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Introduction

This instalment of math circles is intended to give you a taste of number theory, in all its beauty
and glory. The idea is to present you with some ideas and questions, and have you work things
out getting your hands dirty with some questions. The questions are both computational and
exploratory, some have well defined answers, and some don’t. You are not expected to answer all
of them, but you are expected to explore to your heart’s content. The more you explore, the more
beauty you will find hidden away.

Clock Arithmetic

We are all familiar with number systems (whatever they are), say for example, the real numbers
R, or the rational numbers Q, or the integers Z. What all of these things have in common is not
only that we’re quite familiar with them, but that if you take any two things in one of these and
multiply or add them together, you get another member of the number system. We might ask
ourselves, what else could we consider?

Well that’s simple, a clock of course!
Consider a clock with seven numbers, 0 through 6, with the 0 at the top. What we’re going to

do now, is to try to imitate arithmetic operations on this clock. We will call this clock the integers
modulo 7. We denote it Z7 and it consists of the seven elements

Z7 := {0, 1, 2, 3, 4, 5, 6}.

But how do we do math in Z7? Well, kind of as you would expect to do math on a clock. For
example,

3 + 4 ≡ 0 mod 7

1 + 2 ≡ 3 mod 7

5 + 6 ≡ 4 mod 7.

So addition is just what you would do on a clock! So what is −3 mod 7? Well -3 does not live
in Z7 (since it’s not one of 0,1,2,3,4,5 or 6), so which element is it? Whatever it is, call it Bob, it
better have the property that Bob + 3 ≡ 0 mod 7. Therefore we have

−3 ≡ 4 mod 7.

Alternatively, we could just count backwards around the clock, either way will work and no harm
will come to you! Let’s do some more examples. What about 22 + 11? Well we have

22 + 11 = 33 ≡ 5 mod 7 OR 22 + 11 ≡ 1 + 4 ≡ 5 mod 7.
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Look at that, it doesn’t seem to matter if we convert 22 and 11 to mod 7 before or after doing the
addition. It turns out that this is always the case. It doesn’t matter when you reduce things to
live inside Z7, no harm will come to you.

Ok, so we’ve dealt with addition and subtraction (since subtraction doesn’t really exist, it’s
just adding by negative numbers), but what about multiplication and division? Well multiplication
will work as we expect. Given two numbers, multiply them together and then keep subtracting (or
adding) multiples of 7 until you end up in Z7. Piece of cake! For example

3 · 4 ≡ 5 mod 7

5 · 3 ≡ 1 mod 7

2 · 3 ≡ 6 mod 7.

So, what about division or inverses? What is 1
3 mod 7? Well, let’s think about it for a moment. The

element that equals 1
3 , whatever it is, call it Jenny, had better have the property that (Jenny) ·3 ≡ 1

mod 7. Well, since 3 · 5 ≡ 1 mod 7, and 2 · 4 ≡ 1 mod 7, we see

1

3
≡ 5 mod 7 and

1

2
≡ 4 mod 7.

Let’s draw up a table of inverses for Z7.

x 0 1 2 3 4 5 6

x−1 ∗ 1 4 5 2 3 6

Notice here that every non-zero element appears exactly once in both rows.
Now, let’s change our attention to Z15 for a change of scenery. Everything works as before and

we ask the same questions. What is 1
2 in Z15? Well, since 2 · 8 ≡ 1 mod 15, we see 1

2 ≡ 8 mod 15.
Let’s have a look at the table for Z15.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

x−1 ∗ 1 8 ∗ 4 * * 13 2 ∗ ∗ 11 ∗ 7 14

Now that’s weird, a whole bunch of non-zero elements don’t actually have inverses in Z15. Notice
that the numbers which appear in the second row are exactly the numbers which appear in the first
row that have an inverse. Also, 14 is its own inverse in Z15 and 6 is its own inverse in Z7. Does
this always happen?

Before we do some questions, we make a quick definition.

Definition. If a in Zn has an inverse for all a 6= 0, then we say Zn is a field.

Now go ahead and try some questions from group 1, and question 3 is certainly one to devote
some time to and think long and hard about.

Group 1 Questions

1. Find the following elements, if they exist.

(a) In Z11:
1
5 , -92,13 + 7−9

10 ,
√

5.

(b) In Z13:
1
5 , -92,13 + 7−9

10 ,
√

5.

