (b) 𝑘 = 25 (c) 𝑘 = 75 (d) Original
(𝑟 = 361)

Figure 6.4.1: Low-rank image compression. Ritmüller, E. (n.d.). Portrait of Carl Friedrich
Gauss [Lithograph]. Smithsonian Libraries. https://library.si.edu/image-gallery/

73624. Adapted using Python code.

We should mention in closing that this is not a very sophisticated image compression tech-
nique (in particular, it is lossy), and there are many better compression algorithms avail-
able. Nonetheless, it is a very compelling application of SVD! You can visit Tim Baumann’s
SVD-Demo webpage to try it yourself.

6.4.2 The Pseudoinverse and Least Squares Revisited

Let’s consider once more the basic problem of solving a system of equations given in matrix
form as 𝐴 #»𝑥 =

#»

𝑏 , where 𝐴 ∈ 𝑀𝑚×𝑛(F) and
#»

𝑏 ∈ F𝑚. As you well know, this system has
a solution if and only if

#»

𝑏 ∈ Col(𝐴). If 𝐴 is square and invertible, then this condition is
always satisfied, and in fact we know that the system will have a unique solution, which is
given by #»𝑥 = 𝐴−1 #»

𝑏 .

If 𝐴 is an arbitrary 𝑚×𝑛 matrix, we can use the SVD 𝐴 = 𝑈Σ𝑉 * to re-write the equation
𝐴 #»𝑥 =

#»

𝑏 as
𝑈Σ𝑉 * #»𝑥 =

#»

𝑏 .

We now wish to “invert” 𝑈, Σ and 𝑉 . With 𝑈 and 𝑉 , this is no problem, since they are
square and unitary. However, Σ is an 𝑚 × 𝑛 matrix, so it doesn’t make sense to invert
it. But let’s pretend we can: the non-zero diagonal entries of Σ are the non-zero singular
values 𝜎1, . . . , 𝜎𝑟, so let’s define Σ† to be the 𝑛×𝑚 matrix (not the 𝑚× 𝑛 matrix!) whose
diagonal entries are 1

𝜎1
, . . . , 1

𝜎𝑟
and all of whose other entries are 0.

https://library.si.edu/image-gallery/73624
https://library.si.edu/image-gallery/73624
https://timbaumann.info/svd-image-compression-demo/
https://timbaumann.info/svd-image-compression-demo/
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Example 6.4.9 If Σ =

[︂
3 0
0 2

]︂
then Σ† =

[︂
1
3 0
0 1

2

]︂
. Notice that in this case Σ† is equal to Σ−1. On the other

hand, ⎡⎣6 0
0 3
0 0

⎤⎦†

=

[︂
1
6 0 0
0 1

3 0

]︂
and

[︂√
3 0 0

0
√
2 0

]︂†
=

⎡⎢⎣
1√
3

0

0 1√
2

0 0

⎤⎥⎦ .

Now, given the equation
𝑈Σ𝑉 * #»𝑥 =

#»

𝑏

we can “invert” each matrix on the left-side, in order, to get the “solution”

#»𝑥 0 = 𝑉 Σ†𝑈* #»

𝑏 .

So, in effect, the matrix 𝑉 Σ†𝑈* is acting like some kind of inverse for 𝐴 = 𝑈Σ𝑉 *. We’ll
explain the meaning of this #»𝑥 0 below, but first let’s introduce some terminology.

Definition 6.4.10

Pseudoinverse

Let 𝐴 ∈ 𝑀𝑚×𝑛(F) be a matrix of rank 𝑟 with SVD 𝐴 = 𝑈Σ𝑉 *. The pseudoinverse of 𝐴
is the 𝑛×𝑚 matrix

𝐴† = 𝑉 Σ†𝑈*,

where Σ† is the 𝑛×𝑚 matrix whose (𝑖, 𝑗)th entry is 1
𝜎𝑖

for 𝑖 = 𝑗 ≤ 𝑟 and 0 otherwise.

Notice that Σ† is in fact the pseudoinverse of Σ, so the notation is consistent. The pseu-
doinverse of 𝐴 is uniquely determined by 𝐴, and does not depend on the choice of singular
value decomposition (i.e. on a choice of 𝑈 and 𝑉 ).

Example 6.4.11 If 𝐴 is an invertible 𝑛 × 𝑛 matrix, then all 𝑛 of its singular values are nonzero thanks to
Proposition 6.1.9. Thus in this case Σ† = Σ−1 and it follows that the pseudoinverse of 𝐴 is
actually the inverse of 𝐴:

𝐴† = 𝐴−1.

Exercise 79 Supply the remaining details to prove that if 𝐴 is invertible then 𝐴† = 𝐴−1.

Example 6.4.12 For 𝐴 =

⎡⎣ 1 −4
−2 2
2 4

⎤⎦ as in Example 6.2.4, we found that 𝐴 = 𝑈Σ𝑉 * with

𝑈 =
1

3

⎡⎣−2 1 2
1 −2 2
2 2 1

⎤⎦ , Σ =

⎡⎣6 0
0 3
0 0

⎤⎦ and 𝑉 =

[︂
0 1
1 0

]︂
.

Thus,

𝐴† = 𝑉 Σ†𝑈*
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=

[︂
0 1
1 0

]︂ [︂
1
6 0 0
0 1

3 0

]︂
1

3

⎡⎣−2 1 2
1 −2 2
2 2 1

⎤⎦
=

1

18

[︂
2 −4 4
−2 1 2

]︂
.

Let’s return now to our system of linear equations

𝐴 #»𝑥 =
#»

𝑏 , (6.4)

where 𝐴 ∈ 𝑀𝑚×𝑛(F) and
#»

𝑏 ∈ F𝑚. Using the pseudoinverse of 𝐴, we create the vector
#»𝑥 0 = 𝐴† #»

𝑏 ∈ F𝑛. If 𝐴 is an invertible square matrix, then #»𝑥 0 = 𝐴−1 #»

𝑏 is the unique solution
to the system (6.4). In the general case, #»𝑥 0 is still interesting, as the next proposition
explains.

Proposition 6.4.13 (Minimal Norm Solutions)

Consider the system of linear equations 𝐴 #»𝑥 =
#»

𝑏 , where 𝐴 ∈ 𝑀𝑚×𝑛(F) and
#»

𝑏 ∈ F𝑚. Let
#»𝑥 0 = 𝐴† #»

𝑏 . Then:

(a) If 𝐴 #»𝑥 =
#»

𝑏 is consistent, then #»𝑥 0 is a solution to the system. Moreover, it is the
solution of minimal norm, i.e., if #»𝑥 is any solution to the system, then ‖ #»𝑥‖ ≥ ‖ #»𝑥 0‖
with equality if and only if #»𝑥 = #»𝑥 0.

(b) If 𝐴 #»𝑥 =
#»

𝑏 is inconsistent, then #»𝑥 0 is a least squares solution (Definition 4.7.1). More-
over, it is the least squares solution of minimal norm, i.e., if #»𝑠 is any least squares
solution to the system, then ‖ #»𝑠 ‖ ≥ ‖ #»𝑥 0‖ with equality if and only if #»𝑠 = #»𝑥 0.

REMARK

Although in our initial discussion of least squares (Section 4.7) we only worked over F = R,
everything works just as well over F = C. The one difference is: instead of using transposes,
we should be using conjugate-transposes, as you probably would have guessed.

Proof of Proposition 6.4.13: Let’s show that #»𝑥 0 is always a least squares solution. In
the case where the system is consistent, this will automatically imply that #»𝑥 0 is an actual
solution (why?). By Proposition 4.7.3, we must show that 𝐴*𝐴 #»𝑥 0 = 𝐴* #»

𝑏 . We have

𝐴*𝐴 #»𝑥 0 = 𝐴*𝐴𝐴† #»

𝑏

= (𝑉 Σ*𝑈*)(𝑈Σ𝑉 *)(𝑉 Σ†𝑈*)
#»

𝑏

= 𝑉 Σ*ΣΣ†𝑈* #»

𝑏 . (*)
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Now, the matrix ΣΣ† will take the form

[︂
𝐼𝑟 0
0 0

]︂
, with enough 0s to fill out an 𝑚×𝑚 matrix.

On the other hand, Σ* will take the form

[︂
𝐷* 0
0 0

]︂
, where 𝐷 = diag(𝜎1, . . . , 𝜎𝑟) is 𝑟× 𝑟 and

with enough 0s to fill out an 𝑛×𝑚 matrix. It follows that

Σ*ΣΣ† =

[︂
𝐷* 0
0 0

]︂ [︂
𝐼𝑟 0
0 0

]︂
=

[︂
𝐷* 0
0 0

]︂
= Σ*.

So from (*) we obtain
𝐴*𝐴 #»𝑥 0 = 𝑉 Σ*𝑈* #»

𝑏 = 𝐴* #»

𝑏 ,

proving that #»𝑥 0 is a least squares solution to 𝐴 #»𝑥 =
#»

𝑏 , as desired. All that remains now is
proving that #»𝑥 0 has minimal norm.

If 𝐴 #»𝑥 =
#»

𝑏 is consistent, then an arbitrary solution will take the form #»𝑥 0 + #»𝑧 where
#»𝑧 ∈ Null(𝐴), since #»𝑥 0 is a solution. Now we make two observations. First, #»𝑧 ∈ Col(𝐴*)⊥,
by Proposition 6.2.3. Next, #»𝑥 0 = 𝐴† #»

𝑏 = 𝑉 (Σ†𝑈* #»

𝑏 ) is a linear combination of the first 𝑟
columns of 𝑉 , which are eigenvectors of 𝐴*𝐴 corresponding to nonzero eigenvalues; so each
of these eigenvectors is in Col(𝐴*) (since if 𝐴*𝐴 #»𝑣 = 𝜆 #»𝑣 with 𝜆 ̸= 0 then #»𝑣 = 𝐴*( 1𝜆𝐴

#»𝑣 )),
and therefore #»𝑥 0 ∈ Col(𝐴*). Combining both observations, we deduce that #»𝑥 0 ⊥ #»𝑧 . Hence,
by the Pythagorean theorem,

‖ #»𝑥 0 +
#»𝑧 ‖2 = ‖ #»𝑥 0‖2 + ‖ #»𝑧 ‖2 ≥ ‖ #»𝑥 0‖2,

completing the proof of the minimality of ‖ #»𝑥 0‖ amongst norms of solutions. Notice also
that the above inequality is an equality if and only if #»𝑧 =

#»
0 .

Finally, if 𝐴 #»𝑥 =
#»

𝑏 is inconsistent, then an arbitrary least squares solution will take the
form #»𝑥 0 +

#»𝑧 where #»𝑧 ∈ Null(𝐴). The same proof of minimality above, which never used
the fact that #»𝑥 0 was an actual solution to 𝐴 #»𝑥 =

#»

𝑏 , applies once more to give us the desired
minimality result in this case. This completes the proof of the proposition.