(c) In Z17:
1
5 , -92,13 + 7−9

10 ,
√

5.
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(d) In Z12:
1
5 , -92,13 + 7−9

10 ,
√

5.

(e) In Z7:
√
−1. What about in Z13?

2. Find integers x, y, if possible, that solve the following equations. Equations like this are called
Diophantine equations.

(a) 8x + 13y = 1

(b) 8x + 13y = 11

(c) 6x + 4y = 1

(d) 6x + 4y = 2

(e) 23x + 29y = 1

Guess when an equation ax + by = c, with a, b, c in Z, has integer solutions x and y. Try to
prove your conjecture.

3. Write out an inverse table for Z5, Z6, Z11 and Z12. When do elements have an inverse? For
which n is Zn a field? Prove both your assertions.

4. We know that sometimes we can choose different ways of representing the same thing in Zn.
For example, in Z6 we can represent 1 by 1, or 7, or -5. In fact, there are an infinite number
of ways we can represent the number 1!

We’ve already seen an example (11 + 22 in Z7) where it doesn’t matter which representative
we work with. Prove that for any Zn, during addition, subtraction, multiplication and division
(when division makes sense), it doesn’t matter which choices we make, we always get the same
answer! That is, prove that no harm will ever come to you when doing clock arithmetic!

Greatest Common Divisors and Euclid

So we now shift our attention (seemingly randomly, but it won’t be so random after all) to the
greatest common divisor of two numbers. This is exactly what it sounds like. For example the
greatest common divisor, or gcd, of 12 and 15 is

gcd(12, 15) = 3

since 3 is the largest number that goes into both 12 and 15. One way to do this is to write out the
divisors of 12 and 15, for which we get

{1, 2, 3, 4, 6, 12} and {1, 3, 5, 15}

and we notice that 3 is the largest number that appears in both. This method is fine, and given
enough time will always work. What if I asked you to calculate gcd(2625, 15015)? Well, here’s
where Euclid comes in.

This algorithm is best illustrated by an example. Say we wanted gcd(26, 38). Staring at it, we
know it’s 2, but let’s use Euclid to reinforce this.

38 = (1)26 + 12 (1)

26 = (2)12 + 2 (2)

12 = (6)2 + 0. (3)
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Start with the largest number and write it as some multiple times the smaller number plus a
remainder. Take the smaller number and the remainder (26 and 12 in the case of equation 1) and
repeat. Keep going until your remainder is 0, and the last non-zero remainder is your greatest
common divisor. Magic!

Let’s do another example, gcd(13, 8).

13 = (1)8 + 5 (4)

8 = (1)5 + 3 (5)

5 = (1)3 + 2 (6)

3 = (1)2 + 1 (7)

2 = (2)1 + 0 (8)

so gcd(13, 8) = 1. So, this is all well and good, but let’s do something radical. Let’s do the
Euclidean algorithm backwards! Why would we want to do this you ask? Well, it will give us
solutions to diophantine equations as in question 2 above!

1 = 3− 1 · 2 from equation 7

= 3− 1(5− 1 · 3) from equation 6

= 2 · 3− 1 · 5
= 2(8− 1 · 5)− 1 · 5 from equation 5

= 2 · 8− 3 · 5
= 2 · 8− 3(13− 1 · 8) from equation 4

= 5 · 8− 3 · 13.

This might seem pointless, but if we recall question 2a), we have now found integers x = 5 and
y = −3 that solve the diophantine equation 8x + 13y = 1. Why do we care, well the questions
below will answer that!

Before we do the next batch of questions, we have a simple definition to make.

Definition. The set of elements in Zn which have inverses is called the group of units and it is
denoted Z∗

n.

For example, we have

Z∗
7 = {1, 2, 3, 4, 5, 6} and Z∗

15 = {1, 2, 4, 7, 8, 11, 13, 14}.

Now it’s time to do some questions from group 2 below. Questions 9 and 12 are worth pushing
yourselves to think about.

Group 2 Questions

5. Find an integer solution to 26x + 38y = 6.

6. Find 8−1 in Z13. Hint: There’s a quick way to do this using the solution to the diophantine
equation we just found on the board.

7. (a) Calculate gcd(23, 29) using the Euclidean algorithm.

(b) Find an integer solution to the Diophantine equation 23x + 29y = 1.
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(c) Find 23−1 in Z29.

8. What is 411−1 in Z757?

9. This question is to guide you through working out when inverses exist and when they do not.

(a) Prove gcd(a, b) = 1 if and only if there are integers x and y such that ax + by = 1.
Think carefully about what “if and only if” means.