Example 6.4.14 Let 𝐴 =

[︂
1 2
1 2

]︂
and consider the system 𝐴 #»𝑥 =

#»

𝑏 where
#»

𝑏 =

[︂
1
0

]︂
. In Example 4.7.2 we

noted that this system is inconsistent, and we determined the set of least squares solutions
to be

𝑆 =

{︂[︂
1
2
0

]︂
+ 𝑡

[︂
−2
1

]︂
: 𝑡 ∈ R

}︂
.

The norm of an arbitrary vector in 𝑆 is given by⃦⃦⃦⃦[︂
1
2
0

]︂
+ 𝑡

[︂
−2
1

]︂⃦⃦⃦⃦
=

√︃(︂
1

2
− 2𝑡

)︂2

+ 𝑡2.

Using calculus, it’s easy to show that this norm is minimized precisely when 𝑡 = 1
5 . The

corresponding least squares solution is 1
10

[︂
2
1

]︂
.

Let’s confirm that this is inline with Proposition 6.4.13. An SVD for 𝐴 is 𝐴 = 𝑈Σ𝑉 *, where

𝑈 =

[︃
1√
2
− 1√

2
1√
2

1√
2

]︃
, Σ =

[︂√
10 0
0 0

]︂
and 𝑉 =

[︃
1√
5
−−2√

5
2√
5

1√
5

]︃
.
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Hence the pseudoinverse of 𝐴 is

𝐴† = 𝑉 Σ†𝑈* =

[︃
1√
5
−−2√

5
2√
5

1√
5

]︃[︃
1√
10

0

0 0

]︃[︃
1√
2

1√
2

− 1√
2

1√
2

]︃
=

1

10

[︂
1 1
2 2

]︂
.

Thus, the minimal norm least squares solution should be

𝐴† = 𝐴†
[︂
1
0

]︂
=

1

10

[︂
1
2

]︂
,

just as we’ve computed above!
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Solutions to In-Chapter Exercises

Chapter 1: Abstract Vector Spaces

Exercise 1: These all follow from the properties of real numbers. For example, for axiom

4: if #»𝑥 =

[︂
𝑥1
𝑥2

]︂
and #»𝑦 =

[︂
𝑦1
𝑦2

]︂
, then

#»𝑥 + #»𝑦 =

[︂
𝑥1 + 𝑦1
𝑥2 + 𝑦2

]︂
and #»𝑦 + #»𝑥 =

[︂
𝑦1 + 𝑥1
𝑦2 + 𝑥2

]︂
.

However, for real numbers addition is commutative, meaning 𝑥𝑖 + 𝑦𝑖 = 𝑦𝑖 + 𝑥𝑖 for 𝑖 = 1, 2.
So #»𝑥 + #»𝑦 = #»𝑦 + #»𝑥 .

Exercise 2: The zero vector is the line 𝑦 = 𝑥 + 0. Indeed, if 𝑦 = 𝑥 + 𝑑 is any line in 𝑉 ,
then

(𝑦 = 𝑥+ 𝑑) + (𝑦 = 𝑥+ 0) = (𝑦 = 𝑥+ (𝑑+ 0)) = (𝑦 = 𝑥+ 𝑑).

So 𝑦 = 𝑥+ 0 satisfies axiom 2.

Exercise 3: For part (a), notice that 0 = 0 + 0, and so we have

0 · #»𝑥 = (0 + 0) · #»𝑥 = 0 · #»𝑥 + 0 · #»𝑥 ,

where in the last step we used axiom 6. Next, add −(0 · #»𝑥 ) to both sides to get

#»
0 = −(0 · #»𝑥 ) + (0 · #»𝑥 + 0 · #»𝑥 ) (axiom 3 used on LHS)

= (−(0 · #»𝑥 ) + 0 · #»𝑥 ) + 0 · #»𝑥 (axiom 1)

=
#»
0 + 0 · #»𝑥 (axiom 3)

= 0 · #»𝑥 . (axiom 2)

This completes the proof of part (a).

For part (b), add #»𝑥 and (−1) · #»𝑥 together:

#»𝑥 + (−1) · #»𝑥 = (1) · #»𝑥 + (−1) · #»𝑥 = (1 + (−1)) · #»𝑥 = 0 · #»𝑥

and then use part (a).

179
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Finally, for part (c), note that
#»
0 =

#»
0 +

#»
0 so that

𝑡 · ( #»
0 +

#»
0 ) = 𝑡 · #»

0 + 𝑡 · #»
0 .

Now proceed as in part (a).

Exercise 4: Since 𝑈 is a subspace, it must be non-empty, so there is a #»𝑢 ∈ 𝑈 . Then, by
closure under scalar multiplication, 0 · #»𝑢 will be in 𝑈 too. Now we can appeal to Proposition
1.1.14(a): If we view this scalar multiplication as occurring in 𝑈 , then 0 · #»𝑢 =

#»
0 𝑈 . On

the other hand, we can also view this scalar multiplication as occurring in 𝑉 , since 𝑈 ⊆ 𝑉 .
Thus, 0 · #»𝑢 =

#»
0 𝑉 . It follows then that

#»
0 𝑉 = 0 · #»𝑢 =

#»
0 𝑈 .

In particular,
#»
0 𝑉 is in 𝑈 (since

#»
0 𝑈 is).

Exercise 5: By equating coefficients of 1 and 𝑥 on both sides, we get the system of equations

𝑎+ 𝑏 = 𝑐

𝑎− 𝑏 = 𝑑.

In matrix form, this is [︂
1 1
1 −1

]︂ [︂
𝑎
𝑏

]︂
=

[︂
𝑐
𝑑

]︂
.

We can quickly solve this equation by inverting the matrix on the left-side (which is indeed
invertible!): [︂

𝑎
𝑏

]︂
=

[︂
1 1
1 −1

]︂−1 [︂
𝑐
𝑑

]︂
=

1

−2

[︂
−1 −1
−1 1

]︂ [︂
𝑐
𝑑

]︂
=

1

2

[︂
𝑐+ 𝑑
𝑐− 𝑑

]︂
.

Thus, 𝑎 =
𝑐+ 𝑑

2
and 𝑏 =

𝑐− 𝑑

2
, as given in the Example. The second half of the exercise is

similar.

Exercise 6: Parts (a) and (b) are essentially identical, and we can solve both at once if we
work over F. To check for linear independence, we have to solve the equation

𝑐1

⎡⎣1
1
1

⎤⎦+ 𝑐2

⎡⎣1
1
0

⎤⎦+ 𝑐3

⎡⎣1
0
0

⎤⎦ =

⎡⎣0
0
0

⎤⎦ .

This equation is equivalent to ⎡⎣𝑐1 + 𝑐2 + 𝑐3
𝑐1 + 𝑐2

𝑐1

⎤⎦ =

⎡⎣0
0
0

⎤⎦ .

From the bottom entry, we get 𝑐1 = 0, and then from the middle entry we get 𝑐2 = 0, and
finally from the first entry, we get 𝑐1 = 0. Thus, 𝑐1 = 𝑐2 = 𝑐3 = 0 and our set is linearly

independent. To check for spanning, we wish to show that given any
[︀
𝑎 𝑏 𝑐

]︀𝑇 ∈ F3, we can
find 𝑐1, 𝑐2, 𝑐3 ∈ F such that

𝑐1

⎡⎣1
1
1

⎤⎦+ 𝑐2

⎡⎣1
1
0

⎤⎦+ 𝑐3

⎡⎣1
0
0

⎤⎦ =

⎡⎣𝑎
𝑏
𝑐

⎤⎦ .
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This leads us to the system of equations

𝑐1 + 𝑐2 + 𝑐3 = 𝑎

𝑐1 + 𝑐2 = 𝑏

𝑐1 = 𝑐.

We can solve this to find: 𝑐1 = 𝑐, 𝑐2 = 𝑏 − 𝑐 and 𝑐3 = 𝑎 − 𝑏 − 𝑐. This proves that our set
spans F3 and hence is a basis for F3.

For part (c), we begin by noting that the set is clearly linearly independent, since it contains
two vectors that are not scalar multiples of each other. To check for spanning, we want to
show that for all [𝑎 𝑏]𝑇 ∈ C2, the equation

𝑐1

[︂
2
0

]︂
+ 𝑐2

[︂
0
3𝑖

]︂
=

[︂
𝑎
𝑏

]︂

can be solved for 𝑐1, 𝑐2 ∈ C. This is indeed possible, since we can take 𝑐1 =
𝑎

2
and 𝑐2 =

𝑏

3𝑖
.

Thus, the set in (c) is a basis for C2.

Finally, for part (d), again we note that {1+𝑥, 1−𝑥} is linearly independent since it contains
two vectors that are not scalar multiples. We proved that {1 + 𝑥, 1 − 𝑥} spans 𝒫1(R) in
Example 1.2.11. Thus, it is a basis for 𝒫1(R).

Exercise 7: Since dim(𝒫2(F)) = 3 and since 𝑆 contains exactly 3 vectors, it suffices to
prove that 𝑆 is linearly independent. So consider the equation

𝑐0𝑝0(𝑥) + 𝑐1𝑝1(𝑥) + 𝑐2𝑝2(𝑥) = 0 + 0𝑥+ 0𝑥2.

The only term of degree 2 on the left-side occurs in 𝑝2(𝑥). If 𝑝2(𝑥) = 𝑎𝑥2+ · · · (with 𝑎 ̸= 0),
then by equating coefficients of 𝑥2 on both sides, we get 𝑐2𝑎 = 0. Hence 𝑐2 = 0 since 𝑎 ̸= 0.
So our equation is reduced to

𝑐0𝑝0(𝑥) + 𝑐1𝑝1(𝑥) = 0 + 0𝑥+ 0𝑥2.

Now repeat the same argument with coefficients of 𝑥 to get that 𝑐1 = 0. Then finally, and in
the same way, 𝑐0 = 0. Thus 𝑐0 = 𝑐1 = 𝑐2 = 0, and so 𝑆 is linearly independent, as required.

Exercise 8: Omitted.

Exercise 9: Suppose ℬ = { #»𝑣 1, · · · , #»𝑣 𝑛}. Given #»𝑥 , #»𝑦 ∈ 𝑉 , we can write them in the form

#»𝑥 =
𝑛∑︁

𝑖=1

𝑎𝑖
#»𝑣 𝑖 and #»𝑦 =

𝑛∑︁
𝑖=1

𝑏𝑖
#»𝑣 𝑖,

for some 𝑎𝑖, 𝑏𝑖 ∈ F. This means:

[ #»𝑥 ]ℬ =

⎡⎢⎣𝑎1
...
𝑎𝑛

⎤⎥⎦ and [ #»𝑦 ]ℬ =

⎡⎢⎣ 𝑏1
...
𝑏𝑛

⎤⎥⎦ .

Now,

#»𝑥 + #»𝑦 =
𝑛∑︁

𝑖=1

𝑎𝑖
#»𝑣 𝑖 +

𝑛∑︁
𝑖=1

𝑏𝑖
#»𝑣 𝑖 =

𝑛∑︁
𝑖=1

(𝑎𝑖 + 𝑏𝑖)
#»𝑣 𝑖
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and therefore

[ #»𝑥 + #»𝑦 ]ℬ =

⎡⎢⎣ 𝑎1 + 𝑏1
...

𝑎𝑛 + 𝑏𝑛

⎤⎥⎦ .

The above is clearly equal to [ #»𝑥 ]ℬ + [ #»𝑦 ]ℬ.

Similarly, if 𝑡 ∈ F, then

𝑡 #»𝑥 = 𝑡
𝑛∑︁

𝑖=1

𝑎𝑖
#»𝑣 𝑖 =

𝑛∑︁
𝑖=1

(𝑡𝑎𝑖)
#»𝑣 𝑖.

So

[𝑡 #»𝑥 ]ℬ =

⎡⎢⎣ 𝑡𝑎1
...

𝑡𝑎𝑛

⎤⎥⎦ = 𝑡

⎡⎢⎣𝑎1
...
𝑎𝑛

⎤⎥⎦ = 𝑡[ #»𝑥 ]ℬ.

Chapter 2: Linear Transformations

Exercise 10: For 𝑝, 𝑞 ∈ 𝒫𝑛(F), we have (𝑝+ 𝑞)(𝑥) = 𝑝(𝑥) + 𝑞(𝑥), and so

ev𝑡(𝑝+ 𝑞) = (𝑝+ 𝑞)(𝑡) = 𝑝(𝑡) + 𝑞(𝑡) = ev𝑡(𝑝) + ev𝑡(𝑞).

Similarly, if 𝑐 ∈ F, then

ev𝑡(𝑐𝑝) = (𝑐𝑝)(𝑡) = 𝑐(𝑝(𝑡)) = 𝑐ev𝑡(𝑝).

Thus, ev𝑡 is linear.

Exercise 11: We have

𝐿(
#»
0 𝑉 ) = 𝐿(0 · #»

0 𝑉 ) = 0 · 𝐿( #»
0 𝑉 ) =

#»
0𝑊 ,

where we have used Proposition 1.1.14 (once in 𝑉 and once in 𝑊 ).

Exercise 12: For (a), note that 𝐿([2 0 0]𝑇 ) ̸= 2𝐿([1 0 0]𝑇 ). For (b), note that 𝐿(2 + 2𝑥+
2𝑥2) ̸= 2𝐿(1 + 𝑥+ 𝑥2).

Exercise 13: This follows from the familiar rules of differentiation and integration:

(𝑓 + 𝑔)′ = 𝑓 ′ + 𝑔′, (𝑐𝑓)′ = 𝑐𝑓 ′,

∫︁
𝑓 + 𝑔 =

∫︁
𝑓 +

∫︁
𝑔, and

∫︁
𝑐𝑓 = 𝑐

∫︁
𝑓.

But you can also check this directly using the given formulas for 𝐷 and 𝐼.

Exercise 14: We have
#»
0𝑊 ∈ Range(𝐿) because 𝐿(

#»
0 𝑉 ) =

#»
0𝑊 . For closure under addition,

suppose that #»𝑤, #»𝑤 ′ ∈ Range(𝐿). Then #»𝑤 = 𝐿( #»𝑣 ) and #»𝑤 ′ = 𝐿( #»𝑣 ′) for some #»𝑣 , #»𝑣 ′ ∈ 𝑉 and
therefore

#»𝑤 + #»𝑤 ′ = 𝐿( #»𝑣 ) + 𝐿( #»𝑣 ′) = 𝐿( #»𝑣 + #»𝑣 ′)

so #»𝑤 + #»𝑤 ′ ∈ Range(𝐿). Similarly,

𝑐 #»𝑤 = 𝑐𝐿( #»𝑣 ) = 𝐿(𝑐 #»𝑣 )
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so 𝑐 #»𝑤 ∈ Range(𝐿) and Range(𝐿) is closed under scalar multiplication. So by the Subspace
Test, Range(𝐿) is a subspace of 𝑊 .

Exercise 15: For part (a), we have

𝒞 [𝐿]ℬ =

[︂[︂
𝐿

(︂[︂
1
0

]︂)︂]︂
𝒞

[︂
𝐿

(︂[︂
0
1

]︂)︂]︂
𝒞

]︂
=

[︀
[1 + 𝑥+ 𝑥2]𝒞 [𝑥+ 2𝑥2]𝒞

]︀
=

⎡⎣1 0
1 1
1 2

⎤⎦ .

For part (b), let’s take #»𝑣 = [1 1]𝑇 for example. Then 𝐿( #»𝑣 ) = 1 + 2𝑥+ 3𝑥2 so

[𝐿( #»𝑣 )]𝒞 =

⎡⎣1
2
3

⎤⎦ .

On the other hand,

𝒞 [𝐿]ℬ [ #»𝑣 ]ℬ =

⎡⎣1 0
1 1
1 2

⎤⎦[︂
1
1

]︂
=

⎡⎣1
2
3

⎤⎦ ,

which is indeed equal to [𝐿( #»𝑣 )]𝒞 !

Exercise 16: Let ℬ = { #»

𝑏 1, . . . ,
#»

𝑏 𝑛}. Then the 𝑖th column of 𝒟[𝑀 ∘ 𝐿]ℬ is

[𝑀 ∘ 𝐿( #»

𝑏 𝑖)]𝒟 = [𝑀(𝐿(
#»

𝑏 𝑖))]𝒟.

Now, the key fact about 𝒟[𝑀 ]𝒞 is that we have

[𝑀( #»𝑢 )]𝒟 = 𝒟[𝑀 ]𝒞 [
#»𝑢 ]𝒞 for all #»𝑢 ∈ 𝑈.

Applying this to the above equation with #»𝑢 = 𝐿(
#»

𝑏 𝑖), we obtain

[𝑀 ∘ 𝐿( #»

𝑏 𝑖)]𝒟 = 𝒟[𝑀 ]𝒞 [𝐿(
#»

𝑏 𝑖)]𝒞 .

Now, using the same key property but applied to 𝒞 [𝐿]ℬ, we have

[𝐿(
#»

𝑏 𝑖)]𝒞 = 𝒞 [𝐿]ℬ[
#»

𝑏 𝑖]ℬ.

Here, however, we also have that [
#»

𝑏 𝑖]ℬ = #»𝑒 𝑖 is the 𝑖th standard basis vector in F𝑛. So

𝒞 [𝐿]ℬ[
#»

𝑏 𝑖]ℬ = 𝒞 [𝐿]ℬ
#»𝑒 𝑖 is the 𝑖th column of 𝒞 [𝐿]ℬ.

So, putting all of this together, we arrive at the following:

𝑖th column of 𝒟[𝑀 ∘ 𝐿]ℬ = [𝑀 ∘ 𝐿( #»

𝑏 𝑖)]𝒟

= 𝒟[𝑀 ]𝒞 (𝑖th column of 𝒞 [𝐿]ℬ)

= 𝑖th column of (𝒟[𝑀 ]𝒞 𝒞 [𝐿]ℬ),

where in the last step we used the definition of matrix multiplication. It follows from this
that the 𝑖th columns of 𝒟[𝑀 ∘ 𝐿]ℬ and 𝒟[𝑀 ]𝒞 𝒞 [𝐿]ℬ are equal for all 𝑖, so the two matrices
themselves are equal.
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Exercise 17: Let #»𝑤 ∈ 𝑊 . Then

#»𝑤 ∈ Range(𝐿) ⇐⇒ #»𝑤 = 𝐿( #»𝑣 ) for some #»𝑣 ∈ 𝑉

⇐⇒ [ #»𝑤]𝒞 = [𝐿( #»𝑣 )]𝒞 (by the Unique Representation Theorem 1.3.23)

⇐⇒ [ #»𝑤]𝒞 = 𝒞 [𝐿]ℬ[
#»𝑣 ]ℬ

⇐⇒ [ #»𝑤]𝒞 ∈ Col(𝒞 [𝐿]ℬ).

Exercise 18: We must show that 𝒟 is linearly independent and spans Range(𝐿). For linear
independence, consider the equation

𝑎

[︂
1 1
3 0

]︂
+ 𝑏

[︂
1 −1
1 0

]︂
=

[︂
0 0
0 0

]︂
.

Applying the coordinate map [ ]𝒞 (which is linear), the above becomes

𝑎

⎡⎢⎢⎣
1
1
3
0

⎤⎥⎥⎦+ 𝑏

⎡⎢⎢⎣
1
−1
1
0

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
0
0
0

⎤⎥⎥⎦ .

Since we know that {[1 1 3 0]𝑇 , [1 − 1 1 0]} is linearly independent (as it’s a basis for
Col(𝐴)), it follows that 𝑎 = 𝑏 = 0. So 𝒟 is linearly independent.

For spanning, let #»𝑤 ∈ Range(𝐿). Then [ #»𝑤]𝒞 ∈ Col(𝐴), so

[ #»𝑤]𝒞 = 𝑎

⎡⎢⎢⎣
1
1
3
0

⎤⎥⎥⎦+ 𝑏

⎡⎢⎢⎣
1
−1
1
0

⎤⎥⎥⎦ =

⎡⎢⎢⎣
𝑎+ 𝑏
𝑎− 𝑏
3𝑎+ 𝑏

0

⎤⎥⎥⎦
for some 𝑎, 𝑏 ∈ R. Converting from 𝒞–coordinates back to a vector in 𝑀2×2(R), we get

#»𝑤 =

[︂
𝑎+ 𝑏 𝑎− 𝑏
3𝑎+ 𝑏 0

]︂
= 𝑎

[︂
1 1
3 0

]︂
+ 𝑏

[︂
1 −1
1 0

]︂
.

Thus, #»𝑤 ∈ Span(𝒟), as required.

Exercise 19: To show that 𝒞ℐℬ = (ℬℐ𝒞)−1, it suffices to show that 𝒞ℐℬ ℬℐ𝒞 is the identity
matrix. But observe that

𝒞ℐℬ ℬℐ𝒞 = 𝒞 [id]ℬ ℬ[id]𝒞

= 𝒞 [id]𝒞 (by Proposition 2.3.8)

and 𝒞 [id]𝒞 is the 𝑚×𝑚 identity matrix, where 𝑚 = dim(𝑊 ).

Exercise 20: For part (a), note that 𝐿 is injective if and only if Ker(𝐿) = { #»
0 } if and only

if dim(Ker(𝐿)) = 0 (since a non-zero subspace has non-zero dimension) and so the result
follows since nullity(𝐿) = dim(Ker(𝐿)).