(b) Prove that if gcd(a, b) = 1 then a has an inverse in Zb.

(c) Prove that if a has an inverse in Zb, then gcd(a, b) = 1.

(d) For which n is Zn a field? Prove it.

It is worth taking a look back at question 3 and seeing if things agree with question 9.

10. We say Zn is a domain if whenever ab = 0, either a = 0 or b = 0 (or both). For which n is
Zn a domain? Can you prove your conjecture?

11. Prove the Euclidean algorithm always gives you the greatest common divisor.

12. List all the squares in Z∗
7. How many are there? How about Z∗

11, Z∗
13 and Z∗

15? Do you notice
any patterns?

Before we begin the next section, it is worth noting here that question 9 guides you through a
proof that Zn is a field if an only if n is a prime number. From here on in, we will only really be
paying attention to Zp for p prime.

Squares in Z∗p
This section is all about finding squares in Z∗

p. If we spend a bit of time on question 1e) above, we

notice that
√
−1 exists in Z7 but not in Z13. This is kind of strange, and it raises the question of

when does
√
−1 exist in Zp? What about

√
2 or

√
−3. Now the fun begins!

Let’s see which squares actually exist in Z∗
7 and Z∗

13. We respectively have the tables

x 1 2 3 4 5 6

x2 1 4 2 2 4 1

x 1 2 3 4 5 6 7 8 9 10 11 12

x2 1 4 9 3 12 10 10 12 3 9 4 1
.

Looking at this we that since 12 ≡ −1 mod 13, -1 has a square root (in fact it has two, 5 and
8). Well, let’s do some more examples, and this time we will write the elements of Z∗

p slightly
differently.

For Z∗
11 = {±1,±2,±3,±4,±5} we have

x ±1 ±2 ±3 ±4 ±5

x2 1 4 −2 5 3
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so we see

Squares in Z∗
11 are: 1, 4,−2, 5, 3, and

Non-squares in Z∗
11 are: − 1,−4, 2,−5,−3.

Interesting. Let’s do some more examples. For Z∗
13 = {±1,±2,±3,±4,±5,±6} we have

x ±1 ±2 ±3 ±4 ±5 ±6

x2 1 4 −4 3 -1 -3

so we see

Squares in Z∗
13 are: ± 1,±3,±4, and

Non-squares in Z∗
13 are: ± 2,±5,±6.

So the squares in Z∗
11 act a little different to the squares in Z∗

13. Okay, so what’s so special about
primes? Well, let’s see. For Z∗

15 = {±1,±2,±4,±7} we have

x ±1 ±2 ±4 ±7

x2 1 4 1 4

so we see

Squares in Z∗
15 are: 1, 4, and

Non-squares in Z∗
15 are: − 1,±2,−4,±7.

From these examples, what do we notice?

• In the cases for Z∗
p where p is a prime, exactly half of the elements are squares and the other

half are not.

• When p is a prime, each square in Z∗
p has two square roots. This doesn’t happen in Z∗

15 since
4 has four square roots, namely ±2 and ±7.

Let’s try and figure out why the second point is true. First notice that in Zp, if ab ≡ 0 mod p
then a ≡ 0 mod p or b ≡ 0 mod p (note this doesn’t happen if p is not prime, since in Z15 we
have 3 · 5 ≡ 0 mod 15). Why is this?

Well, assume ab ≡ 0 and a 6= 0 mod p. We are going to force b ≡ 0 mod p. Since Zp is a field,
a−1 exists so we have

ab ≡ 0 mod p

=⇒ a−1ab ≡ a−10 mod p

=⇒ b ≡ 0 mod p

and we’re done! Now we can try our hand at proving the first statement above thoroughly. Re-
member, a proof is simply an argument that is just about impossible to disagree with.

Theorem. Let p ≥ 3 be a prime and suppose a in Z∗
p is a square, that is a ≡ b2 mod p for some

b in Z∗
p. Then a has exactly 2 square roots, namely b and −b.
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Proof. Suppose that a is a square, that is a = b2 for some b. Then we know that a = (−b)2, so we
see that if a is a square, it certainly has at least the two square roots that we want. Now we will
argue that there are no more by assuming there is another one, and showing it is actually either b
or −b.

Assume c2 ≡ a mod p. Then we have a ≡ b2 ≡ c2 mod p. Rearranging we get

c2 − b2 ≡ 0 mod p

which after factoring we have
(c− b)(c + b) ≡ 0 mod p.