For part (b), note that 𝐿 is surjective if and only if Range(𝐿) = 𝑊 . Since Range(𝐿) is
a subspace of 𝑊 , dim(Range(𝐿) ≤ dim(𝑊 ) with equality if and only if Range(𝐿) = 𝑊 .
Putting the previous two sentences together, we conclude that 𝐿 is surjective if and only
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if dim(Range(𝐿)) = dim(𝑊 ). Since rank(𝐿) = dim(Range(𝐿)), this is exactly what we
wanted to prove.

Exercise 21: We have

𝐴 =
[︀
[1]𝒞 [1 + 𝑥]𝒞 [𝑥+ 𝑥2]𝒞 [𝑥2]𝒞

]︀
=

⎡⎣1 1 0 0
0 1 1 0
0 0 1 1

⎤⎦ .

Row reducing, we find that

RREF(𝐴) =

⎡⎣1 0 0 1
0 1 0 −1
0 0 1 1

⎤⎦ .

From this, we see that rank(𝐴) = 3, nullity(𝐴) = 1,

Col(𝐴) = Span

⎧⎨⎩
⎡⎣1
0
0

⎤⎦ ,

⎡⎣1
1
0

⎤⎦ ,

⎡⎣0
1
1

⎤⎦⎫⎬⎭
and

Null(𝐴) = Span

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣
−1
1
−1
1

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ .

Therefore Col(𝐴) = R3, so Range(𝐿) = 𝒫2(R) and 𝐿 is surjective. On the other hand,

Ker(𝐿) ̸= { #»
0 } (it is spanned by

[︂
−1 1
−1 1

]︂
), so 𝐿 is not injective.

Exercise 22: We have

𝑎+ 𝑏𝑥+ 𝑐𝑥2 ∈ Ker(𝐿) ⇐⇒ 𝐿(𝑎+ 𝑏𝑥+ 𝑐𝑥2) =

⎡⎣0
0
0

⎤⎦ ⇐⇒

⎡⎣𝑎
𝑏
𝑐

⎤⎦ =

⎡⎣0
0
0

⎤⎦ .

So the only vector in Ker(𝐿) is 0 + 0𝑥+ 0𝑥2. Thus, Ker(𝐿) = { #»
0 }.

On the other hand, it’s clear that Range(𝐿) = R3, since give any #»𝑣 = [𝑎 𝑏 𝑐]𝑇 ∈ R3, we
have 𝐿(𝑎+ 𝑏𝑥+ 𝑐𝑥2) = #»𝑣 .

Exercise 23: For part (a), note that

𝑎+ 𝑏𝑥+ 𝑐𝑥2 ∈ Ker(𝐿) ⇐⇒ 𝐿(𝑎+ 𝑏𝑥+ 𝑐𝑥2) =

⎡⎣0
0
0

⎤⎦ ⇐⇒

⎡⎣ 𝑎
𝑎+ 𝑏

𝑎+ 𝑏+ 𝑐

⎤⎦ =

⎡⎣0
0
0

⎤⎦ .

Equating components and solving the resulting equations, we find that 𝑎 = 𝑏 = 𝑐 = 0. So
Ker(𝐿) = { #»

0 } and thus 𝐿 is injective.

Next, to show that 𝐿 is surjective, let #»𝑣 = [𝑣1 𝑣2 𝑣3] ∈ R3 be an arbitrary vector. We wish
to find a polynomial 𝑎 + 𝑏𝑥 + 𝑐𝑥2 ∈ 𝒫2(R) such that 𝐿(𝑎 + 𝑏𝑥 + 𝑐𝑥2) = #»𝑣 . This amounts
to solving the system of equations

𝑎 = 𝑣1

𝑎+ 𝑏 = 𝑣2
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𝑎+ 𝑏+ 𝑐 = 𝑣3

for 𝑎, 𝑏, 𝑐 ∈ R. Doing so, we find the solution 𝑎 = 𝑣1, 𝑏 = 𝑣2− 𝑣1 and 𝑐 = 𝑣3− 𝑣2− 𝑣1. Thus
𝐿 is indeed surjective and therefore an isomorphism.

For part (b), there are many examples. An easy one is: 𝐿
(︀
𝑎+ 𝑏𝑥+ 𝑐𝑥2

)︀
=

⎡⎣𝑎
𝑐
𝑏

⎤⎦.
Exercise 24: Let ℬ = { #»𝑣 1, . . . ,

#»𝑣 𝑛}. If [ #»𝑥 ]ℬ = [0 · · · 0]𝑇 , then #»𝑥 =
∑︀𝑛

𝑖=1 0
#»𝑣 𝑖 =

#»
0 .

So Ker([ ]ℬ) = { #»
0 } and [ ]ℬ is injective. We can also invoke the Unique Representation

Theorem and note that the only vector that has coordinates [0 · · · 0]𝑇 is the zero vector.

Since [ ]ℬ is injective, the Rank–Nullity Theorem now tells us that

𝑛 = dim(𝑉 ) = nullity([ ]ℬ) + rank([ ]ℬ) = 0 + rank([ ]ℬ).

That is, dim(Range([ ]ℬ) = 𝑛. But Range([ ]ℬ) is a subspace of R𝑛, so if its dimension is
equal to 𝑛 then it must itself be all of R𝑛. So Range([ ]ℬ) = R𝑛 and [ ]ℬ is surjective.

We can also give a very easy direct proof of surjectivity: if #»𝑣 = [𝑎1 · · · 𝑎𝑛] is an arbitrary
vector in R𝑛, then let #»𝑥 =

∑︀𝑛
𝑖=1 𝑎𝑖

#»𝑣 𝑖. This is a vector in 𝑉 with [ #»𝑥 ]ℬ = #»𝑣 . So #»𝑣 ∈
Range([ ]ℬ).

Exercise 25: Since the coordinate map is an isomorphism, it suffices to prove that the
standard coordinate vectors of the vectors in ℬ form a basis for R4. That is, we wish to
prove that

ℬ′ =

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣
1
0
0
1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0
1
1
0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1
0
0
−1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0
−1
1
0

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

is a basis for R4. Since ℬ′ contains exactly 4 = dim(R4) vectors, it suffices to prove that ℬ′

is linear independent. This is a straightforward exercise and so the details are omitted.

Exercise 26: The Rank–Nullity theorem says that dim(𝑉 ) = rank(𝐿) + nullity(𝐿). If
dim(𝑉 ) < dim(𝑊 ), then rank(𝐿) ≤ dim(𝑉 ) < dim(𝑊 ) too. So rank(𝐿) ̸= dim(𝑊 ) and
thus 𝐿 cannot be surjective.

If dim(𝑉 ) > dim(𝑊 ) then nullity(𝐿) > dim(𝑊 ) − rank(𝐿). Note however that rank(𝐿) ≤
dim(𝑊 ) since rank(𝐿) = dim(Range(𝐿)) and Range(𝐿) is a subspace of 𝑊 . Consequently,
dim(𝑊 )− rank(𝐿) ≥ 0. So we conclude that nullity(𝐿) > 0, and thus 𝐿 cannot be injective.

Exercise 27: The recipe tells us to pick bases for 𝑀2×2(R) and 𝒫3(R) and then map one
to the other. More precisely, let ℬ = {𝐸11, 𝐸12, 𝐸21, 𝐸22} and 𝒞 = {1, 𝑥, 𝑥2, 𝑥3} be the
standard bases for 𝑀2×2(R) and 𝒫3(R) and then map 𝐸11 to 1, 𝐸12 to 𝑥, etc.

To spell this out, the desired isomorphism 𝐿 : 𝑀2×2(R) → 𝒫3(R) is defined by

𝐿

(︂[︂
𝑎 𝑏
𝑐 𝑑

]︂)︂
= 𝐿(𝑎𝐸11 + 𝑏𝐸12 + 𝑐𝐸21 + 𝑑𝐸22) = 𝑎1 + 𝑏𝑥+ 𝑐𝑥2 + 𝑑𝑥2.

Exercise 28: First we must check that 𝐿−1, defined as in the proof, is linear. So let
#»𝑤, #»𝑢 ∈ 𝑊 and 𝑐 ∈ F. Then there are #»𝑥 , #»𝑦 ∈ 𝑉 such that 𝐿( #»𝑥 ) = #»𝑤 and 𝐿( #»𝑦 ) = #»𝑢 , and
by definition 𝐿−1( #»𝑤) = #»𝑥 and 𝐿−1( #»𝑢 ) = #»𝑦 . Now,

𝐿(𝑐 #»𝑥 + #»𝑦 ) = 𝑐𝐿( #»𝑥 ) + 𝐿( #»𝑦 ) = 𝑐 #»𝑤 + #»𝑢 .
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Therefore, 𝐿−1(𝑐 #»𝑤 + #»𝑢 ) = 𝑐 #»𝑥 + #»𝑦 = 𝑐𝐿−1( #»𝑤) + 𝐿−1( #»𝑢 ), which shows that 𝐿−1 is linear.

Next, suppose we are given that there exists a map 𝐿−1 : 𝑊 → 𝑉 such that 𝐿 ∘ 𝑇 ( #»𝑤) = #»𝑤
for all #»𝑤 ∈ 𝑊 and 𝑇 ∘ 𝐿( #»𝑣 ) = #»𝑣 for all #»𝑣 ∈ 𝑉 . We must prove that this implies that 𝐿 is
injective and surjective. For injectivity, note that

𝐿( #»𝑣 ) =
#»
0 =⇒ 𝐿−1(𝐿( #»𝑣 )) =

#»
0 =⇒ #»𝑣 =

#»
0 .

Thus Ker(𝐿) = { #»
0 } and 𝐿 is injective.

For surjectivity, let #»𝑤 ∈ 𝑊 , and note that

#»𝑤 = 𝐿(𝐿−1( #»𝑤))

so #»𝑤 ∈ Range(𝐿), showing that Range(𝐿) = 𝑊 .

Finally, we must prove that if 𝐿−1 exists, then it is itself an isomorphism. In fact this
follows from what we’ve just proved. Reversing the roles of 𝐿 and 𝐿−1, our proof above
shows that 𝐿−1 is injective and surjective.

Chapter 3: Diagonalizability

Exercise 29: Since 𝐿(
#»
0 ) =

#»
0 = 𝜆

#»
0 ,

#»
0 ∈ 𝐸𝜆(𝐿). Let

#»𝑣 , #»𝑤 ∈ 𝑊 and 𝑡 ∈ F. Then

𝐿( #»𝑣 + #»𝑤) = 𝐿( #»𝑣 ) + 𝐿( #»𝑤) = 𝜆 #»𝑣 + 𝜆 #»𝑤 = 𝜆( #»𝑣 + #»𝑤)

so #»𝑣 + #»𝑤 ∈ 𝐸𝜆(𝐿). Finally,

𝐿(𝑡 #»𝑣 ) = 𝑡𝐿( #»𝑣 ) = 𝑡𝜆 #»𝑣 = 𝜆(𝑡 #»𝑣 )

so 𝑡 #»𝑣 ∈ 𝐸𝜆(𝐿). Since 𝐸𝜆(𝐿) is non-empty, closed under addition, and closed under scalar
multiplication, 𝐸𝜆(𝐿) is a subspace of 𝑉 by the Subspace Test.

Exercise 30: If #»𝑣 ∈ 𝐸1(𝑃 ), then 𝑃 ( #»𝑣 ) = #»𝑣 , meaning 𝑃 projects #»𝑣 onto itself—so #»𝑣
must’ve been on 𝑊 to begin with. That is, #»𝑣 ∈ 𝑊 . This completes part (a).

For part (b), the vectors in 𝐸0(𝑃 ) are precisely the ones that get projected onto
#»
0 . Thus

they are all perpendicular to 𝑊 . So if #»𝑛 is a normal vector to 𝑊 , then 𝐸0(𝑃 ) = Span{ #»𝑛}.

Exercise 31: Simply observe that

𝐿( #»𝑣 ) = 𝜆 #»𝑣 ⇐⇒ [𝐿( #»𝑣 )]ℬ = [𝜆 #»𝑣 ]ℬ ⇐⇒ [𝐿]ℬ[
#»𝑣 ]ℬ = 𝜆[ #»𝑣 ]ℬ.

Also keep in mind that #»𝑣 is non-zero if and only if [ #»𝑣 ]ℬ is non-zero, by the Unique Repre-
sentation Theorem.

Exercise 32: Proceeding just as in Example 3.1.9, we find that 𝐸0(𝐷) = Span{1} is the
space of constant polynomials in 𝑃𝑛(R).

Exercise 33: Direct calculations. Details omitted.

Exercise 34: For part (a), note that 𝐴 = 𝐼−1
𝑛 𝐴𝐼𝑛, where 𝐼𝑛 is the 𝑛×𝑛 identity matrix. For

part (b), if 𝐴 = 𝑃−1𝐵𝑃 , then 𝐵 = 𝑃𝐴𝑃−1 = (𝑃−1)−1𝐴(𝑃−1). For part (c), if 𝐴 = 𝑃−1𝐵𝑃
and 𝐵 = 𝑄−1𝐶𝑄, then 𝐴 = 𝑃−1(𝑄−1𝐶𝑄)𝑃 = (𝑄𝑃 )−1𝐶(𝑄𝑃 ).
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Exercise 35: Omitted.

Exercise 36: We need eigenvectors for 𝐴 for the eigenvalues 𝜆1 and 𝜆2. We can find
some by computing Null(𝐴−𝜆1𝐼) and Null(𝐴−𝜆2𝐼). Doing so, we obtain the eigenvectors
#»𝑣 1 = [−𝑖 1]𝑇 and #»𝑣 2 = [𝑖 1]𝑇 , resp. Converting back to polynomials, we have the
eigenvectors 𝑝1 = −𝑖+ 𝑥 and 𝑝2 = 𝑖+ 𝑥 for 𝐿 with eigenvalues 𝜆1 = 1 + 2𝑖 and 𝜆2 = 2− 𝑖,

resp. So if we take 𝒟 = {−𝑖+ 𝑥, 𝑖+ 𝑥} then [𝐿]𝒟 =

[︂
1 + 2𝑖 0

0 1− 2𝑖

]︂
.

Chapter 4: Inner Product Spaces

Exercise 37: In the given diagram, let 𝑙 denote the length of the hypotenuse of the right-
triangle in the 𝑥𝑦-plane with side-lengths 𝑣1 and 𝑣2. Then, by the Pythagorean theorem,

𝑙2 = 𝑣21 + 𝑣22.

On the other hand, we can view 𝑙 as being the side length of the vertical right triangle with
hypotenuse #»𝑣 . So again, by the Pythagorean theorem,

‖ #»𝑣 ‖2 = 𝑙2 + 𝑣23.

By combining both of these equations and taking square roots, we arrive at

‖�⃗�‖ =
√︁

𝑣21 + 𝑣22 + 𝑣23,

as required.

The expression for cos 𝜃 again comes from the cosine rule:

cos 𝜃 =
‖ #»𝑣 ‖2 + ‖ #»𝑤‖2 − ‖ #»𝑣 − #»𝑤‖2

2 ‖ #»𝑣 ‖ ‖ #»𝑤‖ .

If we expand the right-side and simplify, we will arrive at the desired expression. [A shortcut
is possible here if we use the dot product:

‖ #»𝑣 − #»𝑤‖2 = ( #»𝑣 − #»𝑤) · ( #»𝑣 − #»𝑤) = ‖ #»𝑣 ‖2 + ‖ #»𝑤‖2 − 2( #»𝑣 · #»𝑤).]

Exercise 38: Part (a) is a straightforward computation and is therefore omitted. For part
(b), take #»𝑧 = [𝑖 0]𝑇 . Then #»𝑧 · #»𝑧 = 𝑖2 + 02 = −1.

Exercise 39: For part (b),

⟨ #»𝑣 , 𝛼 #»𝑤⟩ = ⟨𝛼 #»𝑤, #»𝑣 ⟩ (conjugate symmetry)

= 𝛼 ⟨ #»𝑤, #»𝑣 ⟩ (linearity in 1st argument)

= 𝛼⟨ #»𝑤, #»𝑣 ⟩
= 𝛼 ⟨ #»𝑣 , #»𝑤⟩ . (conjugate symmetry)

For part (c),

⟨ #»𝑣 , #»𝑢 + #»𝑤⟩ = ⟨ #»𝑢 + #»𝑤, #»𝑣 ⟩ (conjugate symmetry)

= ⟨ #»𝑢 , #»𝑣 ⟩+ ⟨ #»𝑤, #»𝑣 ⟩ (linearity in 1st argument)
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= ⟨ #»𝑢 , #»𝑣 ⟩+ ⟨ #»𝑤, #»𝑣 ⟩
= ⟨ #»𝑣 , #»𝑢 ⟩+ ⟨ #»𝑣 , #»𝑤⟩ . (conjugate symmetry)

Exercise 40: We have ⟨𝑝, 𝑞⟩ =
∫︀ 1
−1 𝑝(𝑥)𝑞(𝑥) 𝑑𝑥 =

∫︀ 1
−1 𝑞(𝑥)𝑝(𝑥) 𝑑𝑥 = ⟨𝑞, 𝑝⟩, and this is equal

to ⟨𝑞, 𝑝⟩ since everything here is real. This proves axiom 1. Axioms 2 and 3 follow from the
linearity of the integral.

Exercise 41: For axiom 1, notice that ⟨𝐴,𝐵⟩ = tr(𝐵𝑇𝐴) = tr((𝐵𝑇𝐴)𝑇 ) = tr(𝐴𝑇𝐵) =
⟨𝐵,𝐴⟩, where we’ve used the fact that the trace of a matrix is equal to the trace of the
transpose of that matrix. Axioms 2 and 3 follow from the linearity of trace and matrix
multiplication. Finally, for axiom 3, note that ⟨𝐴,𝐴⟩ = ∑︀𝑛

𝑖=1

∑︀𝑛
𝑗=1 𝑎𝑖𝑗𝑎𝑖𝑗 =

∑︀
𝑖,𝑗 𝑎

2
𝑖𝑗 is the

sum of the squares of the entries of 𝐴. So ⟨𝐴,𝐴⟩ ≥ 0 and it’s equal to zero if and only if all
of the entries of 𝐴 are equal to zero, that is, if and only if 𝐴 = 0. This completes the proof
that the Frobenius inner product is an inner product.

Finally, if 𝑛 = 1, then the Frobenius inner product is just the dot product on R𝑚!

Exercise 42: The proof that ⟨𝐴,𝐵⟩ defines an inner product is very similar to the proof
in the previous exercise. For part (b), the given definition is not linear in the first variable,
since

⟨𝑐𝐴,𝐵⟩ = tr((𝑐𝐴)*𝐵) = tr(𝑐𝐴*𝐵) = 𝑐 tr(𝐴*𝐵) = 𝑐 ⟨𝐴,𝐵⟩ .
In particular, if 𝑐 is not real (e.g. if 𝑐 = 𝑖), then ⟨𝑐𝐴,𝐵⟩ ≠ 𝑐 ⟨𝐴,𝐵⟩.

Exercise 43: Omitted. This is effectively the same as checking that the standard inner
product on F𝑛 is an inner product.

Exercise 44: We have ‖ #»
0 ‖ =

√︂⟨
#»
0 ,

#»
0
⟩
=

√
0 = 0.

Exercise 45: We have

‖𝛼 #»𝑣 ‖ =
√︀

⟨𝛼 #»𝑣 , 𝛼 #»𝑣 ⟩ =
√︀
𝛼𝛼 ⟨ #»𝑣 , #»𝑣 ⟩ =

√︀
|𝛼|2 ⟨ #»𝑣 , #»𝑣 ⟩ = |𝛼|‖ #»𝑣 ‖.

Next, ‖ #»𝑣 ‖ =
√︀

⟨ #»𝑣 , #»𝑣 ⟩ is certainly non-negative; it will be equal to zero if and only if
⟨ #»𝑣 , #»𝑣 ⟩ = 0 which is the case if and only if #»𝑣 =

#»
0 , by positive definiteness of the inner

product. This completes part (a).

For part (b), by examining the proof of the Triangle Inequality, we see that the inequality
will be an equality if and only if |⟨ #»𝑣 , #»𝑤⟩| = ‖ #»𝑣 ‖ ‖ #»𝑤‖. This is precisely the equality condition
for the Cauchy–Schwarz inequality! So we conclude that the Triangle Inequality will be an
equality if and only if #»𝑣 and #»𝑤 are scalar multiples of each other.

Exercise 46: Part (a) follows from the fact that ‖ #»𝑥 − #»𝑦 ‖ ≥ 0 with equality if and only if
#»𝑥 − #»𝑦 =

#»
0 . Part (b) follows from ‖ #»𝑥 − #»𝑦 ‖ = ‖(−1)( #»𝑥 − #»𝑦 )‖ = ‖ #»𝑦 − #»𝑥‖. And part (c)

follows from the Triangle Inequality for the norm:

dist( #»𝑥 , #»𝑧 ) = ‖ #»𝑥 − #»𝑧 ‖
= ‖ #»𝑥 − #»𝑦 + #»𝑦 − #»𝑧 ‖
≤ ‖ #»𝑥 − #»𝑦 ‖+ ‖ #»𝑦 − #»𝑧 ‖
= dist( #»𝑥 , #»𝑦 ) + dist( #»𝑦 , #»𝑧 ).
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Exercise 47: For part (a), notice that

‖𝑣‖ =

⃦⃦⃦⃦
#»𝑣

‖ #»𝑣 ‖

⃦⃦⃦⃦
=

1

‖ #»𝑣 ‖‖
#»𝑣 ‖ = 1.