Now, since we’re in Zp for some prime p, we know this means that either c − b ≡ 0 mod p or
c + b ≡ 0 mod p. Therefore we have c ≡ b mod p or c ≡ −b mod p, and we have shown that if
there is a square root, it had better be either b or −b. �

What we have shown here is actually quite powerful. If a number has a square root, then there
are exactly two! This is the kind of behaviour that we would like, because it is the behaviour we
see on the real numbers.

We now have the tools to attack the group three problems. Definitely spend some time on
questions 13, 16, and 17 and look carefully for patterns.

Group 3 Questions

13. List all the squares and non-squares in Z7, Z17 and Z19. Which of Z7, Z11, Z13, Z17 and Z19

have −1 as a square? Which of the primes {7, 11, 13, 17, 19} can be written as x2 + y2 for
some integers x and y?

14. (a) Prove Wilson’s theorem: if p is a prime then (p− 1)! ≡ −1(mod p).
Hint: pair up each element of Z∗

p with its inverse. Which elements are their own in-
verses? Try it for small primes first to look for patterns.

(b) If p ≡ 1(mod 4), prove
((p−1

2

)
!
)2
≡ −1(mod p), and thus

√
−1 is in Zp.

15. Prove that for an odd prime, Z∗
p has exactly p−1

2 squares.

16. For each prime p < 100, determine whether p can be written in the form x2 + 3y2 for integers
x and y.

17. For each prime p < 100, determine whether −3 is a square in Z∗
p. Do you notice anything?

Can you prove it?

Euler’s Criterion

As we can see from the problems, finding squares in Z∗
p is difficult. However, we do have a nice tool

called Euler’s criterion. To get there, we first need to define the Legendre symbol as follows.
Let p be an odd prime and a and element of Z∗

p. Then we define the Legendre symbol as

(a
b

)
:=

{
1 if a is a square mod p
-1 if a is a non-square mod p

.
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For example, we know −1 is not a square in Z13 but it is in Z7. So we have(
−1

7

)
= −1 and

(
−1

13

)
= 1.

So how do we calculate the Legendre symbol in general without looking for the squares in Z∗
p? Well,

lucky for us, we have Euler’s criterion which tells us that(
a

p

)
≡ a

p−1
2 mod p.

For example, the calculation (
3

11

)
≡ 35 ≡ 243 ≡ 1 mod 11

tells us that 3 is a square in Z11.
Now we have the machinery to look at the last group of questions.

Group 4 Questions

18. Use Euler’s criterion to calculate
(

2
101

)
by hand.

19. Let p be a prime and prove that if a, b in Z∗
p are non-squares, then ab is a square in Z∗

p.

20. (a) We will now try to calculate
(
2
p

)
. Let’s do an example using Euler’s criterion, but we

will calculate it slightly cleverly! Let p = 13. Then the calculation

26 ≡ 2 · 4 · 6 · 8 · 10 · 12

1 · 2 · 3 · 4 · 5 · 5
≡ 2 · 4 · 6 · (−5) · (−3) · (−1)

1 · 2 · 3 · 4 · 5 · 6
≡ (−1)3 ≡ −1 mod 13

shows us that
(

2
13

)
= −1. Generalise this to determine

(
2
p

)
for all primes p ≥ 3.

(b) Use a similar method to part (a) to calculate
(
−2
p

)
for all primes p ≥ 3.

(c) For each prime less than 100, determine whether or not p can be written as x2 + 2y2 for
integers x, y. Are these the primes you expected? Any conjectures?

(d) How far can you push the method in parts (a) and (b)? Can you calculate
(
a
p

)
for any

a and any primes p?

21. Prove Euler’s criterion. You will need to use the following fact (which you can try to prove
as well if you’re bored over breakfast tomorrow morning), called Fermat’s Little Theorem.

Fermat’s Little Theorem. Let a be in Z∗
p for some prime p. Then ap−1 ≡ 1 mod p.

So this is all we have managed to get through, but it has barely scratched the surface of finding
squares in Zp, let alone number theory as a whole. There are so many more questions to ask and
so many more to be resolved. If you want to learn more about this stuff, the book

Primes of the form a2 + nb2: Fermat, Class Field Theory and Complex Multiplication

by David Cox is an excellent place to start. The first few chapters of the book are definitely
accessible to you. Good luck!
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