Part (b) follows from part (a) together with the observation that

⟨̂︀𝑣𝑖, ̂︀𝑣𝑗⟩ = ⟨
#»𝑣 𝑖

‖ #»𝑣 𝑖‖
,

#»𝑣 𝑗

‖ #»𝑣 𝑗‖

⟩
=

1

‖ #»𝑣 𝑖‖‖ #»𝑣 𝑗‖
⟨ #»𝑣 𝑖,

#»𝑣 𝑗⟩ = 0

for 𝑖 ̸= 𝑗.

Exercise 48: These are all routine computations, so we will only deal with the set given in
Example 4.3.12. Since dim(C2) = 2, all we have to do is check that the set is orthonormal,
as this will automatically imply linear independence and hence that the set is a basis.

The two given vectors are orthogonal, since⟨[︃
1√
2

0

]︃
,

[︂
0
1

]︂⟩
= 2

1√
2
0 + (0)1 = 0,

and they each have unit norm:⃦⃦⃦⃦
⃦
[︃

1√
2

0

]︃⃦⃦⃦⃦
⃦ =

⎯⎸⎸⎷⟨[︃
1√
2

0

]︃
,

[︃
1√
2

0

]︃⟩
=

√︃
2

(︂
1√
2

)︂2

+ 02 = 1,

⃦⃦⃦⃦[︂
0
1

]︂⃦⃦⃦⃦
=

√︃⟨[︂
0
1

]︂
,

[︂
0
1

]︂⟩
=

√︁
2 (0)2 + 12 = 1.

This proves that

{︃[︃
1√
2

0

]︃
,

[︂
0
1

]︂}︃
is an orthonormal basis for C2, as required.

Exercise 49: Let’s begin by finding an orthogonal basis for 𝑊 . To make our lives easier,
let’s put #»𝑣 in this basis. So all we have to do is find a non-zero vector #»𝑢 that is orthogonal to
#»𝑣 . Then { #»𝑣 , #»𝑢} will be an orthogonal basis for 𝑊 (it will be a basis because dim(𝑊 ) = 2).

Now, any vector in 𝑊 will be of the form #»𝑢 = 𝑎 #»𝑣 + 𝑏 #»𝑤 for some 𝑎, 𝑏 ∈ F. If we want #»𝑢 to
be orthogonal to #»𝑣 , then we must have

0 = ⟨𝑎 #»𝑣 + 𝑏 #»𝑤, #»𝑣 ⟩ = 𝑎 ⟨ #»𝑣 , #»𝑣 ⟩+ 𝑏 ⟨ #»𝑤, #»𝑣 ⟩ .

We want to find some 𝑎, 𝑏 ∈ F for which this is true. Let’s take 𝑎 = 1 and try to find an
appropriate 𝑏. Solving for 𝑏, we find that 𝑏 = − ⟨ #»𝑣 , #»𝑣 ⟩

⟨ #»𝑤, #»𝑣 ⟩ , at least provided ⟨ #»𝑤, #»𝑣 ⟩ ≠ 0. However

if ⟨ #»𝑤, #»𝑣 ⟩ = 0 then #»𝑤 ⊥ #»𝑣 and we’re done: { #»𝑣 , #»𝑤} is already an orthogonal basis. So we

may assume that ⟨ #»𝑤, #»𝑣 ⟩ ≠ 0. Then our computation above shows that { #»𝑣 , #»𝑣 − ⟨ #»𝑣 , #»𝑣 ⟩
⟨ #»𝑤, #»𝑣 ⟩

#»𝑤} is
an orthogonal basis for 𝑊 .

To obtain an orthonormal basis, we can simply normalize the above orthogonal basis.

Exercise 50: We can proceed by induction on 𝑖. If 𝑖 = 1, then #»𝑤1 =
#»𝑣 1 and so obviously

Span({ #»𝑣 1}) = Span({ #»𝑤1}).
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So assume the result holds for some 𝑖 = 𝑘 ≥ 1, and consider the case 𝑖 = 𝑘 + 1. So, in
particular, we have that Span({ #»𝑣 1, . . . ,

#»𝑣 𝑘}) = Span({ #»𝑤1, . . . ,
#»𝑤𝑘}). Now, according to the

algorithm,

#»𝑤𝑘+1 =
#»𝑣 𝑘+1 −

⟨ #»𝑣 𝑘+1,
#»𝑤1⟩

‖ #»𝑤1‖2
#»𝑤1 − · · · − ⟨ #»𝑣 𝑘+1,

#»𝑤𝑘⟩
‖ #»𝑤𝑘‖2

#»𝑤𝑘.

So #»𝑤𝑘+1 is a linear combination of #»𝑣 𝑘+1 and #»𝑤1, . . . ,
#»𝑤𝑘, hence is a linear combination of

#»𝑣 𝑘+1 and #»𝑣 1, . . . ,
#»𝑣 𝑘, by the induction hypothesis. Thus, #»𝑤𝑘 ∈ Span({ #»𝑣 1, . . . ,

#»𝑣 𝑘+1}) and
therefore

Span({ #»𝑤1, . . . ,
#»𝑤𝑘+1}) ⊆ Span({ #»𝑣 1, . . . ,

#»𝑣 𝑘+1}).
Conversely, from the above equation, we see that

#»𝑣 𝑘+1 =
#»𝑤𝑘+1 +

⟨ #»𝑣 𝑘+1,
#»𝑤1⟩

‖ #»𝑤1‖2
#»𝑤1 − · · · − ⟨ #»𝑣 𝑘+1,

#»𝑤𝑘⟩
‖ #»𝑤𝑘‖2

#»𝑤𝑘

so #»𝑣 𝑘+1 ∈ Span({ #»𝑤1, . . . ,
#»𝑤𝑘+1}), hence

Span({ #»𝑣 1, . . . ,
#»𝑣 𝑘+1}) ⊆ Span({ #»𝑤1, . . . ,

#»𝑤𝑘+1}).

It follows that
Span({ #»𝑣 1, . . . ,

#»𝑣 𝑘+1}) = Span({ #»𝑤1, . . . ,
#»𝑤𝑘+1}).

This completes the induction.

For the second part in the exercise, all we have to do is observe that { #»𝑤1, . . . ,
#»𝑤𝑛} is an

orthogonal set of 𝑛 vectors that spans 𝑉 (thanks to what we just proved above). So it must
be a basis too (since dim(𝑉 ) = 𝑛).

Exercise 51:
{︁

1√
2
,
√︁

3
2𝑥,

√︁
5
8

(︀
3𝑥2 − 1

)︀
,
√︁

7
8

(︀
5𝑥3 − 3𝑥

)︀
,
√︁

9
128(35𝑥

4 − 30𝑥2 + 3)
}︁
. Details

omitted.

Exercise 52: From Exercise 50, we know that { #»𝑤1, . . . ,
#»𝑤𝑘} is an orthogonal basis for

Span(𝑆). Hence, if we apply Proposition 4.3.13 to #»𝑣 𝑘+1 ∈ Span(𝑆), we get

#»𝑣 𝑘+1 =
⟨ #»𝑣 𝑘+1,

#»𝑤1⟩
‖ #»𝑤1‖2

#»𝑤1 + · · ·+ ⟨ #»𝑣 𝑘+1,
#»𝑤𝑘⟩

‖ #»𝑤𝑘‖2
#»𝑤𝑘.

So
#»𝑣 𝑘+1 −

⟨ #»𝑣 𝑘+1,
#»𝑤1⟩

‖ #»𝑤1‖2
#»𝑤1 − · · · − ⟨ #»𝑣 𝑘+1,

#»𝑤𝑘⟩
‖ #»𝑤𝑘‖2

#»𝑤𝑘 =
#»
0 .

Exercise 53: For part (a), note that
#»
0 ∈ 𝑊⊥ since

#»
0 ⊥ #»𝑤 for all #»𝑤 ∈ 𝑊 . Next, if

#»𝑥 , #»𝑦 ∈ 𝑊⊥ and 𝑐 ∈ F, then for all #»𝑤 ∈ 𝑊 we have

⟨𝑐 #»𝑥 + #»𝑦 , #»𝑤⟩ = 𝑐 ⟨ #»𝑥 , #»𝑤⟩+ ⟨ #»𝑦 , #»𝑤⟩ = 𝑐(0) + 0 = 0.

So 𝑐 #»𝑥 + #»𝑦 ∈ 𝑊⊥. So, by the Subspace Test, 𝑊⊥ is a subspace of 𝑉 .

For part (b), suppose that #»𝑥 ∈ 𝑊 ∩𝑊⊥. Then #»𝑥 ∈ 𝑊 and #»𝑥 ∈ 𝑊⊥, so #»𝑥 ⊥ #»𝑥 , meaning
⟨ #»𝑥 , #»𝑥 ⟩ = 0. So, by the positive definiteness of the inner product, it must be the case that
#»𝑥 =

#»
0 .

Exercise 54: Since { #»𝑣 1, . . . ,
#»𝑣 𝑛} is an orthogonal set, it’s clear that { #»𝑣 𝑘+1, . . . ,

#»𝑣 𝑛} ⊆
𝑊⊥, and hence that Span{ #»𝑣 𝑘+1, . . . ,

#»𝑣 𝑛} ⊆ 𝑊⊥ since 𝑊⊥ is a subspace.
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For the reverse containment, take #»𝑣 ∈ 𝑊⊥. Then #»𝑣 ∈ 𝑉 and since ℬ = { #»𝑣 1, . . . ,
#»𝑣 𝑛} is a

basis for 𝑉 we can write

#»𝑣 =

𝑛∑︁
𝑖=1

𝑎𝑖
#»𝑣 𝑖

where, since ℬ is an orthogonal basis, we have

𝑎𝑖 =
⟨ #»𝑣 , #»𝑣 𝑖⟩
‖ #»𝑣 𝑖‖2

.

Now since #»𝑣 ∈ 𝑊⊥ and #»𝑣 𝑖 ∈ 𝑊 for 𝑖 = 1, . . . , 𝑘, it must be the case that 𝑎𝑖 = 0
for 𝑖 = 1 . . . , 𝑘. Hence #»𝑣 =

∑︀𝑛
𝑖=𝑘+1 𝑎𝑖

#»𝑣 𝑖 is in Span{ #»𝑣 𝑘+1, . . . ,
#»𝑣 𝑛}. This proves that

𝑊⊥ ⊆ Span{ #»𝑣 𝑘+1, . . . ,
#»𝑣 𝑛}, as desired.

Exercise 55: Suppose without loss of generality that #»𝑧 1 and
#»𝑧 2 are not orthogonal, so that

⟨ #»𝑧 1,
#»𝑧 2⟩ ̸= 0. Take #»𝑣 = #»𝑧 1, so that proj𝑊 ( #»𝑣 ) = #»𝑣 = #»𝑧 1, since

#»𝑣 is in 𝑊 . We also have

proj #»𝑧 1

#»𝑣 = #»𝑧 1 and proj #»𝑧 2

#»𝑣 = 𝑐 #»𝑧 2 for some non-zero constant 𝑐 (namely 𝑐 = ⟨ #»𝑧 1,
#»𝑧 2⟩

⟨ #»𝑧 2,
#»𝑧 2⟩).

Then proj𝑊 ( #»𝑣 ) ̸= proj #»𝑧 1
( #»𝑣 ) + · · ·+ proj #»𝑧 𝑘

( #»𝑣 ) since otherwise we would have

#»𝑧 1 =
#»𝑧 1 + 𝑐 #»𝑧 2 + · · ·+ ⟨ #»𝑧 1,

#»𝑧 𝑘⟩
⟨ #»𝑧 𝑘,

#»𝑧 𝑘⟩
#»𝑧 𝑘

which contradicts the linear independence of { #»𝑧 1, . . . ,
#»𝑧 𝑘} since 𝑐 ̸= 0.

Exercise 56: Part (a) is really a calculus exercise. The orthogonality of 𝑆𝑛 follows from
the following trigonometric integrals:∫︁ 𝜋

−𝜋
cos(𝑘𝑥) 𝑑𝑥 = 0 (if 𝑘 ̸= 0)∫︁ 𝜋

−𝜋
cos(𝑘𝑥) sin(𝑙𝑥) 𝑑𝑥 = 0

where 𝑘, 𝑙 ∈ Z. (Note, in particular, that cos(𝑘𝑥) = 1 when 𝑘 = 0.)

For part (b), we have

proj𝑊𝑛
(𝑓) =

𝑛∑︁
𝑘=0

𝑎𝑘 cos(𝑘𝑥) +
𝑛∑︁

𝑙=1

𝑏𝑙 sin(𝑙𝑥),

where

𝑎𝑘 =
⟨|𝑥|, cos(𝑘𝑥)⟩

⟨cos(𝑘𝑥), cos 𝑘𝑥⟩ =
1

𝜋

∫︁ 𝜋

−𝜋
|𝑥| cos(𝑘𝑥) 𝑑𝑥 =

⎧⎪⎪⎨⎪⎪⎩
𝜋 if 𝑘 = 0

0 if 𝑘 > 0 is even

− 4

𝜋𝑘2
if 𝑘 > 0 is odd

and

𝑏𝑙 =
⟨|𝑥|, sin(𝑙𝑥)⟩

⟨sin(𝑙𝑥), sin 𝑙𝑥⟩ =
1

𝜋

∫︁ 𝜋

−𝜋
|𝑥| sin(𝑙𝑥) 𝑑𝑥 = 0.

Below is a plot of both 𝑓(𝑥) = |𝑥| and the projections proj𝑊𝑛
(𝑓) for 𝑛 = 1, 3, 9.
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−π π

y = |x|

x

y

Exercise 57: If #»𝑤 = proj𝑊 ( #»𝑣 ), then #»𝑣 − #»𝑤 = proj𝑊⊥( #»𝑣 ) by the Orthogonal Decompo-
sition Theorem, so #»𝑣 − #»𝑤 ∈ 𝑊⊥. Conversely, if #»𝑣 − #»𝑤 ∈ 𝑊⊥, then proj𝑊 ( #»𝑣 − #»𝑤) =

#»
0

hence proj𝑊 ( #»𝑣 )− proj𝑊 ( #»𝑤) = 0 by linearity of proj𝑊 . But proj𝑊 ( #»𝑤) = #»𝑤 since #»𝑤 ∈ 𝑊 ,
so we get proj𝑊 ( #»𝑣 )− #»𝑤 =

#»
0 and consequently #»𝑤 = proj𝑊 ( #»𝑣 ) as required.

Exercise 58: By Proposition 4.7.6, we only need to determine whether the columns of 𝑋
are linearly independent. If 𝑛 < 3, then 𝑋 being an 𝑛 × 3 matrix means its rank is less
than 3, so its columns cannot be linearly independent. Hence 𝑋𝑇𝑋 cannot be invertible.

On the other hand, if 𝑛 ≥ 3 then the columns of 𝑋 will be linearly independent if and only
if rank(𝑋) = 3, which will be the case if and only if three of the rows of 𝑋 are linearly
independent. So now we have to determine when three rows of the form [1 𝑥𝑖 𝑥2𝑖 ], [1 𝑥𝑗 𝑥2𝑗 ]

and [1 𝑥𝑘 𝑥2𝑘] are linearly independent. This will be the case if and only if the matrix

𝐴 =

⎡⎣1 𝑥𝑖 𝑥2𝑖
1 𝑥𝑗 𝑥2𝑗
1 𝑥𝑘 𝑥2𝑘

⎤⎦
is invertible. If we compute the determinant of 𝐴, we find that

det(𝐴) = (𝑥𝑗 − 𝑥𝑖)(𝑥𝑘 − 𝑥𝑖)(𝑥𝑘 − 𝑥𝑗).

(This is an example of a Vandermonde determinant.) Thus, 𝐴 is invertible if and only if
det(𝐴) ̸= 0, which is the case if and only if 𝑥𝑖, 𝑥𝑗 , 𝑥𝑘 are distinct. This completes the proof.

Chapter 5: Unitary Diagonalization

Exercise 59: Consider 𝑉 = 𝒫1(R) with inner product ⟨𝑝, 𝑞⟩ =
∫︀ 1
0 𝑝𝑞. Let ℬ = {1, 𝑥} be

the standard basis. Note that ⟨1, 𝑥⟩ = 1
2 while [𝑥]*ℬ[1]ℬ = [0 1]

[︂
1
0

]︂
= 0.

Exercise 60: These follow at once from the properties of the transpose, plus the following
facts about complex conjugation:

𝑧 + 𝑤 = 𝑧 + 𝑤, 𝑧𝑤 = 𝑧𝑤, and 𝑧 = 𝑧.

https://en.wikipedia.org/wiki/Vandermonde_matrix
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Exercise 61: No solution provided.

Exercise 62: Since the rows of 𝑃 are the columns of 𝑃 𝑇 , the equivalence of parts (a) and
(b) in Proposition 5.2.1 allows us to conclude that the rows of 𝑃 form an orthonormal bases
for F𝑛 if and only if (𝑃 𝑇 )* = (𝑃 𝑇 )−1. This in turn is equivalent to (𝑃 *)𝑇 = (𝑃−1)𝑇 and
hence to 𝑃 * = 𝑃−1.

Exercise 63: The angle between #»𝑣 and #»𝑢 is given by

𝜃 = cos−1

(︂ ⟨ #»𝑣 , #»𝑢 ⟩
‖ #»𝑣 ‖‖ #»𝑢‖

)︂
.

The angle between 𝑄 #»𝑣 and 𝑄 #»𝑢 is given by

𝜃′ = cos−1

(︂ ⟨𝑄 #»𝑣 ,𝑄 #»𝑢 ⟩
‖𝑄 #»𝑣 ‖‖𝑄 #»𝑢‖

)︂
.

Since 𝑄 is orthogonal, Proposition 5.2.7 tells us that ⟨𝑄 #»𝑣 ,𝑄 #»𝑢 ⟩ = ⟨ #»𝑣 , #»𝑢 ⟩, ‖𝑄 #»𝑣 ‖ = ‖ #»𝑣 ‖,
‖𝑄 #»𝑢‖ = ‖ #»𝑢‖, so 𝜃′ = 𝜃.

Exercise 64: In det(𝐴− 𝜆𝐼), 𝜆 is in F, so we cannot substitute in the matrix 𝐴.

Exercise 65: If 𝐴 is self-adjoint, then 𝐴𝐴* and 𝐴*𝐴 are both equal to 𝐴2.

If 𝐴 is unitary, then 𝐴𝐴* = 𝐴*𝐴 = 𝐼.

Finally, if 𝐴 = diag(𝜆1, . . . , 𝜆𝑛), then 𝐴𝐴* = 𝐴*𝐴 = diag(𝜆1𝜆1, . . . , 𝜆𝑛𝜆𝑛).

Exercise 66: The diagonal entries of 𝐴 are 𝑎𝑖𝑖. The diagonal entries of 𝐴* are 𝑎𝑖𝑖. Since
𝐴 = 𝐴*, it follows that 𝑎𝑖𝑖 = 𝑎𝑖𝑖, and hence that 𝑎𝑖𝑖 ∈ R.

Exercise 67: If 𝐴 ∈ 𝑀𝑛×𝑛(R) is orthogonally diagonalizable, then we can write 𝐴 = 𝑄𝐷𝑄𝑇

with 𝑄,𝐷 ∈ 𝑀𝑛×𝑛(R) that are unitary and diagonal, respectively. Then 𝐴𝑇 = (𝑄𝐷𝑄𝑇 )𝑇 =
𝑄𝐷𝑇𝑄𝑇 . Further, since 𝐷 is diagonal, 𝐷𝑇 = 𝐷, so 𝐴𝑇 = 𝐴.

Exercise 68: If 𝐴 ∈ 𝑀𝑛×𝑛(C) is unitarily diagonalizable, then we can write 𝐴 = 𝑈𝐷𝑈*

with 𝑈,𝐷 ∈ 𝑀𝑛×𝑛(C) that are unitary and diagonal, respectively. Then 𝐴* = (𝑈𝐷𝑈*)* =
𝑈𝐷*𝑈 . Hence 𝐴*𝐴 = 𝑈𝐷*𝐷𝑈 and 𝐴𝐴* = 𝑈𝐷𝐷*𝑈 . Note that 𝐷* = 𝐷 is diagonal, so
𝐷𝐷* = 𝐷*𝐷 since diagonal matrices commute. Thus, 𝐴*𝐴 = 𝐴𝐴*.

Exercise 69: For part (a), note that if 𝐴 is skew-self-adjoint then 𝐴 is normal, because
𝐴𝐴* and 𝐴*𝐴 are both equal to −𝐴2. Hence, by the spectral theorem for normal operators,
𝐴 is unitarily diagonalizable.

For part (b), we follow our unitary diagonalization algorithm and find 𝑈 = 1√
2

[︂
1 1
1 −1

]︂
and

𝐷 =

[︂
𝑖 0
0 −𝑖

]︂
.

Exercise 70: This is just a matter of multiplying out #»𝑢𝑇𝐴 #»𝑢 .

Exercise 71: The (𝑖, 𝑗)th entry of 𝐴 is
𝑎𝑖𝑗 + 𝑎𝑗𝑖

2
. This is clearly equal to the (𝑗, 𝑖)th entry.

So 𝐴 is symmetric.
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Exercise 72: Let 𝐴 be the Gram matrix with respect to ℬ, and let ℬ = { #»𝑔 1, . . . ,
#»𝑔 𝑛}.

Then the (𝑖, 𝑗)th entry of 𝐴 is 𝐴𝑖𝑗 = ⟨ #»𝑔 𝑗 ,
#»𝑔 𝑖⟩. So if ℬ is orthonormal, we see that 𝐴𝑖𝑗 = 1

if 𝑖 = 𝑗 and 𝐴𝑖𝑗 = 0 if 𝑖 ̸= 𝑗—meaning, 𝐴 = 𝐼𝑛.

If ℬ is orthogonal, then we still have that 𝐴𝑖𝑗 = 0 for all 𝑖 ̸= 𝑗, but 𝐴𝑖𝑖 = ⟨ #»𝑣 𝑖,
#»𝑣 𝑖⟩ = ‖ #»𝑣 𝑖‖2.

So in this case 𝐴 is a diagonal matrix whose diagonal entries are the norms-squared of the
vectors in ℬ.

Exercise 73: The Gram matrix of ⟨ , ⟩ with respect to the standard basis ℬ of C2 is

𝐴 =

[︂
1 −𝑖
𝑖 0

]︂
.

The eigenvalues of 𝐴 can be computed to be 1
2(1±

√
5). One of these is negative. So ⟨ , ⟩

is not an inner product (specifically, it is not positive-definite).

Chapter 6: The Singular Value Decomposition

Exercise 74: If 𝐴 is self-adjoint then 𝐴*𝐴 = 𝐴2.

We claim that the eigenvalues of 𝐴 are squares of the eigenvalues of 𝐴.

This follows from the spectral theorem (which can be applied because 𝐴 is self-adjoint). If
𝐴 = 𝑈𝐷𝑈* then 𝐴2 = 𝑈𝐷2𝑈*. The eigenvalues of 𝐴 are the diagonal entries of 𝐷 and the
eigenvalues of 𝐴2 are the diagonal entries of 𝐷2. Since the entries of 𝐷2 are the squares of
the entries of 𝐷, this proves our claim. Thus, the eigenvalues of 𝐴*𝐴 are of the form 𝜆2

where 𝜆 is an eigenvalue of 𝐴.

From this we deduce that if 𝜎 is a singular value of 𝐴, then 𝜎 =
√
𝜆2 = |𝜆| where 𝜆 is an

eigenvalue of 𝐴. That is, the singular values of 𝐴 are the absolute values of the eigenvalues
of 𝐴.

In the above unitary diagonalization of 𝐴*𝐴 = 𝐴2, we found that the unitary matrix 𝑈 is
the same one that unitarily diagonalizes 𝐴. Thus, the singular vectors of 𝐴 are eigenvectors
of 𝐴.

Exercise 75: The matrix 𝑉 is obtained from applying the spectral theorem to the self-
adjoint matrix 𝐴*𝐴. If 𝐴 is real, then 𝐴*𝐴 = 𝐴𝑇𝐴 is real symmetric, so we can guarantee
𝑉 to be real, by the spectral theorem for symmetric matrices. The matrix 𝑈 is built out
of two types of vectors. First, we use vectors of the form 1

𝜎𝐴
#»𝑣 where 𝜎 is a singular value

and #»𝑣 is a column of 𝑉—both of which are real. The second type of vectors are obtained
by applying the Gram–Schmidt process in R𝑛 to the first type of vectors, which also results
in real vectors.

Exercise 76: Refer to Exercise 74. An SVD 𝐴 = 𝑈Σ𝑉 * and unitary diagonalization
𝐴 = 𝑊𝐷𝑊 * may share the unitary matrices (i.e. we may have 𝑈 = 𝑉 = 𝑊 ). The key
difference lies in 𝐷 and Σ: the diagonal entries of Σ are the absolute values of the diagonal
entries of 𝐷. So if we have a unitarily diagonalization of 𝐴 we can easily obtain an SVD,
but not conversely (not unless we know what the eigenvalues of 𝐴 are).

Exercise 77: If you multiply out #»𝑢 #»𝑣 * you will obtain an 𝑛× 𝑛 matrix whose rows are all
multiples of #»𝑣 *. Since #»𝑣 * is non-zero, it thus forms a basis for the row-space of #»𝑢 #»𝑣 *, and
so rank( #»𝑢 #»𝑣 *) = 1.
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Exercise 78: Note that, with respect to the Frobenius inner product,⟨︀
#»𝑢 𝑖

#»𝑣 *
𝑖 ,

#»𝑢 𝑗
#»𝑣 *
𝑗

⟩︀
= tr(( #»𝑢 𝑗

#»𝑣 *
𝑗 )

* #»𝑢 𝑖
#»𝑣 *
𝑖 ) = tr( #»𝑣 𝑗

#»𝑢 *
𝑗

#»𝑢 𝑖
#»𝑣 *
𝑖 ).

But #»𝑢 *
𝑗

#»𝑢 𝑖 = 0 for 𝑖 ̸= 𝑗, since this is the standard inner product of #»𝑢 𝑗 and #»𝑢 𝑖—and these
vectors are orthogonal since they are distinct columns of a unitary matrix. Similarly, notice
that if 𝑖 = 𝑗 in the above, then

#»𝑣 𝑖
#»𝑢 *
𝑖

#»𝑢 𝑖
#»𝑣 *
𝑖 =

#»𝑣 𝑖(1)
#»𝑣 *
𝑖 =

#»𝑣 𝑖
#»𝑣 *
𝑖

(why?) so
⟨ #»𝑢 𝑖

#»𝑣 *
𝑖 ,

#»𝑢 𝑖
#»𝑣 *
𝑖 ⟩ = tr( #»𝑣 𝑖

#»𝑣 *
𝑖 ) = 1

just as we observed at the end of the proof of part (c) of Proposition 6.4.6.

Thus, { #»𝑢 1
#»𝑣 *
1, . . . ,

#»𝑢 𝑟
#»𝑣 *
𝑟} is an orthonormal set with respect to the Frobenius inner product.

So, by the Pythagorean theorem, we have

‖𝐴−𝐴𝑘‖2 =
⃦⃦⃦⃦
⃦

𝑟∑︁
𝑖=𝑘+1

𝜎𝑖
#»𝑢 𝑖

#»𝑣 *
𝑖

⃦⃦⃦⃦
⃦
2

=
𝑟∑︁

𝑖=𝑘+1

|𝜎𝑖|2 ‖ #»𝑢 𝑖
#»𝑣 *
𝑖 ‖2

=
𝑟∑︁

𝑖=𝑘+1

|𝜎𝑖|2

=
𝑟∑︁

𝑖=𝑘+1

𝜎2
𝑖 (since 𝜎𝑖 ≥ 0)

from which the desied result follows.

Exercise 79: The key point is that if 𝐴 = 𝑈Σ𝑉 * is an SVD of 𝐴, then 𝐴−1 = 𝑉 Σ−1𝑈* is
an SVD of 𝐴−1. Since Example 6.4.11 shows that Σ† = Σ−1, it follows that 𝐴† = 𝐴−1.
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angle, 93
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Cayley–Hamilton Theorem, 131
characteristic polynomial, 64
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compact singular value decomposition,
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conjugate symmetry, 85
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change of, 46
relative to an orthogonal basis, 98
vector, 29

cosine, 83, 90, 93, 100

decoupling, 79
diagonalizability

orthogonal, 134
unitary, 134

diagonalizable, 68, 71, 75
orthogonally, 134
unitarily, 134

diagonalization
orthogonal, 139
unitary, 139

diagonalizes, 68, 71
dimension, 23
distance, 94

properties, 95

Eckart–Young Theorem, 173
eigenspace, 61, 63
eigenvalue, 61, 63, 64
eigenvector, 61, 63
evaluation map, 32

F, 7
field, 7
Fourier expansion, 115

Gram matrix, 153
Gram–Schmidt procedure, 104

identity
map, 31
transformation, 31

image compression, 174
indefinite, 145
injective, 48
inner product, 85

dot product, 85
space, 85
standard, 86

inverse, 57, 58
isomorphic to, 51
isomorphism, 51

kernel, 34

least squares, 116, 174
curve fitting, 117
minimal norm, 176
solution, 116

Legendre polynomials, 96
length, 89
linear
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combination, 16
map, 31
operator, 61
transformation, 31

linearity, 31
in first argument, 85

linearly independent, 18

matrix
adjoint, 122
orthogonal, 126
unitary, 126
associated to a quadratic form, 146
change of coordinates, 46
Gram, 153
Hessian, 148
normal, 134, 138
of a linear map, 39
of an inner product, 149
self-adjoint, 134
skew-self-adjoint, 140
symmetric, 134

minimal norm, 176
𝑀𝑚×𝑛(F), 8
multiplicity, 66, 159

algebraic, 74
geometric, 74

negative
definite, 145
semi-definite, 145

norm, 89
properties, 93

normalization, 97
nullity, 35, 41
nullspace, 34, 41

one-to-one, 48
onto, 48
ordered basis, 28
orthogonal, 91

complement, 110
decomposition, 112
set, 95

orthogonal complement, 110
orthonormal

set, 95
outer product, 171

perpendicular
with respect to a subspace, 113

with respect to a vector, 101
perp𝑊 , 113
perp #»𝑤 , 101
𝒫𝑛(F), 7
positive

definite, 85, 145
semi-definite, 145

projection, 62, 100, 101
onto a plane, 101
onto a subspace, 113
onto a vector, 101

proj𝑊 , 113
proj #»𝑤 , 101
pseudoinverse, 175
Pythagorean Theorem, 91

quadratic form, 144
classification, 147

range, 34
rank, 35, 41
Rank–Nullity Theorem, 35

scalar multiplication, 9
Schur’s Triangularization Theorem, 128
similar, 69
singular

value, 157
value decomposition, 160, 161, 166
value decomposition, compact, 169
vector, 157

span, 16
spanning set, 18
spans, 18
Spectral Theorem, 135–137

for normal matrices, 137
for operators, 141
for Self-Adjoint matrices, 135
for symmetric matrices, 136

subspace, 13
Subspace Test, 14

surjective, 48
SVD, 160, 161, 166

compact, 169
geometry, 165
image compression, 174
low-rank approximation, 168
rank-𝑘 truncation, 171

Unique Representation Theorem, 28

vector
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coordinate vector, 29
addition, 9
unit, 95
zero, 9

vector space, 9

dimension, 23
finite-dimensional, 23
infinite-dimensional, 23
subspace, 13
axioms, 9
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